

UNIVERSITI PUTRA MALAYSIA

ISOLATION AND CHARACTERIZATION OF CARBOFURAN-DEGRADING BACTERIA FROM MALAYSIA SOIL

SUKIRAH BINTI ABDUL RAHMAN.

FBSB 2005 9

ISOLATION AND CHARACTERIZATION OF CARBOFURAN-DEGRADING BACTERIA FROM MALAYSIAN SOIL

SUKIRAH BINTI ABDUL RAHMAN

By

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

August 2005

This thesis is dedicated to my mother, who inspired me to do this and to my father, who has taught me to aspire and persevere.

Sukirah

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

ISOLATION AND CHARACTERIZATION OF CARBOFURAN-DEGRADING BACTERIA FROM MALAYSIAN SOIL

By

SUKIRAH BINTI ABDUL RAHMAN

August 2005

Chairperson : Professor Mohd Arif Syed, PhD

Faculty : Biotechnology and Biomolecular Sciences

Carbofuran degrading bacteria were isolated from the soil sample. Isolate 7 was isolated from the soil sample collected from the Marriot Hotel car park in Johor Bahru. The sampling location is known to have no history of carbofuran application or contamination. The Preliminary screening of the MTT (3-[4, 5-dimethylthiazol-2-yl], diphenyltetrazoliumbromide) assay screened 148 isolates based on the measurement of growth respiration of the isolated bacteria. Seven isolates as well as Isolate 2, 7, 9, 13, 21, 72 and 138 are shown to have the highest absorbance measured by the assay. These isolates were selected from the blue colour formation of formazan. Selected isolates were subjected to Secondary screening which included the MTT Assay and Direct Plate Count method. Five isolates; Isolate 2, 7, 9, 13 and 21 were chosen from the highest colony count in CFU/ mL and highest absorbance obtained from the MTT assay. The High Performance Liquid Chromatography was used as the detector for the carbofuran degrader which was the Isolate 7. In this study, Isolate 7 gave the reading of 92.98% degradation of 100mg/L carbofuran in the enrichment culture on sixth day of the

incubation period. This followed by Isolate 13 which gave the measurement carbofuran degradation reading of 55.8 %, Isolate 21; 54.09 %, and Isolate 9; 53.6%. The lowest degradation was measured from Isolate 2 with 33.6 % of carbofuran degradation. The control without bacteria accounted only 13 % degraded carbofuran suggesting the carbofuran underwent chemical degradation. The optimum growth conditions were determined for Isolate 7 based on the highest colony count (CFU/mL) of the bacteria on nutrient agar. Glucose as a carbon source and 60 mg/L of carbofuran, in carbofuran enrichment culture were used as optimum parameters for the growth of Isolate 7. The optimum pH of carbofuran enrichment culture was at pH 7 and the optimum temperature was at 25°C, at room temperature. In the designed optimize conditions, the carbofuran degradation of Isolate 7 was two days earlier, which is at 93.05% degradation on the fourth day. Isolate 7 was tentatively identified as *Bacillus* sp. based on the morphological characterization and biochemical test. The carbofuran degrading enzyme for carbofuran showed the K_m value of 0.9571 mM and V_{max} at 0.1142 mmole min⁻¹ μg^{-1} . Optimum temperature for the enzyme activity was in the range of 40°C to 45°C and pH was in the range of 8 to 10. The Native PAGE and SDS PAGE showed a lot of protein bands appeared suggesting that the protein was still not purified and several steps must be done to remove the impurities.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk mendapatkan ijazah Master Sains

PEMENCILAN DAN PENCIRIAN BAKTERIA PENGURAI CARBOFURAN DARI TANAH DI MALAYSIA

Oleh

SUKIRAH BINTI ABDUL RAHMAN

Ogos 2005

Pengerusi : Profesor Mohd Arif Syed, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Bakteria pengurai carbofuran telah dipencilkan dari sampel tanah yang pernah diletakkan pestisid dan tanah yang tidak pernah diletakkan pestisid. Isolat 7 telah dipencilkan dari sampel tanah, tempat letak kereta, Hotel Marriot di Johor Bahru yang diketahui tidak pernah dicemari dan mempunyai sejarah penggunaan carbofuran. Penyaringan peringkat pertama menggunakan assay MTT (3-[4, 5-dimethylthiazol-2-yl]-,diphenyltetrazoliumbromide) telah menyaringkan sejumlah 148 isolat berdasarkan pertumbuhan bakteria. Tujuh isolat termasuk Isolat 2, 7, 9, 13, 21, 72 dan 138 mempunyai absorbans yang tinggi dari keputusan assay MTT. Isolat ini dipilih berdasarkan pembentukan warna biru formazan. Isolat tersebut kemudian diteruskan dengan penyaringan peringkat kedua yang menggunakan kaedah assay MTT dan kaedah pengiraan koloni bakteria. Lima isolat iaitu Isolat 2, 7, 9, 13 dan 21 dipilih kerana mempunyai jumlah koloni yang tinggi berdasarkan CFU/ml dan absorbans yang tinggi dari assay MTT. Keupayaan isolat tersebut untuk menguraikan carbofuran telah dikesan

menggunakan alat 'High performance Liquid Chromatography' dan Isolat 7 didapati mengurai carbofuran dengan kadar yang tertinggi, sebanyak 92.98% dari 100mg/L carbofuran di dalam kultur diperkaya carbofuran selama tempoh enam hari. Ini diikuti dengan Isolat 13 yang kadar penguraiannya sejumlah 55.8%, Isolat 21 sebanyak 54.09% dan Isolat 9 sebanyak 53.6% dan akhir sekali Isolat 2 mempunyai kadar yang terendah iaitu sebanyak 33.6%. Sampel kawalan tanpa bakteria mengalami penguraian sebanyak 13% menunjukkan carbofuran mengalami penguraian hasil dari tindakbalas kimia. Keadaan pertumbuhan yang optimum dikenalpasti untuk Isolat 7 berdasarkan jumlah koloni tertinggi pada agar nutrien. Glukosa sebagai sumber karbon dan 100 mg/L carbofuran didalam kultur diperkaya carbofuran adalah parameter yang optimum untuk pertumbuhannya, pH optimum kultur diperkaya carbofuran adalah pH 7 dan suhu optimum adalah 25 °C iaitu pada suhu bilik. Penguraian carbofuran oleh Isolat 7 dengan keadaan pertumbuhan yang optima berlaku lebih cepat selama dua hari, dimana kadar penguraian telah mencapai 93.05 % di dalam tempoh empat hari. Isolat 7 dikenalpasti menyerupai ciri-ciri Bacillus sp. kerana berbentuk rod dan mempunyai endospora dan juga menunjukkan ciri-ciri Bacillus sp. dari ujian biokimia. Enzim pengurai carbofuran menunjukkan nilai K_m ialah 0.9571 mM dan V_{max} pula 0.1142 mmole min⁻¹ μg^{-1} terhadap carbofuran. Suhu optimum untuk aktiviti enzim adalah pada 40°C to 45°C dan pH pada 8 hingga 10. Analisis gel poliakrilimida 'Native' dan gel poliakrilimida SDS (sodium deodosil sulfat) menumjukkan protein masih tidak tulen dan peringkat penulenan yang seterusnya harus dijalankan bagi mendapatkan enzim tulen.

ACKNOWLEDGEMENT

Firstly, I would like to extend my deepest gratitude to God for making me who I am and giving me the strength and courage to write and complete this project.

I would like to express my most sincere gratitude and deep appreciation to the chairperson of my supervisory committee, Prof. Dr. Mohd Arif Syed for his guidance, encouragement, objective and enthusiastic discussion, keen interest and support throughout the course of the study.

I am also indebted to the members of my supervisory committee, especially Dr. Mohd Yunus Abdul Shukor, Assoc. Prof. Dr. Raja Nor Zaliha Raja Abdul Rahman and Prof. Dr. Nor Aripin Shamaan for their supervision, invaluable advice, constructive suggestions, review of my work during the period of this study, and for extending their time and effort to make a weekly research group meeting with us.

Words are not enough to express my heartfelt thanks to my labmates especially to Fazilah, Ariff, Fazuriana, Wan Surini, Sim Han Koh, Shahizal, Nina Suhaity, Neni Gusmanizar, Mohd Fadhil, Ayshah Alia, Farrah Aini, Nor Azlan, Siti Aqlima and Evayanti who always helping me in my project and be there for me during my up and down. Thanks are also extended to my bubble friends, Nurhasmimi, Ruzaina, Putri Noorfaizah, Chew Yew Chern, Mahirah and Mohd Hamim. I also appreciate the assistance of the technical staff of my faculty, for their help.

Last but definitely not the least, I wish to express my deepest and heartfelt feelings to my mother, father, fiance and my siblings for providing me with love, guidance ,support and understanding of my ambition.

TABLE OF CONTENT

DEDIC ABSTI ABSTI ACKN APPRO DECL LIST (LIST (CATION RACT RAK OWLEDGEMENT OVAL ARATION OF TABLES OF FIGURES	Page ii iii v vii ix xi xvii xvii xviii
CHAP	TER THE PARTY AND A STATIONS	**
1	INTRODUCTION	1
2	LITERATURE REVIEW	3
2.1	Pesticides	3
2.2	Pesticides Use in Malaysia	4
2.3	Pesticides Problem in Malaysia	7
2.4	Effect of pesticides	9
	2.4.1 Effects of pesticides on animal	10
2.5	Emergence of resistance pests	11
2.6	Effect of pesticides on the environment	11
2.7	Fate of Pesticide in the environment	12
2.8	Biodegradation	14
2.9	Stratagems for the Degradation of	
	Xenobiotics by Microorganism	16
	2.9.1 Secretion of Constitutive Enzyme	16
	2.9.2 Induction of Enzyme	17
	2.9.3 Co-metabolism	17
	2.9.4 Transfer of plasmid coding for certain	10
	metabolic pathways	18
	2.9.5 Enhancement of pollutant bioavailability	18

	2.10	Bioremediation	19
		2.10.1 Agents of Bioremediation	20
		2.10.2 Origin of Enzymes in	22
		Bioremediation	
	2.11	Carbofuran	25
		2.11.1 Carbofuran Biodegradation	27
		2.11.2 The role of hydrolase in Carbofuran	
		Biodegradation	29
		2.11.3 Carbofuran Biodegradation Pathway	30
3	ME	THODOLOGY	34
5	3 1	Chemicals	34
	5.1	3.1.1 Minimal Media (MM) or Enrichment	34
		Culture	51
		3.1.2 Nutrient Agar	34
		3.1.3 Nutrient Broth	35
		3.1.4 Mac Conkey Agar	35
	3.2	Soil Sampling	35
	3.3	Isolation and Culture technique	36
	3.4	Method of Isolation	36
		3.4.1 Pour Plate Method	36
		3.4.2 Streak Plate Method	36
	3.5	Bacterial morphological observation	37
	3.6	Microbank	37
	3.7	Screening of Carbofuran degraders	38
		3.7.1 Preliminary Screening of Carbofuran	38
		Degraders	20
		3.7.2 Secondary Screening of Carbofuran	39
		3.7.3 Screening of the best carbofuran	
		degrader Using High Performance	
		Liquid Chromatography (HPLC)	40
	3.8	Growth Optimization of Isolate 7	42
		3.8.1 Optimization of carbon source	42
		3.8.2 Optimization of carbofuran	43
		concentration	
		3.8.3 Optimization of pH	43
		3.8.4 Optimization of temperatures	43
	3.9	Biodegradation of Carbofuran by Isolate 7	
		after Growth optimization	44

	2.10	Bioremediation	19
		2.10.1 Agents of Bioremediation	20
		2.10.2 Origin of Enzymes in	22
		Bioremediation	
	2.11	Carbofuran	25
		2.11.1 Carbofuran Biodegradation	27
		2.11.2 The role of hydrolase in Carbofuran	
		Biodegradation	29
		2.11.3 Carbofuran Biodegradation Pathway	30
3	ME'	THODOLOGY	34
-	3.1	Chemicals	34
		3.1.1 Minimal Media (MM) or Enrichment	34
		Culture	
		3.1.2 Nutrient Agar	34
		3.1.3 Nutrient Broth	35
		3.1.4 Mac Conkey Agar	35
	3.2	Soil Sampling	35
	3.3	Isolation and Culture technique	36
	3.4	Method of Isolation	36
		3.4.1 Pour Plate Method	36
		3.4.2 Streak Plate Method	36
	3.5	Bacterial morphological observation	37
	3.6	Microbank	37
	3.7	Screening of Carbofuran degraders	38
		3.7.1 Preliminary Screening of Carbofuran Degraders	38
		3.7.2 Secondary Screening of Carbofuran	39
		3.7.3 Screening of the best carbofuran	
		degrader Using High Performance	
		Liquid Chromatography (HPLC)	40
	3.8	Growth Optimization of Isolate 7	42
		3.8.1 Optimization of carbon source	42
		3.8.2 Optimization of carbofuran	43
		concentration	
		3.8.3 Optimization of pH	43
		3.8.4 Optimization of temperatures	43
	3.9	Biodegradation of Carbofuran by Isolate 7	
		after Growth optimization	44

	3.10	Identification of the best carbofuran degrader	45
		3.10.1 Colony Examination	45
		3.10.2 Gram Staining Procedure	46
		3.10.3 Spore Staining by Schaeffaer Fulton	47
		method	
	3.11	Biochemical Test	48
		3.11.1 Catalase test	48
		3.11.2 Oxidase	49
		3.11.3 Motility;Semi Solid Motility Medium	50
		3.11.4 Nitrate Reduction	50
		3.11.5 Methyl Red (Marked Acidity from	
		Glucose)	51
		3.11.6 Hydrogen Sulfide	51
		3.11.7 Thioglycolate Broth	52
	3.12	Growth and Maintenance of Isolate 7	52
	3.13	Partial Purification of Carbofuran Degrading	
		Enzyme	53
		3.13.1 Crude Enzyme Assay	54
		3.13.2 Protein Assay	54
		3.13.3 Partial Purification of enzyme	55
		3.13.4 Anion-exchange chromatography	55
		3.13.5 Kinetic study of partially purified	56
		enzyme	~ ~
		3.13.6 Optimum pH	57
		3.13.7 Optimum Temperature	57
	3.14	Gel Electrophoresis, Native PAGE and	50
		Non-denaturing SDS PAGE	58
		3.14.1 Stock Solutions	58
		3.14.2 Catalyst and Tank Buffer	59
		3.14.3 Casting/Resolving and Stacking Gels	60
		2 14 4 Sample Dropantion and Electrophonosis	60 60
		3.14.4 Sample Preparation and Electrophoresis	61
		3.14.5 Staming and Destaming of the Ger	01
	3.15	Experimental design and statistical analysis	62
4	RESUI	TS AND DISCUSSIONS	63
	4.1	Soil Sampling	63
	4.2	Isolation and Culture Technique	65
	4.3	Carbofuran Enrichment Culture	66
	4.4	Screening of Carbofuran Degraders	67
		4.4.1 Preliminary Screening of Carbofuran	67
		Degraders	70
		4.4.2 Secondary Screening of Carbofuran Degraders	/0

	4.4.3 Screening of Carbofuran Degraders by	
	measuring the Carbofuran residue using	
	HPLC	74
4.5	Determination of Carbofuran degraded	
	among the isolates.	77
4.6	The growth and Carbofuran utilization by	
	the isolates	82
4.7	Identification of Isolate 7	84
4.8	Growth Optimization of Isolate 7	88
	4.8.1 Optimum Carbon Source	88
	4.8.2 Optimum Temperature	90
	4.8.3 Optimum carbofuran concentration	90
	4.8.4 Optimum pH	94
	4.8.5 Carbofuran Degradation of Isolate 7	
	before and after Growth Optimization	96
4.9	Partially Purified of Carbofuran Degrading	103
	Enzyme	
4.10	Carbofuran Degrading Enzyme Assay	105
4.11	Kinetic Studies of the Partial Purified	
	Carbofuran Degrading Enzyme	106
	4.11.1 The determination of Km and Vmax	106
	4.11.2 Biochemical properties of the partial	
	purified enzyme	111
	4.11.3 Effect of different pH on carbofuran	
	degrading enzyme activity.	112
	4.11.4 Effect of different temperature on	114
	carbofuran degrading enzyme activity	
4.12	Polyacrylamide Gel (PAGE)	116
	4.12.1 Native PAGE.	118
	4.12.2 SDS PAGE	119

5 CONCLUSION	120
REFERENCES APPENDICES BIODATA OF THE AUTHOR	122 135 147

 $\left[\mathbf{C} \right]$

LIST OF TABLES

Table		Page
2.10.2	Origin of Enzymes in Bioremediation	23
4.1	Locations of sample collection, pH and temperature of the soil and number of bacteria isolated from each location.	64
4.4.2	The absorbance of MTT of Isolates 2,7,9,13, and 21 from the secondary screening	72
4.7.4	Biochemical Tests of Isolate 7.	87

LIST OF FIGURES

Figure		Page
2.11.4	Metabolic pathway of Carbofuran	32
2.11.5	Carbofuran metabolites	33
4.4.1	MTT Assay for bacterial growth	69
4.4.2	The colony count (CFU/ml) of Isolates 2, 7, 9, 13, 21and 72 on the log phase from the secondary screening.	73
4.4.3	Carbofuran degradation by five isolates in carbofuran enrichment culture	76
4.5	Percentage of Carbofuran degradation by five selected isolates after 6 days.	79
4.5.1	The growth curve of Isolate 7 and 13 as measured by colony count (CFU/ml) in carbofuran enrichment culture.	80
4.5.2	The growth curve of Isolate 2 and 9 as measured by colony count (CFU/ml) in carbofuran enrichment culture.	80
4.5.3	The growth curve of Isolate 21 as measured by colony count (CFU/ml) in carbofuran enrichment culture.	81
4.7.1	Colony morphology of Isolate 7	86
4.7.2	Gram Staining of Isolate 7 after 24 hours incubation	86
4.7.3	Spore Staining of Isolate 7 by the Schaffaer Fulton method	87
4.8.1	The effect of different carbon source on growth of Isolate 7 on day seven with 50 mg/L of carbofuran in carbofuran enrichment culture.	89
4.8.2	The effect of different temperature on growth of Isolate 7 on day seven in carbofuran enrichment culture.	92

The effect of different temperature on growth of Isolate 7 on day seven in carbofuran enrichment culture. 92

4.8.3	The effect of different carbofuran concentration on growth of Isolate 7 on day seven in carbofuran enrichment culture.	93
4.8.4	The effect of different pH on growth of Isolate 7 on day seven in carbofuran enrichment culture	95
4.8.5	Percentage of carbofuran degradation before and after growth optimization of Isolate 7 after six day.	99
4.8.6	The growth curve of Isolate 7 before and after optimization.	100
4.9	Elution profile of Macro-prep anion exchange chromatography. The chromatography step yielded four protein peaks	104
4.11.	The Michaelis Menten plot partial purified carbofuran degrading enzyme for Isolate 7.	107
4.11.1	LineWeaver Burke plot of partially purified carbofuran degrading enzyme for Isolate 7.	108
4.11.3	Effect of pH on the rate of the partially purified carbofuran degrading enzyme activity.	113
4.21	Effect of temperature on the rate of hydrolysis of carbofuran by partially purified carbofuran degrading enzyme.	115
4.12.1	Partially purified carbofuran degrading enzyme from Isolate 7 on Native PAGE.	118
4.12.2	Partially purified carbofuran degrading enzyme from Isolate 7 on SDS PAGE.	119

LIST OF ABBREVIATIONS

AChE	acetylcholinesterase
CFU	colony forming unit
DDT	dichlorodiphenyltrichloroethane
FAO	Food Agricultural Organisation (of the United Nations)
HPLC	High Performance Liquid Chromatography
Km	Michaelis Menten Constant
MADA	Muda Agricultural Development Authority
MARDI	Malaysian Agricultural Research and Development Institute
mAu*s	mili absorbance unit
MTT	3-[4, 5-dimethylthiazol-2-yl]-,diphenyltetrazoliumbromide
SAM	Sahabat Alam Malaysia
Vmax	maximum initial velocity
WHO	World Health Organization

CHAPTER 1

INTRODUCTION

Chemicals have a long history of being used as agricultural pesticides. Around 1000 B.C., an ancient Roman called Homer suggested that sulfur be used on certain plants to control insects while in the 1600s, ants were killed with mixtures of honey and arsenic (Bohmont, 2000). By the late nineteenth century, farmers in America were using Paris Green, a mixture of copper and arsenic to control insect pests in field crops. However, an emergence in pesticide use only began after World War II with the introduction of DDT, BHC, aldrin, dieldrin, endrin and 2, 4–D. These pesticides were inexpensive, effective and popular (Bohmont, 2000).

Unfortunately, the wide use of pesticides gave rise to undesirable side effects by polluting the environment and leaving residues in our food. Pesticides also threaten human health and animal life. This problem needs to be solved to prevent it from becoming worse. Carbofuran is one of the most widely used pesticides in Malaysia for controlling insects. Carbofuran pollutes the environment and according to studies, generates negative effects on animals such as fish and birds. Humans can also be affected because carbofuran has the potential to enter our drinking water via contamination of ground water. Once ingested, carbofuran is known to disrupt transmissions in the central and peripheral cholinergic nervous systems in vertebrates by inhibiting acetylcholinesterase activity (Sharma, 1986).

Bioremediation is the decomposition of non-naturally occurring man-made compounds (xenobiotics) by microorganism in the environment and in recent years,

this technology has generated a great deal of attention. Indigenous microorganisms or isolated microorganisms were used to decompose xenobiotics such as pesticides, petroleum, polyaromatic hydrocarbons (PAH), and heavy metals. Several techniques were invented for the bioremediation of pesticides and three main approaches have been proposed. First, the microorganism can be directly applied to degrade pollutants in a reactor or *in situ*. Secondly, *in situ* spiking of nutrients can be used to stimulate the growth of native microorganism capable of decontamination. Thirdly, cells extract or purified enzyme preparation of microbial origin could be used for decontamination (Chapalmadugu and Chaudry, 1992).

The hyphothesis of this research is that locally isolated bacteria could degrade carbofuran. The objectives of this study are firstly, to isolate and screen carbofuran degrading bacteria from previously treated and untreated Malaysian soil. Secondly is to identify and characterize the best carbofuran degrading bacterium. Thirdly is to partially purify the enzyme(s) involved in carbofuran biodegradation from the chosen bacterium.

CHAPTER 2

LITERATURE REVIEW

2.1 Pesticides

Pesticides are substances that kill or control pests such as insects, fungi, rodents, bacteria, weeds and algae. Pesticides can be categorized according to their primary target organisms such as insecticides, fungicides, rodenticides, bactericides, herbicides, algicides and others. Pesticide compounds can either be organic or inorganic in composition and their molecular structure is varied and complex. In the European Union for example, there are more than 700 different active compounds that were used in 1995 and more formulated products are produced since 1980. Manmade pesticides are synthetic products while biological pesticides are microbial agents such as *Bacillus thuriengiensis, Bacillus sphaericus* and a new strain called *Clostridium bifermentans*. The biological pesticides are used to control mosquito and fly from breeding such as *Simulium* spp.. Fish such as *Gambusia affinis, Poecilia reticulatus*, nematode worms such as *Romanomermis culicivorax* and fungi, *Lagenidium giganteum* are also used against disease vectors (Sulaiman, 1995).

Pesticides play a very important role in the world economy. It has been used in agriculture, forestry, industry, public health and households. The use of pesticides in agriculture has increased crop production by enhancing farm productivity and reducing losses in plantation by killing or controlling pests. This will increase the supply and export of agricultural products and improve the economy of a country

