UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF BLAST RESISTANT RICE VARIETY THROUGH MARKER-ASSISTED BACKCROSSING BETWEEN VARIETIES MR263 AND PONGSU SERIBU 1

MUHAMMAD MAHMUDUL HASAN

FP 2015 40
DEVELOPMENT OF BLAST RESISTANT RICE VARIETY THROUGH MARKER-ASSISTED BACKCROSSING BETWEEN VARIETIES MR263 AND PONGSU SERIBU 1

By

MUHAMMAD MAHMUDUL HASAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

Dedicated to my beloved parents
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF BLAST RESISTANT RICE VARIETY THROUGH MARKER-ASSISTED BACKCROSSING BETWEEN VARIETIES MR263 AND PONGSU SERIBU 1

By

MUHAMMAD MAHMUDUL HASAN

August 2015

Chairman: Professor Mohd Rafii Yusop, PhD
Faculty: Agriculture

The rice blast caused by *Magnaporthe oryzae* is the most important and potentially damaging rice disease globally. Its frequent appearance during all stages of plant growth greatly decreases yield and grain quality. Marker-assisted backcrossing (MABC) selection can play a vital role in developing disease resistant, high-yield or quality rice varieties by incorporating a gene of interest into an elite variety that is already cultivated by farmers. The main objective of this study was to develop a blast resistant rice variety from cross between MR263 and Pongsu Seribu 1 (PS1). The specific objectives were to introgress blast resistant genes derived from a resistant variety, PS1 into the popular but blast susceptible Malaysian rice variety MR263 through MABC, to identify polymorphic SSR markers associated with blast resistant genes for foreground selection, to identify polymorphic SSR markers between the two parents, and to evaluate agronomic performance of advanced blast resistant rice lines of BC$_2$F$_3$ generation. A total of 450 SSR markers were used among which 65 polymorphic markers were identified including *Pi* gene based markers and background markers to identify the segregation ratio in 300 individuals of BC$_2$F$_1$ rice population derived from MR263 × PS1. For the phenotypic study, the most virulent blast (*Magnaporthe oryzae*) pathotype P7.2 was used to screen BC$_2$F$_1$ individuals to determine the inheritance of blast resistance as well as linkage association with the SSR markers. Among the 65 polymorphic markers, 16 markers showed a heterozygous band in the BC$_2$F$_1$ population. From the 16 polymorphic markers, only eight markers (RM5961, RM263, RM163, RM224, RM262, RM168, RM229 and RM169) showed a good fit to the expected segregation genotypic ratio (1:1) for the single dominance gene model (df = 1.0, *P* < 0.05) using chi-square (χ^2) analysis. Phenotypic data analysis of the BC$_2$F$_1$ population also showed a good fit to the expected phenotypic ratio (1:1; R:S) for resistant and susceptible plants. Resistance to blast Pathotype P7.2 in PS1 is most likely controlled by a single dominant gene whereby the eight markers are linked to rice blast resistance. These linked-markers could be used in marker-assisted selection programme to develop a durable blast resistant rice variety. From BC$_2$F$_2$ generation, four blast resistant lines (MR263-BR-3-2, MR263-BR-4-3, MR263-BR-13-1 and MR263-BR-26-4) were selected for rice blast resistant varietal development. These lines were identified to carry the *Pi-7(t), Pi-d(t)1*, and *Pir2-3(t)* genes and the *qLN2* QTL as determined by markers RM5961 and RM263 (linked-marker to the blast
resistant genes and QTL). Background selection analysis using 65 polymorphic SSR markers revealed that high recurrent parent genome recovery was 96.0% in MR263-BR-4-3, 94.1% in MR263-BR-3-2, 89.5% in MR263-BR-26-4 and 89.1% in MR263-BR-13-1, and these four resistant BC$_2$F$_2$ lines were selfed to develop BC$_2$F$_3$ population. Finally, thirty advanced blast resistant BC$_2$F$_3$ lines were selected for agromorphological evaluation. Out of 30 blast resistant lines, 12 lines (Lines 12, 6, 7, 5, 21, 22, 26, 11, 8, 10, 13 and 15) produced comparable grain yield per hill, number of tillers per hill, panicles per hill and percentage of filled grain to variety MR263. The estimates broad-sense heritability values in the selected rice population were high (70 to 95%) for all the traits indicating that these characteristics are highly heritable to the next generation. From cluster analysis based on the agro-morphological traits, 20 advanced lines were grouped into similar cluster with MR263 variety. This result was expected due to a high genome recovery (mean 96%) of MR263 variety into the advanced lines. The 12 advanced rice lines are recommended for multi-location trial to select blast resistant high yielding lines for development of highly potential rice variety in Malaysia.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN VARIETI PADI RINTANG KARAH MELALUI BANTUAN PENANDA KACUKBALIK DI ANTARA VARIETI MR263 DAN PONGSU SERIBU 1

Oleh

MUHAMMAD MAHMUDUL HASAN

Ogos 2015

Pengerusi: Profesor Mohd Rafii Yusop, PhD
Fakulti: Pertanian

Karahan padi disebabkan oleh *Magnaporthe oryzae* adalah merupakan penyakit padi utama yang penting dan mengakibatkan kerosakan padi seluruh dunia, termasuk di Malaysia. Serangannya berlaku disemua peringkat pertumbuhan pokok padi yang mengakibatkan penurunan ketara hasil dan kualiti bijian. Pemilihan kacukbalik bantuan-penanda (MABC) dapat memainkan peranan penting dalam pembangunan varieti padi yang rintang penyakit serta berhasil tinggi atau beras berkualiti dengan menggabungkan gen yang dikehendaki ke dalam varieti elit yang ditanam oleh petani. Objektif utama kajian ini adalah untuk membangunkan satu varieti padi yang rintang karah daripada kacukan antara MR263 dan Pongsu Seribu 1 (PS1). Objektif khusus adalah untuk intrograsi gen rintang karah dari varieti yang rintang, PS1 ke dalam varieti popular di Malaysia tetapi rentan penyakit karah, MR263 melalui MABC, untuk mengenal pasti gen yang berkait rapat dengan gen kerintangan karah untuk digunakan sebagai penanda yang pemilihan gen karah, untuk mengenal pasti penanda SSR polimorfik yang berkait rapat dengan gen kerintangan karah untuk digunakan sebagai penanda yang pemilihan gen karah, untuk mengenal pasti penanda SSR polimorfik antara dua induk tersebut, dan untuk menilai prestasi agronomi waras maju padi rintang karah dari generasi BC₂F₁. Daripada 450 penanda SSR, 65 penanda polimorfik termasuk penanda berdasarkan gen *Pi* dan penanda pemulihan genom telah digunakan untuk mengenalpasti nisbah segregasi dalam 300 individu populasi padi BC₂F₁ dari kacukan MR263 × PS1. Kajian fenotip, patotip karah (*Magnaporthe oryzae*) yang paling virulen, Patotip P7.2 telah digunakan untuk pemilihan pokok BC₂F₁ bagi menentukan pewayaran kerintangan karah serta perkaitannya dengan penanda SSR. Dari 65 penanda polimorfik, 16 petanda memberikan band yang heterozigot dalam populasi BC₂F₁ tersebut. Dari 16 penanda polimorfik tersebut, hanya lapan penanda (RM5961, RM263, RM163, RM224, RM262, RM168, RM229 dan RM169) menunjukkan adanya band atau genotip yang baik bagi nisbah genotip dijumpai (1:1) untuk model gen dominan tunggal (df = 1.0 , P <0.05) berdasarkan analisa khi-kuasa dua (χ²). Analisis data fenotip populasi BC₂F₁ juga menunjukkan adanya band atau genotip yang baik kepada nisbah genotip yang dijumpai (1:1; R:S) dalam anatara pokok padi rentan dan rintang. Oleh itu, kerintangan karah Patotip P7.2 pada PS1 adalah kemungkinan besar dikawal oleh gen rintang dominan tunggal. Ini membuahkan bahawa lapan penanda tersebut adalah berkait rapat dengan gen kerintangan karah padi. Penanda tersebut boleh digunakan dalam program pemilihan bantuan-penanda untuk membangunkan varieti rintang karah dengan ketahanan yang stabil. Dari generasi
BC\textsubscript{2}F\textsubscript{2}, empat waris rintang karah (MR263-BR-3-2, MR263-BR-4-3, MR263-BR-13-1 dan MR263-BR-26-4) telah terpilih untuk pembangunan varieti rintang karah seterusnya. Waris tersebut telah dikenal pasti mengandungi gen \textit{Pi-7 (t)}, \textit{Pi-d (t)} \textit{I}, dan \textit{Pir2-3 (t)} dan QTL \textit{qLN2} yang telah ditentukan oleh penanda RM5961 dan RM263 (penanda berkait-rapat kepada gen rintang karah dan QTL). Analisa pemilihan pemulihan genom menggunakan 65 penanda SSR polimorfik menunjukkan pemulihan genom induk penerima adalah tinggi iaitu 96.0% dalam MR263-BR-4-3, 94.1% dalam MR263-BR-3-2, 89.5% dalam MR263-BR-26-4 dan 89.1% dalam MR263-BR-13-1, dan keempat-empat waris tersebut BC\textsubscript{2}F\textsubscript{2} rintang karah tersebut diswa-kacuk untuk menghasilkan populasi BC\textsubscript{2}F\textsubscript{3}. Akhir sekali, 30 waris maju rintang karah dari populasi BC\textsubscript{2}F\textsubscript{3} telah dipilih untuk penilaian agro-morfologi. Daripada 30 waris rintang karah tersebut, 12 waris (Waris 12, 6, 7, 5, 21, 22, 5, 26, 11, 8, 10, 13 dan 15) telah memberikan hasil bijirin per perdu, bilangan anak padi per perdu, bilangan tangkai per perdu dan peratusan bijirin-berisi adalah setanding dengan varieti MR263. Anggaran nilai heritabiliti luas bagi populasi padi terpilih tersebut adalah tinggi (70 hingga 95%) untuk kesemua ciri, menunjukkan bahawa ciri tersebut kebolehwarisan yang tinggi kepada generasi seterusnya. Dari analisa kluster berdasarkan ciri agro-morfologi, 20 waris maju telah terkumpulkan kedalam kelompok yang sama dengan varieti MR263. Keputusan ini telah dijangkakan berdasarkan pemulihan genom yang tinggi (purata 96%) daripada varieti MR263 ke dalam waris maju tersebut. Dua belas waris maju padi tersebut adalah disyorkan untuk dinilai di pelbagai lokasi bagi memilih waris rintang karah serta berhasil tinggi bagi pembangunan varieti padi yang berpotensi tinggi di Malaysia.
ACKNOWLEDGEMENTS

All praises are due to Almighty Allah, who enabled me with the strength, wisdom and will to complete my doctoral study successfully.

First and foremost, I would like to express my heartiest respect with indebtedness and utmost gratitude to my Supervisor, Professor Dr. Mohd Rafii Yusop for his continuous support and invaluable guidance, valuable suggestions and scholastic supervision throughout the period of this research work. I simply could not imagine having a better advisor and friendlier mentor for PhD study. I believe that one of the main gains of my doctoral study was working with Prof. Rafii.

With a great deal of luck, I got an excellent Supervisory Committee. I owe an immense debt to the rest of my supervisory committee, Prof. Dr. Mohd Razi Ismail, Prof. Dr. Maziah Mahmood, Dr. Abdul Rahim Harun and Dr. Md. Abdul Latif for their encouragement, insightful comments and critical review. This thesis could not have been done without their strong supervision.

I cannot find words to express my deep sense of respect and immense gratitude to all the Professors and Lecturers in the Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM) for their encouragement, good teaching and invaluable suggestions throughout the study period.

I am very much thankful and acknowledge to LRGS project (Vot No. 5525001), UPM for providing financial support and facilities for my research. I would also like to thank UPM for providing International Graduate Research Fellowship (IGRF) for my PhD study. I consider it an honor to work with all the administrative and technical staffs of Department of Crop Science and Field 10, UPM.

I sincerely acknowledge Bangladesh Institute of Nuclear Agriculture (BINA) and Ministry of Agriculture, Bangladesh authority for providing deputation and other supports to commence my study overseas. It gives me much pleasure to express heartfelt gratitude and sincere appreciation to my senior colleagues Dr. Abdul Malek and others for their inspiration, moral support and kind advices to strive to reach the goal. Sincere thanks and appreciation are also extended to Director General Dr. A.H.M. Razzak of BINA who offered much advice and insight throughout my work.

I would be remiss without mentioning all my family members and relatives for instilling the importance of higher education, and also for their unconditional love, moral support and motivation to make this dream a reality. I would like to offer my heartiest gratitude and deepest sense of respect to my loving mother for her boundless love and sacrifice, and to my caring father. Heartfelt thanks to my better half Shamima Sultana, adoring sister Hafsa khatun, her husband Fazlul Haque, aunty Rowshon Ara Parvin, uncle Nazrul Islam who have been a great source of inspiration and motivation for me.

Finally, special thanks to all of my friends especially Fahim, Amirul, Yusuf, Ibrahim, Gous and lab mates for mental support, encouragements and kind help.
I certify that a Thesis Examination Committee has met on 11 August 2015 to conduct the final examination of Muhammad Mahmudul Hasan on his thesis entitled "Development of Blast Resistant Rice Variety Through Marker-Assisted Backcrossing between Varieties MR263 and Pongsu Seribu 1" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Halimi Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Nor Aini binti Ab Shukor, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Ganesan Vadomalai, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Iftikhar Hussain Khalil, PhD
Professor
Agricultural University
Pakistan
(External Examiner)

[Signature]

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Rafii Yusop, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Razi Ismail, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Member)

Maziah binti Mahmood, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Abdul Rahim Harun, PhD
Agrotechnology and Bioscience Division
Malaysian Nuclear Agency
(Member)

Md. Abdul Latif, PhD
Principal Scientific Officer
Plant Pathology Division
Bangladesh Rice Research Institute
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: ____________

Name and Matric No.: Muhammad Mahmudul Hasan, GS33511
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:________________________ Signature:________________________
Name of Chairman of Supervisory Committee:_____________________
Name of Member of Supervisory Committee:_____________________
Signature:______________________ Signature:______________________
Name of Member of Supervisory Committee:_____________________
Signature:________________________
Name of Member of Supervisory Committee:_______________________
TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF APPENDICES	xx
LIST OF ABBREVIATIONS	xxi

CHAPTER

1. **INTRODUCTION**
 - 1.1 General Introduction
 - 1.2 Research Objectives

2. **LITERATURE REVIEW**
 - 2.1 Importance of rice
 - 2.2 Origin and Taxonomic classification of rice
 - 2.3 Genetics of rice
 - 2.4 The Genomic structure of rice
 - 2.5 Molecular genetics of rice
 - 2.6 Rice production in Malaysia
 - 2.7 Rice genetic resources in Malaysia
 - 2.8 MR263 high-yielding rice variety
 - 2.9 Pongsu Seribu 1
 - 2.10 Major rice disease in Malaysia
 - 2.11 Rice blast disease
 - 2.11.1 Causal organism of rice blast
 - 2.11.2 Origin, distribution and occurrence of blast
 - 2.11.3 Taxonomic classification of blast
 - 2.11.4 Rice blast pathotypes in Malaysia
 - 2.11.5 Infection and life cycle: *Magnaporthe oryzae*
 - 2.11.6 Different types of blast
 - 2.11.7 Interaction between rice and the blast fungus *Magnaporthe oryzae*
 - 2.11.8 Abiotic factors promoting of *Magnaporthe oryzae* infestation
 - 2.12 Blast resistance gene in rice
 - 2.12.1 Classification of blast resistance
 - 2.12.1.1 Complete resistance
 - 2.12.1.2 Partial resistance
 - 2.13 Molecular markers and blast disease improvement
 - 2.14 Blast resistance *Pi*-7(t), *Pi*-d (t)1, *Pir*-2.3(t) genes and *qLN2* QTL in rice
 - 2.15 Backcrossing in plant breeding
2.15.1 Pre-requisites of a successful backcross breeding programme 27
2.15.2 Recovery of the recurrent parent genome 29
2.16 Marker-assisted backcrossing (MABC) 29
 2.16.1 Foreground selection 31
 2.16.2 Recombinant selection 33
 2.16.3 Background selection 34
2.17 Advantages of MABC 37
2.18 Marker assisted backcrossing in blast resistance 38

3 INTROGRESSION OF THE BLAST RESISTANCE GENE INTO THE ELITE VARIETY MR263 THROUGH MARKER-ASSISTED BACKCROSSING

3.1 Introduction 40
3.2 Materials and methods 41
 3.2.1 Growing of parental lines 41
 3.2.2 Hybridization and crossing scheme 42
 3.2.3 Synchronization 44
 3.2.4 Preparing plants and panicles for emasculation 44
 3.2.5 Emasculation 45
 3.2.6 Artificial pollination 46
 3.2.7 Bagging pollinated panicles and development of cross seeds 47
 3.2.8 Collection, drying and preservation of crossed seeds 47
 3.2.9 Fungal culture, inoculum preparation and inoculation 47
 3.2.10 Blast disease evaluation 49
 3.2.11 Assessment of agronomical performance and statistical analysis 50
 3.2.12 Genomic DNA extraction 50
 3.2.13 DNA identification and quantification 50
 3.2.14 Polymerase chain reaction (PCR) 51
 3.2.15 SSR markers analysis 51
 3.2.15.1 Marker assisted foreground selection 51
 3.2.15.2 Marker assisted background analysis 51
 3.2.16 Data analysis 51
3.3 Results 53
 3.3.1 Parental SSR Polymorphism Screening 53
 3.3.2 Screening for foreground markers (target gene marker) in parental lines 56
 3.3.3 Marker assisted foreground selection 56
 3.3.4 Marker assisted background analysis 60
 3.3.5 Performance of agronomical characteristics of the improved lines 66
3.3.6 Disease reaction against *Magnaporthe oryzae* pathotype P7.2 of the improved lines

3.4 Discussion

3.5 Conclusion

4 GENETIC ANALYSIS OF RESISTANCE TO RICE BLAST IN THE BC$_2$F$_1$ POPULATION DERIVED FROM MR263 X PONGSU SERIBU 1

4.1 Introduction

4.2 Material and Methods

4.2.1 Plant materials

4.2.2 Fungal culture and inoculum preparation of *Magnaporthe oryzae*, pathotype 7.2

4.2.3 Artificial inoculation and disease evaluation in BC$_2$F$_1$

4.2.4 Genomic DNA extraction

4.2.5 DNA identification and quantification

4.2.6 Analysis of SSR markers

4.2.7 Polymerase chain reaction (PCR)

4.2.8 Genotyping for marker segregation

4.2.9 Statistical analysis

4.3 Results

4.3.1 SSR markers survey of parents and BC$_2$F$_1$ populations

4.3.2 Analysis of markers segregation in BC$_2$F$_1$ population

4.3.3 Phenotypic screening for blast resistance in BC$_2$F$_1$ population

4.3.4 Blast resistance in BC$_2$F$_1$ population

4.4 Discussion

4.5 Conclusion

5 AGRONOMIC PERFORMANCE OF THE ADVANCED BLAST RESISTANT RICE LINES IN BC$_2$F$_3$ POPULATION

5.1 Introduction

5.2.1 Experimental location and soil

5.2.2 Plant materials

5.2.3 Experimental design and management practices

5.2.4 Raising of seedlings

5.2.5 Molecular marker based screening of homozygous seedlings

5.2.6 Data collection

5.2.7 Statistical analysis

5.2.8 Cluster and principal component analysis
5.3 Results
5.3.1 Molecular Marker based homozygous plants selection
5.3.2 Analysis of recorded data
5.3.2.1 Days to maturity
5.3.2.2 Plant height
5.3.2.3 Number of tillers per hill
5.3.2.4 Panicle length
5.3.2.5 Panicles per hill
5.3.2.6 Percentage of filled grains
5.3.2.7 Grain length
5.3.2.8 Grain width
5.3.2.9 Grain yield per hill
5.3.2.10 100 seed weight (g)
5.3.3 Phenotypic coefficient of variation (PCV), Genetic coefficient of variation (GCV) and the estimation of genotypic heritability
5.3.4 Cluster analysis
5.3.5 Principal component analysis
5.4 Discussion
5.5 Conclusion

6 GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
6.1 General Conclusion
6.2 Recommendations for future research

REFERENCES 106
APPENDICES 129
BIODATA OF STUDENT 142
LIST OF PUBLICATIONS 143
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Species of Oryza with their genome symbols and chromosome number</td>
</tr>
<tr>
<td>2.2</td>
<td>The size (in Mbp) and predicted number of genes for each chromosome</td>
</tr>
<tr>
<td>2.3</td>
<td>Agro-morphological characteristics of MR263 rice variety</td>
</tr>
<tr>
<td>2.4</td>
<td>Magnaporthe oryzae pathotypes available in Malaysia</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of the most common used markers</td>
</tr>
<tr>
<td>2.6</td>
<td>Average proportion of recurrent parent (RP) and donor genomes after parental hybridization and during backcrossing</td>
</tr>
<tr>
<td>2.7</td>
<td>Expected recovery of recurrent parent genome comparing conventional and marker assisted backcrossing in subsequent generations.</td>
</tr>
<tr>
<td>3.1</td>
<td>Scoring system for blast disease</td>
</tr>
<tr>
<td>3.2</td>
<td>Gene linked SSR markers for foreground selection of the blast resistance genes Pi-7(t) and Pi-d (t)1, Pir2-3(t) genes and qLN2 QTL</td>
</tr>
<tr>
<td>3.3</td>
<td>Information on the polymorphic microsatellite markers used for background analysis in rice</td>
</tr>
<tr>
<td>3.4</td>
<td>Agronomic performance of improved selected homozygous BC$_2$F$_2$ plants that derived from the new lines MR263-BR-3, MR263-BR-4, MR263-BR-13 and MR263-BR-26</td>
</tr>
<tr>
<td>3.5</td>
<td>Reaction of the improved lines MR263-BR-3, MR263-BR-4, MR263-BR-13 and MR263-BR-26 to rice blast (Magnaporthe oryzae; Pathotype 7.2) under artificial inoculation and in protected net houses at two locations.</td>
</tr>
<tr>
<td>4.1</td>
<td>The sequence and size of polymorphic microsatellite markers used in BC$_2$F$_1$</td>
</tr>
<tr>
<td>4.2</td>
<td>Marker analysis in BC$_2$F$_1$ lines derived from the cross between rice varieties MR263× Pongsu Seribu 1</td>
</tr>
<tr>
<td>4.3</td>
<td>Segregation patterns and chi-square analysis in the BC$_2$F$_1$ generation for the genetic cross between the rice cultivars MR263 × Pongsu Seribu 1 inoculated with pathotype P7.2 of Magnaporthe oryzae</td>
</tr>
<tr>
<td>4.4</td>
<td>Chi-square test for two independent genes (1:1:1:1) and epistasis effect (15:1) for blast resistance in BC$_2$F$_1$ population derived from cross between the rice cultivars MR263 × Pongsu seribu 1 inoculated with pathotype P7.2 of Magnaporthe oryzae</td>
</tr>
</tbody>
</table>
5.1 List of morphological traits measured 86
5.2 Outline of Anova Table 87
5.3 Yield and yield contributing characteristics of 30 selected homozygous advanced lines derived from MR263-BR-4-3 94
5.4 Estimation of genetic variables of 10 morphological characteristics of 30 selected homozygous advanced lines derived from MR263-BR-4-3. 95
5.5 Groups of 30 advanced lines with MR263 based on 10 yield and yield contributing characters according to cluster 97
5.6 Eigenvectors and eigenvalues of the first four principal components 99
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic representation of evolutionary pathways of two cultivated rice</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>The phylogenetic tree of the genus Oryza</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Short and long arm and an intervening centromeric region</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Shapes and relative sizes of the Oryza sativa chromosomes.</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Year wise rice production, consumption and imports in Malaysia</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Initial leaf symptom as whitish spots (a), typical diamond lesions shaped with white centres or reddish margins (b) and vegetative growth of fungus (c)</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Typical structure of fungus (a) and germinating spore on host tissue (b)</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Typical structure of conidia of fungus</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Disease cycle of Magnaporthe oryzae</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Different symptoms of rice blast</td>
<td>20</td>
</tr>
<tr>
<td>2.11</td>
<td>Putative location of the blast resistance genes</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>Typical method of backcross</td>
<td>28</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic representation of selection of homozygous plants for the donor allele</td>
<td>32</td>
</tr>
<tr>
<td>2.14</td>
<td>Schematic representation of transferring undesirable genes with target gene</td>
<td>33</td>
</tr>
<tr>
<td>2.15</td>
<td>Schematic representation of selection of heterozygous carrying resistance gene based on genotyping analysis resembling recurrent parent genome at BC(_1)F(_1)</td>
<td>35</td>
</tr>
<tr>
<td>2.16</td>
<td>Selection of heterozygous carrying resistance gene based on genotyping analysis resembling recurrent parent genome at BC(_2)F(_1)</td>
<td>36</td>
</tr>
<tr>
<td>2.17</td>
<td>Schematic representation of development of resistant rice variety through marker assisted backcrossing (MABC)</td>
<td>37</td>
</tr>
<tr>
<td>2.18</td>
<td>Schematic representation of difference between conventional backcrossing and marker assisted backcrossing.</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Seed germination and raisin seedlings</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>The schematic diagram of overall procedure of crossing and backcrossing</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic representation of development of blast resistant rice variety through marker assisted backcrossing</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Vacuum Emasculator</td>
<td>45</td>
</tr>
</tbody>
</table>
3.5 The schematic diagram of hybridization procedure

3.6 Seed drying and preservation

3.7 Inoculum preparation of *Magnaporthe oryzae*, pathotype P7.2

3.8 Polymorphic banding pattern of selected SSR markers between MR263 and Pongsu Seribu 1. M= 50 bp DNA ladder; A indicate MR263 sample and B indicate Pongsu Seribu 1 sample.

3.9 Screening for foreground markers (target gene marker) in parental lines

3.10 Marker assisted foreground selection at F_1 for genes using gene linked markers; RM5961 (MR263; recurrent parent, PS1; PongsuSeribu 1, blast resistant donor parent and M; 50bp ladder).

3.11 Marker assisted foreground selection at F_1 for genes using gene linked markers; RM263 (MR263; recurrent parent, PS1; PongsuSeribu 1, blast resistant donor parent and M; 50bp ladder).

3.12 Marker assisted foreground selection at BC_1F_1 for genes using gene linked markers; RM5961 (MR263; recurrent parent, PS1; PongsuSeribu 1, blast resistant donor parent and M; 50bp ladder).

3.13 Marker assisted foreground selection at BC_1F_1 for genes using gene linked markers; RM263 (MR263; recurrent parent, PS1; PongsuSeribu 1, blast resistant donor parent and M; 50bp ladder).

3.14 Marker assisted foreground selection at BC_2F_1 for genes using gene linked markers; RM5961 (MR263; recurrent parent, PS1; PongsuSeribu 1, blast resistant donor parent and M; 50bp ladder).

3.15 Marker assisted foreground selection at BC_2F_1 for genes using gene linked markers; RM263 (MR263; recurrent parent, PS1; PongsuSeribu 1, blast resistant donor parent and M; 50bp ladder).

3.16 Marker assisted foreground selection at BC_2F_2 families for (a) *Pi-d(t)1*, *Pir2-3(t)* and *qLN2 QTL* gene linked marker (RM263) (b) *Pi-7(t)* gene linked marker (RM5961). MR263 (Recurrent parent), PS1 (Pongsu Seribu 1, donor parent), M (50bp ladder).

3.17 Genome introgression among the four best improved lines (MR263-BR-3-2, MR263-BR-4-3, MR263-BR-13-1 and MR263-BR-26-4). Red colour indicates regions homozygous for MR263 alleles and blue colour indicates regions homozygous for Pongsu Seribu 1 alleles

3.18 Genome introgression associated with the blast resistance genes *Pi-d (t)1*, *Pir2-3(t)* and *qLN2 QTL* on chromosome 2 and *Pi-7(t)* on chromosome 11 in MR263-BR-4-3. Red colour indicates regions homozygous for MR263 alleles and blue colour indicates regions homozygous for Pongsu Seribu 1 alleles

3.19 Chromosome wise recurrent parent recovery of the selected advanced line plant MR263-BR-4-3. Red colour indicates regions homozygous for MR263 alleles and blue colour indicates regions homozygous for Pongsu Seribu 1 alleles
homozygous for Pongsu Seribu 1 alleles

3.20 Chromosome wise recurrent parent recovery of the selected advanced line plant MR263-BR-3-2. Red colour indicates regions homozygous for MR263 alleles and blue colour indicates regions homozygous for Pongsu Seribu 1 alleles

3.21 Chromosome wise recurrent parent recovery of the selected advanced line plant MR263-BR-13-1. Red colour indicates regions homozygous for MR263 alleles and blue colour indicates regions homozygous for Pongsu Seribu 1 alleles

3.22 Chromosome wise recurrent parent recovery of the selected advanced line plant MR263-BR-26-4. Red colour indicates regions homozygous for MR263 alleles and blue colour indicates regions homozygous for Pongsu Seribu 1 alleles

4.1 Inoculation of *Magnaporthe oryzae* in BC$_2$F$_1$ population

4.2 Banding patterns of BC$_2$F$_1$ population of rice derived from MR263 × PS1 for RM5961 linked to blast resistance genes (MR263; recurrent parent; PS1; Pongsu Seribu 1 donor resistant parent; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 BC$_2$F$_1$ population and M; 50 bp ladder).

4.3 Banding patterns of BC$_2$F$_1$ population of rice derived from MR263 × PS1 for RM263 linked to blast resistance genes (MR263; recurrent parent; PS1; Pongsu Seribu 1 donor resistant parent; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 BC$_2$F$_1$ population and M; 50 bp ladder).

4.4 Banding patterns of BC$_2$F$_1$ population of rice derived from MR263 × PS1 for RM224 linked to blast resistance genes (MR263; recurrent parent; PS1; Pongsu Seribu 1 donor resistant parent; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 BC$_2$F$_1$ population and M; 50 bp ladder).

4.5 Banding patterns of BC$_2$F$_1$ population of rice derived from MR263 × PS1 for RM163 linked to blast resistance genes (MR263; recurrent parent; PS1; Pongsu Seribu 1 donor resistant parent; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 BC$_2$F$_1$ population and M; 50 bp ladder).

4.6 Distribution of blast lesion degree (BLD) in the BC$_2$F$_1$ families inoculated with rice blast pathotype P7.2

4.7 Blast disease reaction in BC$_2$F$_1$ population challenged with *Magnaporthe oryzae*, pathotype P7.2.

Selection of homozygous plants carrying blast resistant gene same as donor allele of Pongsu Seribu 1 at BC$_2$F$_2$ population using blast resistant linked marker RM263 (MR263; recurrent parent, PS1; Pongsu Seribu 1, blast resistant parent and M; 50bp ladder).

5.1 Selection of homozygous plants carrying blast resistant gene same as donor allele of Pongsu Seribu 1 at BC$_2$F$_2$ population using blast resistant linked marker RM5961 (MR263; recurrent parent, PS1; Pongsu Seribu 1, blast resistant parent and M; 50bp ladder).

5.2 Selection of homozygous plants carrying blast resistant gene same as donor allele of Pongsu Seribu 1 at BC$_2$F$_2$ population using blast resistant linked marker RM263 (MR263; recurrent parent, PS1; Pongsu Seribu 1, blast resistant parent and M; 50bp ladder).
5.3 Marker assisted foreground selection at BC$_2$F$_3$ families for genes using gene linked markers; RM5961. MR263; recurrent parent, PS1; Pongsu Seribu 1, blast resistant parent and M; 50bp ladder

5.4 Marker assisted foreground selection at BC$_2$F$_3$ families for genes using gene linked markers (RM263. MR263; recurrent parent, PS1; Pongsu Seribu 1, blast resistant parent and M; 50bp ladder).

5.5 The dendrogram of 30 advanced lines with MR263 based on 10 measured yield and yield contributing characteristics.

5.6 Three dimensional plots of PCA indicating the 30 advanced lines with MR263 based on 10 morphological characteristics
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of available blast resistance genes and tightly linked markers in rice</td>
</tr>
<tr>
<td>B</td>
<td>Examples of marker assisted backcross breeding in rice</td>
</tr>
<tr>
<td>C</td>
<td>Anova Table</td>
</tr>
<tr>
<td>D</td>
<td>Month wise average of daily maximum temperature, minimum temperature, relative humidity, rainfall, evaporation and sunshine hours at UPM during experimentation</td>
</tr>
<tr>
<td>E</td>
<td>Experimental layout</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD</td>
<td>Blast Lesion Degree</td>
</tr>
<tr>
<td>BLT</td>
<td>Blast Lesion Type</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>χ²</td>
<td>Chi-square</td>
</tr>
<tr>
<td>df</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribo Nucleic Acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetra Acetate Acid</td>
</tr>
<tr>
<td>GA</td>
<td>Expected Genetic Advance</td>
</tr>
<tr>
<td>GCV</td>
<td>Genotypic Coefficient of Variance</td>
</tr>
<tr>
<td>MABC</td>
<td>Marker Assisted Backcrossing</td>
</tr>
<tr>
<td>MAS</td>
<td>Marker Assisted Selection</td>
</tr>
<tr>
<td>MS</td>
<td>Mean Square</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square of Error</td>
</tr>
<tr>
<td>MSG</td>
<td>Mean Square of Genotypes</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PCV</td>
<td>Phenotypic coefficient of variance</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinyl Pyrrolidone</td>
</tr>
<tr>
<td>QTL</td>
<td>Quantitative Trait Loci</td>
</tr>
<tr>
<td>SSR</td>
<td>Simple Sequence Repeat</td>
</tr>
<tr>
<td>RAPD</td>
<td>Randomly Polymorphic DNA</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>rmp</td>
<td>Rounds per Minute</td>
</tr>
<tr>
<td>TE</td>
<td>Tris/EDTA</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Rice (*Oryza sativa* L.) is one of the world’s highest value crops and the second leading cereal crop after wheat. Approximately 480 million metric tons of milled rice is produced annually (Muthayya *et al*., 2014). It is the major food source for more than half of the world’s population (IRRI, 2010). Over 95% of the world’s rice crop is used for human food. It is one of the principal food crops and plays a significant role in the diet of more than three billion people around the globe (Khush, 2005). It does not only provide carbohydrates but also supplies essential food elements including protein, iron, calcium, thiamine, riboflavin, niacin, and vitamin E to the human body (Akinbile *et al*., 2011). The global need for rice has been forecasted to increase by 25% from 2001 to 2025 to cope with the increasing population (Maclean *et al*., 2002). Therefore, it is an important challenge of great importance to meet the increasing rice demand with diminishing natural resources.

Rice is also the staple food of Malaysia and the principal source of carbohydrates. Malaysia is the 25th highest volume rice producer in the world with fairly constant land area cultivated for rice (Akmibile *et al*., 2011). The yield of rice in Malaysia is around 10 tons ha⁻¹ (Abdullah *et al*., 2010). Still, now the rice rice production in Malaysia has not met the national demand (Ghee-Thean *et al*., 2012). Malaysia produces 70% of the rice it consumes. Hence, it needs to import the balance of 30% from other countries. There is therefore a vital need to increase rice production in Malaysia. The government is currently encouraging local production to obtain 100% self-sufficiency by 2020 (Rafii *et al*., 2014). Considering above matter, research is needed to expand and to increase rice yields by preventing diseases in order to supply sufficient food for a rising population.

The rapidly increasing world population, reduction in land cultivable for rice, decreased water table, emergence of new diseases and pests in the environment, and climate change are major challenges in the future. However, increasing rice production is becoming more difficult due to biotic and abiotic stresses.

Diseases are among the most important limiting biotic factors that affect rice production. The potentially devastating economic impact resulting from disease infection has impelled worldwide efforts for the development of new rice varieties. More than 70 diseases including those resulting from bacteria, fungi, viruses, and nematodes have been reported in rice (Ou, 1985). Disease management can be accomplished through chemical protection, host plant resistance, and biological control. Chemical controls are not always effective, and some are injurious to the rice plants (Mizukami and Wakimoto, 1969). Moreover, chemicals are not eco-friendly. The use of bio control agents to control blast remains to be explored in detail. Therefore, an efficacious, cost-effective
and eco-friendly blast management strategy is crucial for sustainable rice production not only for Malaysia but also for the whole world.

Among the biotic stresses, blast is the most harmful threat to high productivity of rice (Fahad et al., 2014). The rice blast caused by *Magnaporthe oryzae* is the most important and potentially damaging rice disease worldwide (Ou, 1985; Latif et al., 2011; Lee et al., 2011). It is responsible for yield losses ranging from 35 to 50% throughout the world (Padmavathi et al., 2005). The humid tropical environments in Asia are highly conducive to blast disease (Mew et al., 2004). In recent years, the frequency of blast occurrence in Malaysia has increased with invasion into new areas. More than 85 countries around the world have reported the blast occurrence (Wang et al., 2014); leading to the yield loss 10 million tons of rice every year (Wen and Gao, 2011). In Malaysia, several outbreak of blast disease occurred in 2006 at Kemubu Agriculture Development Authority (KADA) and Kelantan and yield losses were more than 60% from 4,000 hectares of rice cultivated area. There is no recognized blast resistant rice variety with high yield in Malaysia.

MR263 is a popular rice variety in Malaysia. MR263 matures approximately 97 to 104 days after seeding, approximately seven days in advance of MR219. MR263 plants produce lower heights than MR219, approximately 59 to 71 cm compared to 71 to 84 for MR219. Low MR263 trees are usually more resistant to lodging. Even so, the nurse leaves are quite long but straight and bend slightly if they become too long. MR263 also has better head rice recovery after milling, likely due to its rice grain length, which is shorter and broader than that of MR219. Its seeds are only slightly lower in number than those of MR219. MR263 seeds can be classified as oval but not as oval as those of MR219 (3:39 length ratio from 4.12 to MR 219). This is because the seeds are shorter and wider than those of MR219. The weight of MR263 seeds was also lower than that of MR219 seeds.

MR263 is a moderately blast resistant rice variety. However, its resistance ability has gradually been reduced due to climatic changes. As a result, new pathotypes are entering the environment. This variety is now severely affected by new blast pathotypes that cause resistance loss. A severe outbreak of blast disease occurred in 2006 in Kedah and Kelantan. Yield losses were more than 60% (Malaysian rice news, TV-3) in 2006. Chemical control is practiced in mainly at the field level to control disease. Other options, particularly water management, are difficult to practice. Chemical use is discouraged to save the environment. Therefore, emphasis has been given to host plant resistance, which is an economically viable and environmentally friendly technique for disease management (Latif et al., 2011).

It was suggested by Adhikari et al., (1995) that using disease resistant varieties can reduce the cost of production and be an environmentally friendly approach for crop protection. Many new varieties can be developed from those rice genotypes that are the sources of various types of resistance. The use of resistant cultivars is a potential tool to decrease harmful pesticides (Wu-ming et al., 2009). In Malaysia, some upland and traditional rice varieties (Anak Ikan China, Pongsu Seribu II and Biji Terong) are known to be blast resistant (Abdullah et al., 1991). For the development of a blast resistant rice
variety, incorporation of resistance genes into a blast susceptible elite variety is appropriate for long–lasting resistance (Tyng et al., 2010). Pongsu Seribu 1, a local Malaysian variety obtained from the Malaysian Rice Research Centre, Malaysian Agricultural Research Development Institute (MARDI), has been used as a source for blast resistance genes in a broad spectrum as well as a donor parent in marker-assisted backcrossing programmes. Pongsu Seribu 1 has been selected as a donor parent on the basis of a large portion of genetic variation for the *Oryza* genus, despite having undesirable agronomic characteristics (Xiao et al., 1998; Sabu et al., 2006; McCouch et al., 2007).

Marker-assisted backcrossing (MABC) is one of the most promising approaches to developing blast resistant rice varieties, using molecular markers to identify and select for genes controlling the traits of interest. MABC can play a vital role in the development of resistant, high-yield or quality rice varieties by incorporating genes of interest into the elite variety MR263 that is already well adapted to farming. Recently, MABC has been widely used in plant breeding programs to develop new varieties of rice.

MABC is superior to conventional backcrossing in precision and efficiency. Background selection can greatly accelerate a backcrossing program compared to conventional backcrossing (Frisch et al., 1999a). This approach has been widely used, and is likely to continue being a successful approach due to the prevalence of several rice “mega varieties” (IR64, BR11, Mashuri, Swarna, Samba Mashuri, KDML105) (Machill et al., 2005).

Using marker-assisted backcrossing (MABC), it is possible to develop new varieties within a short period of time. This technique shortens the total breeding cycles. It offers great potential and a novel strategy for rice variety development and is expanding daily. It is strongly believed that this approach will be very informative and helpful for rice researchers, especially plant breeders who want to develop new varieties. Marker-assisted backcrossing provides a potential method for developing a new blast resistant rice variety. A molecular breeding approach involving MABC is a recent tool in breeding for improving blast resistance in rice (Chowdhury et al., 2012). In view of the aforesaid discussion, to achieve the goal, the following objectives were pursued:
1.2 Research objectives

Main objective:

To develop a high yielding blast resistant rice variety from a cross between MR263 and Pongsu Seribu 1.

Specific objectives:

1. To introgress blast resistant genes derived from Pongsu Seribu 1 into rice variety MR263 through marker-assisted backcrossing.
2. To analyze SSR markers associated with blast in the BC$_2$F$_1$ population.
3. To evaluate agronomic performance of advanced blast resistant rice lines in BC$_2$F$_3$ population.
REFERENCES

Ammiraju, J. S. S., Fan, C., Yu, Y., Song, X.S., Cranston, K.S., Pontaroli, A.C., Lu, F.,
Sanyal, A., Jiang, J., Rambo, T., Currie, J., Collura, K., Talag, J., Bennetzen, J.,
evolution in allotetraploid species of the genus Oryza. Plant Journal 63: 430-
442.

Ashkani, S., Rafii, M.Y., Sariah, M., Siti Nor Akmar, A., Rusli, I., Rahim, A.H. and
Latif, M.A. 2011. Analysis of simple sequence repeat markers linked with blast
disease resistance genes in a segregating population of rice (Oryza sativa).
Genetics and Molecular Research 10: 1345-1355.

selection in plant breeding for salinity. Sergey Shabala and Tracey Ann Cuin
(eds.), Plant salt tolerance: Methods and Protocols, Methods in Molecular
Biology (pp. 305-333), vol. 913, Springer Science+ Business Media, LLC 2012

Babu, R., Kumar, A., Venkatesh, S., Sekhar J. C., Singh, N. N., Srinivasan,
G.and Gupta, H. S. 2005. Two-generation marker-aided backcrossing for rapid
conversion of normal maize lines to quality protein maize (QPM). Theoretical
and Applied Genetics 111: 888-897.

Ballini, E., Morel, J.B., Droc, G., Price, A., Courtois, B., Notteghem, J.L. and Tharreau,
D. 2008. A genome-wide meta-analysis of rice blast resistance genes and
quantitative trait loci provides new insights into partial and complete resistance.
Molecular Plant Microbe Interactions 21(7):859–868.

Ballini, E., Nguyen, T.T.T. and Morel, J. (2013). Diversity and genetics of nitrogen-
induced susceptibility to the blast fungus in rice and wheat. Rice 6: 32.

Singh, D., GopalaKrishnan, S., Nagarajan, M., Mohapatra, T., Prabhu, K.V.
and Singh, A.K. 2010. Marker-assisted improvement of bacterial blight
resistance in parental lines of Pusa RH10, a superfine grain aromatic rice
hybrid. Molecular Breeding 26: 293–305.

Basavaraj, S.H., Singh, V.K., Singh, A., Singh, D., Nagarajan, M., Mohapatra, T.,
Prabhu, K.V. and Singh, A.K., 2009. Marker aided improvement of Pusa6B,
the maintainer parent of hybrid Pusa RH10, for resistance to bacterial blight.
Indian Jornal of Genetics 69: 10–16.

Berruyer, R., Adreit, H., Milazzo, J., Gaillard, S., Berger, A., Dioh, W., Lebrun, M.H.
and Tharreau, D. 2003. Identification and fine mapping of Pi33, the rice
resistance gene corresponding to the Magnaporthe grisea avirulence gene

partial resistance to blast in temperate japonica rice cultivars. Plant Disease 73:
496-499.

Clergeot, P., Gourgues, M., Cots, J., Laurans, F., Latorse, M., Pepin, R., Tharreau, D., Notteghem, J. and Legbrun M. 2001. PLS1, a gene encoding a tetraspanin-like

NEKA MARDI. 2012. Breeding and improvement of MARDI fragrant rice varities (MRQ74 and MRQ76).

Vu, H.T.T., Le, D.D., Ismail, A.M. and Le, H.H. 2012. Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice (*Oryza sativa* L.) to cope with

Xu, J., Jiang, X., Dong, J., Ali, and Mou, T. 2012. Introgression of bacterial blight (BB) resistance genes Xa7 and Xa21 into popular restorer line and their hybrids by

