GENETIC DIVERSITY OF MALAYSIAN AROMATIC RICE GERMPLASM
REVEALED BY QUANTITATIVE TRAITS, MICROSATELLITE AND
INTERSIMPLE SEQUENCE REPEAT MARKERS

By
SABA JASIM MOHAMAD AL-JUMAILY

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the degree of Master of Science

October-2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to Allah, the almighty God, his prophet, his beloved companions, my parents and my beloved family.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

GENETIC DIVERSITY OF MALAYSIAN AROMATIC RICE GERMPLASM REVELED BY QUANTITATIVE TRAITS, MICROSATELLITE (SSR) AND INTER SIMPLE SEQUENCE REPEAT (ISSR) MARKERS

By

SABA JASIM MOHAMAD AL-JUMAILY

October 2015

Chairman: Professor Mohd Rafii Yusop, PhD

Faculty: Agriculture

The study of genetic diversity among 50 aromatic rice accessions from Peninsular Malaysia, Sabah and Sarawak with 3 released varieties as a control was carried out through quantitative traits and molecular markers. The objectives of this research were (i) to evaluate the performance of different accessions of Malaysian aromatic rice, (ii) to determine the genetic diversity among the aromatic rice accessions, (iii) to quantify the genetic divergence of the aromatic rice accessions using microsatellite (SSR) and inter simple sequence repeat (ISSR) markers, and (iv) to identify superior accessions among the germplasm for future aromatic rice breeding program. Results from genetic diversity analysis based on 14 quantitative traits, showed that all the traits had significant variation among the accessions. The eight traits, namely plant height, 1000-grain weight, yield per hill, number of panicles, spikelet fertility, number of grains per hill, flag leaf length to width ratio and panicle length indicated high level of broad sense heritability and genetic advance.

These traits are regarded as important yield components for selection of superior rice genotypes. The broad sense heritability values for these traits were more than 91%, while genetic advance values of those traits ranged from 31.02 to 56.95%. Cluster analyses based on morphological traits grouped the 53 accessions into six clusters. The first four principal components based on the quantitative traits resulted into 71.3% of the total variation. Based on the quantitative analysis, Accessions Acc6288, Acc9993, Acc11816, Acc9936, Acc9971 and Acc10538 indicated among the highest
average values for some traits namely, number of tillers per hill, 1000-grain weight, grain yield per hill, spikelet fertility and number of grains per hill. Genetic diversity analysis of the 53 rice accessions using 32 SSR and 25 ISSR polymorphic markers clustered the accessions into 10 groups and 8 groups respectively. Based on Analysis of molecular variance (AMOVA), SSR markers detected a high polymorphism within population (89%) and low polymorphism among populations (11%). ISSR markers also revealed similar trend with a high polymorphism within population (87%) and low polymorphism among populations (13%). Gene diversity (h) among the 53 accessions ranged from 0.045 to 0.976 using SSR markers, and while from ISSR markers, it ranged from 0.129 to 0.849. Several superior accessions have been identified for the future aromatic rice breeding program. These include Accession Acc6288 (Peninsular Malaysia), Acc9936 and Acc9971 (Sabah), and Acc11816 and Acc10538 (Sarawak). The selected accessions can be subjected to further evaluation and subsequent crossing program for aromatic rice varietal development.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEPELBAGAIAN GENETIK JANAPLASMA PADI BERAROMA BERDASARKAN CIRI KUANTITATIF, PENANDA MIKROSATELIT DAN ANTARA JUJUKAN BERULANG MUDAH

Oleh

SABA JASIM MOHAMAD AL-JUMAILY

Oktober 2015

Pengerusi: Profesor Mohd Rafii Yusop, PhD

Fakulti: Pertanian

Kajian kepelbagaian genetik antara 50 aksesi padi beraroma dari Semenanjung Malaysia, Sabah dan Sarawak, dengan 3 varieti yang telah diistiharkan sebagai kawalan telah dijalankan melalui ciri kuantitatif dan penanda molekul. Objektif kajian ini adalah (i) untuk menilai prestasi aksesi berbeza padi beraroma Malaysia (ii) untuk menentukan kepelbagaian genetik aksesi padi beraroma tersebut (iii) untuk mengukur perbezaan genetik aksesi padi beraroma dengan penanda mikrosatelit (SSR) dan antara jujukan berulang mudah(ISSR), dan (iv) untuk mengenal pasti aksesi padi beraroma yang unggul untuk program pembiakbakaan dimasa hadapan. Keputusan analisa kepelbagaian genetik berdasarkan 14 ciri kuantitatif, menunjukkan bahawa semua ciri yang dinilai mempunyai perbezaan yang ketara dan perbezaan luas untuk ciri tersebut adalah lebih daripada 91%, sementara itu nilai kemajuan genetik pula adalah diantara 31.02 hingga 56.95%. Analisa kluster berdasarkan ciri morfologi membahagikan 53 aksesi tersebut kepada enam kluster. Empat pertama komponen principal berdasarkan ciri kuantitatif yang dikaji adalah 71.3% dari jumlah keseluruhan variasi. Berdasarkan analisa kuantitatif, Aksesi Acc6288, Acc9993,
Acc11816, Acc9936, Acc9971 dan Acc10538 memberikan nilai purata yang tinggi bagi sebahagian ciri, iaitu bilangan anak pokok, berat 1000-bijian, hasil bijian setiap perdu, kesuburan tangkai dan bilangan bijian setiap perdu. Analisa kepelbagaian genetik daripada 53 aksesi padi menggunakan 32 penanda SSR dan 25 penanda ISSR polimorfik telah membahagikan aksesi kepada 10 kluster dan 8 kluster masing-masing.

Berdasarkan analisa varians molekular (AMOVA), penanda SSR mendapat tahap polimorfisme yang tinggi dihkalangan aksesi dalam populasi (89%) dan polimofisma yang rendah dihantara populasi (11%). Penanda ISSR juga mendapat corak yang sama iaitu tahap polimorfisme yang tinggi dihkalangan aksesi dalam populasi (87%) dan polimorfisme rendah dihantara populasi (13%). Kepelbagaian gen (h) dihcalangan 53 aksesi adalah diantara 0.045 hingga 0.976 menggunakan penanda SSR, manakala nilainya dihantara 0.129 hingga 0.849 melalui penanda ISSR. Beberapa aksesi telah dikenalpasti untuk program pembiakbakaan padi aromatik selanjutnya. Aksesi tersebut adalah Acc6288 (Semenanjung Malaysia), Acc9936 dan Acc9971 (Sabah), dan Acc11816 dan Acc10538 (Sarawak). Aksesi terpilih ini perlu penilaian lanjutan dan seterusnya untuk program kacukan bagi pembangunan varieti padi beraromatik.
ACKNOWLEDGEMENTS

The author is would like to express her deep gratitude and thanks to the almighty God (Allah Subhanahu Wa Ta'ala), who has made this study possible for me to carried out. I shall forever remain grateful to my supervisory Prof. Dr. Mohd Rafii Yusop for giving me the opportunity to work in his laboratory and for his advice and encouragement throughout this entire project. I pray may Allah continue to guide him and strengthen him in faith.

I wish to give my special thanks to my committee members Dr. Siti Zaharah Sakimin and Dr. Md. Abdul Latif for their numerous suggestions and help during the past few years. Also, I am very grateful to my colleagues in plant breeding and genetic laboratory and Faculty of Agriculture entirely.

I would like to express my deepest gratitude to my parents and my husband for their endless love and faith. Their unwavering support lifted my spirit and confidence.
I certify that a Thesis Examination Committee has met on 7 October 2015 to conduct the final examination of Saba Jasim Mohamad on her thesis entitled “Genetic Diversity of Malaysia Aromatic Rice Germplasm Revealed by Quantitative Traits, Microsatellite and Intersimple Sequence Repeat Markers” in accordance with the Universities and University colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P. U. (A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Razi bin Ismail, PhD
Professor
Institute of Tropical Agriculture
University Putra Malaysia
(Chairman)

Halimi B. Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Choong Chee Yen, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 December 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Rafii Bin Yusop, PhD
Professor
Faculty of Agriculture
University Putra Malaysia
(Chairman)

Siti Zaharah Sakimin
Senior Lecturer
Faculty of Agriculture
University Putra Malaysia
(Member)

Md. Abdul Latif
Research follow
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________ Date: __________________

Name and Matric No.: Saba Jasim Mohamad Al-Jumaili (GS 32732)
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________ Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________ Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION

1.1 Introduction 1
1.2 Problem statement 2
1.3 Research objectives 3

2 LITERATURE REVIEW

2.1 Economic importance of aromatic Rice 4
2.2 Grain quality in aromatic rice 4
2.2.1 Aroma 5
2.3 Composition of aroma in aromatic rice 6
2.4 Genetic and molecular basis of aroma in aromatic rice 8
2.5 Detection of aroma in aromatic rice 9
2.5.1 Molecular markers related to rice aroma 9
2.6 Heritability of aroma in aromatic rice 10
2.7 Importance of high yielding aromatic rice variety 11
2.8 Genetic diversity and heritability of rice 12
2.8.1 Morphological diversity 13
2.8.2 Molecular 13
2.8.2.1 Simple sequence repeats 14
2.8.2.2 Inter simple sequence repeats 15

3 GENETIC DIVERSITY OF AROMATIC RICE GERmplasm BY QUANtITATIVE TRAITS

3.1 Introduction 17
3.2 Materials and Methods 18
3.2.1 Experimental location and soil 18
3.2.2 Plant materials 18
3.2.3 Experimental design and management practices 18
3.2.4 Raising of sprouted seeds
3.2.5 Data collection
3.2.6 Statistical analysis
 3.2.6.1 Analysis of Variance (ANOVA) and genetics parameters
 3.2.6.2 Variance component
 3.2.6.3 Correlation coefficient and cluster analysis
3.3 Results
 3.3.1 Variation for vegetative traits
 3.3.1.1 Plant height
 3.3.1.2 Number of days to flowering
 3.3.1.3 Number of days to flowering
 3.3.1.4 Flag leaf length to width ratio
 3.3.1.5 Number of tillers per hill
 3.3.2 Variation among yield and yield component traits
 3.3.2.1 Number of grains per panicle
 3.3.2.2 One thousand grain weight
 3.3.2.3 Grain yield
 3.3.2.4 Number of panicles per hill
 3.3.2.5 Panicle length
 3.3.2.6 Seed length
 3.3.2.7 Seed length to width ratio
 3.3.2.8 Spikelets fertility
 3.3.2.9 Spikelets per panicle
 3.3.3 Association among traits
 3.3.4 Determination of different genetic parameters
 3.3.5 Multivariate statistical analysis
 3.3.5.1 Cluster analysis of morphological traits
 3.3.5.2 Principal component analysis using morphological traits
3.4 Discussion
3.5 Conclusion

4 GENETIC DIVERSITY OF AROMATIC RICE ACCESSIONS REVEALED BY MICROSATellITE POLYMORPHISM
4.1 Introduction
4.2 Materials and methods
 4.2.1 Plant materials
 4.2.2 SSR makers
 4.2.3 DNA extraction
 4.2.4 DNA identification
 4.2.5 Performing of PCR reaction
4.2.6 Genetic diversity analysis 71
4.2.7 Multivariate analysis 71
4.3 Result 72
 4.3.1 SSR markers polymorphism 72
 4.3.2 Genetic diversity among SSR markers 75
 4.3.3 Cluster analysis using SSR makers 76
 4.3.4 Principal component analysis using SSR markers 83
 4.3.5 Analysis of molecular variance 87
4.4 Discussion 87
4.5 Conclusion 89

5 GENETIC DIVERSITY OF AROMATIC RICE ACCESSIONS REVEALED BY INTER SIMPLE SEQUENCES REPEAT POLYMORPHISM 90
5.1 Introduction 90
5.2 Materials and methods 90
 5.2.1 Plant materials 90
 5.2.2 Molecular markers (ISSR markers) 90
 5.2.3 DNA extraction 91
 5.2.4 DNA Identification 91
 5.2.5 Electrophoresis 91
 5.2.6 Band scoring and data analysis 91
 5.2.7 Analysis of genetic diversity 91
 5.2.8 Multivariate analysis 92
5.3 Result and Discussion 92
 5.3.1 Polymorphism among ISSR markers 92
 5.3.2 Genetic diversity among accessions 95
 5.3.3 Cluster analysis 97
 5.3.4 Principal component analysis 104
 5.3.5 Analysis of molecular variance 108
5.4 Discussion 108
5.5 Conclusion 109

6 GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 111
6.1 General Conclusion 111
6.2 Recommendations for future research 112

REFERENCES 113
APPENDICES 130
BIODATA OF STUDENT 143
LIST OF PUBLICATIONS 144
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Factors affecting aroma formation/retention in aromatic rice as perceived by farmers</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Aromatic rice accessions</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>List of quantitative traits</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>ANOVA table</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Mean squares of analysis of variance for five growth traits among 53 accessions of aromatic rice</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Mean squares of analysis of variance for nine yield and yield component traits among 53 accessions of aromatic rice</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Pearson’s correlation coefficient among 14 quantitative traits of aromatic rice</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Genetic variance of 14 morphological characteristics</td>
<td>54</td>
</tr>
<tr>
<td>3.8</td>
<td>Aromatic rice accessions clusters according to Euclidean cluster analysis.</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>Rice accessions clusters according to group of origin</td>
<td>58</td>
</tr>
<tr>
<td>3.10</td>
<td>Mean value of 14 quantitative traits for six groups by cluster analysis on 53 accessions of rice</td>
<td>59</td>
</tr>
<tr>
<td>3.11</td>
<td>Mean value of 14 quantitative traits for state by cluster analysis on 53 accessions of rice.</td>
<td>60</td>
</tr>
<tr>
<td>3.12</td>
<td>Eigenvectors and eigenvalues of the first four principal components</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>SSR markers polymorphism which applied.</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Genetic diversity parameters among 32 primers for all accessions based on 32 SSR</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Genetic diversity estimation among the rice genotypes population</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Cluster group based on 32 SSR markers</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>Accessions for each cluster based on 32 SSR markers by group of origin</td>
<td>78</td>
</tr>
<tr>
<td>4.6</td>
<td>Similarity coefficient among 53 accessions of rice based on 32 SSR markers</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>First four principal component for 53 accessions of rice by 32 SSR markers</td>
<td>85</td>
</tr>
</tbody>
</table>
4.8 Analysis of Molecular Variance for 53 rice accessions
5.1 List of polymorphic ISSR markers
5.2 Genetic diversity parameters among 25 ISSR markers
5.3 Genetic diversity estimation among the rice accessions
5.4 Similarity coefficients among 53 rice accessions based on 25 ISSR markers
5.5 Accessions according to cluster analysis based on 25 ISSR markers
5.6 Accessions groups according to cluster analysis based on 25 ISSR in states
5.7 Component loading of the first four principal component for 53 rice accessions
5.8 Analysis of Molecular Variance for 53 rice accessions
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pathway of 2-acetyl-1-pyrroline (2AP) biosynthesis in rice</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>The experiment at site in Universiti Putra Malaysia</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>The layout of three replications for randomized complete block design</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Plant height distribution 53 accessions of rice. Error bars with standard error</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Days to flowering distribution among 53 accessions of rice. Error bars with standard error</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Days to maturity distribution among 53 accessions of rice. Error bars with standard error</td>
<td>31</td>
</tr>
<tr>
<td>3.6</td>
<td>Flag leaf length to width distribution among 53 accessions of rice. Error bars with standard error</td>
<td>33</td>
</tr>
<tr>
<td>3.7</td>
<td>Number of tillers per hill distribution among 53 accessions of rice. Error bars with standard error</td>
<td>34</td>
</tr>
<tr>
<td>3.8</td>
<td>Number of grains per panicle distribution among 53 accessions of rice. Error bars with standard error</td>
<td>38</td>
</tr>
<tr>
<td>3.9</td>
<td>One thousand grains weight distribution among 53 accessions of rice. Error bars with standard error</td>
<td>40</td>
</tr>
<tr>
<td>3.10</td>
<td>Yield of plant distribution among 53 accessions of rice. Error bars with standard error</td>
<td>41</td>
</tr>
<tr>
<td>3.11</td>
<td>Number of panicle in plant distribution among 53 accessions of rice. Error bars with standard error</td>
<td>43</td>
</tr>
<tr>
<td>3.12</td>
<td>Panicle length distribution among 53 accessions of rice. Error bars with standard error</td>
<td>44</td>
</tr>
<tr>
<td>3.13</td>
<td>Seed length distribution among 53 accessions of rice. Error bars with standard error</td>
<td>46</td>
</tr>
<tr>
<td>3.14</td>
<td>Seed length-to-width ratio distribution among 53 accessions of rice. Error bars with standard error</td>
<td>47</td>
</tr>
<tr>
<td>3.15</td>
<td>Spikelet fertility distribution among 53 accessions of rice. Error bars with standard error</td>
<td>49</td>
</tr>
<tr>
<td>3.16</td>
<td>Number of spikelet per panicle distribution among 53 accessions of rice. Error bars with standard error</td>
<td>50</td>
</tr>
<tr>
<td>3.17</td>
<td>Euclidean cluster analysis of 53 rice accessions based on 14 quantitative traits</td>
<td>56</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.18</td>
<td>PCA three-dimensional of 53 rice accessions based on 14 quantitative traits</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>The graph of PCR protocol</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>Polymorphism among accessions using RM291 SSR marker</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Polymorphism among accessions using RM169 SSR marker</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>Cluster analysis of 53 rice accessions based on 32 SSR markers</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>PCA three-dimensional of 53 rice accessions based on 32 microsatellite polymorphism</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>Polymorphism among accessions using ISSR2</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Polymorphism among accessions using ISSR13</td>
<td>94</td>
</tr>
<tr>
<td>5.3</td>
<td>Cluster analysis of 53 rice accessions based on ISSR polymorphism</td>
<td>103</td>
</tr>
<tr>
<td>5.4</td>
<td>PCA three-dimensional of 53 rice accessions based on 25 ISSR polymorphism</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFLP</td>
<td>Amplified fragment length polymorphism</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AMOVA</td>
<td>Analysis of molecular variance</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>h_B^2</td>
<td>Broad sense heritability</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient Of Variation</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>2- Deoxynucleoside 5-triphosphate</td>
</tr>
<tr>
<td>N_e</td>
<td>Effective number of alleles</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>G_{ST}</td>
<td>Gene differentiation</td>
</tr>
<tr>
<td>N_m</td>
<td>Gene flow</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic advance</td>
</tr>
<tr>
<td>GCV</td>
<td>Genotypic coefficient of variation</td>
</tr>
<tr>
<td>GV</td>
<td>Genotypic variance</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean square of error</td>
</tr>
<tr>
<td>MSG</td>
<td>Mean square of genotype</td>
</tr>
<tr>
<td>h</td>
<td>Nei’s (1973) gene diversity</td>
</tr>
<tr>
<td>n_a</td>
<td>Number of alleles</td>
</tr>
<tr>
<td>PPL</td>
<td>Percent of polymorphic Loci</td>
</tr>
<tr>
<td>PCV</td>
<td>Phenotypic coefficient of variation</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PC</td>
<td>Principal component</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>NTSYS</td>
<td>Numerical taxonomy multivariate analysis system</td>
</tr>
<tr>
<td>RAPD</td>
<td>Random amplified polymorphic DNA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>SSR</td>
<td>Simple sequence repeat</td>
</tr>
<tr>
<td>Std</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermos aquatics</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-borate/EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>Tris EDTA buffer</td>
</tr>
<tr>
<td>TM</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Unweight pair group method using arithmetic</td>
</tr>
<tr>
<td></td>
<td>averages</td>
</tr>
</tbody>
</table>
CHAPTER 1

GENERAL INTRODUCTION

1.1 Introduction

Rice (*Oryza sativa* L.) belonging to the family *Gramineae* is a staple food for over half of the world’s population (FAO, 2004). Rice is the world’s most important food crop for people compared to other cereals. Approximately three billion people of the world consumed rice as a basic food that provides between 50 to 80% of their daily calories. It not only supplies carbohydrate but also provides some essential food elements like protein, iron, calcium, thiamine, riboflavin, niacin and vitamin E to the human body (Akinbile et al., 2011). In Malaysia, approximately 72% rice is being granary areas (Teh, 2010). The aromatic rice is preferred over non-aromatic rice during special occasions and for export, and thus they command a higher market price. Major feature of these aromatic rice varieties is aroma which is being appreciated by many people and represents a high value added trait (Joseph et al., 2004). Three different things seem to have led to the growth in popularity of aromatic rice: globalization, health-consciousness and culinary changes (Hore, 2005). So, rice needs attention toward improvement in its cooking qualities as well as several biochemical and morphological characteristics (Golam et al., 2011).

The demand for aromatic rice is increasing day by day. Unfortunately, the aromatic rice production is been affected by some abiotic and biotic, susceptibility to pests and diseases, and strong shedding (Ahn et al., 1992). The agronomic value of a variety depends on many characteristics (Regmi et al., 2002). The most important characteristics are high yielding ability, resistance to diseases and pests, resistance to undesirable environmental factors and high quality of the products. Plant breeding launches with genetic diversity that is utilized as a source for improving new features or transforming undesirable varieties. Breeders can reveal genome structure and find new techniques for modification and developing crops by genetic diversity (Ahmadikhah, 2009). The first stage for effective technique in breeding programs is knowing the genetic diversity.

Using genetic diversity information can aid reasonable utilization of genetic resources among closely related crop varieties. Furthermore, the exploration of genetic diversity can assist breeders to observe germplasm and to predict potential genetic diversity is quite remarkable for evolving crops. Genetic variation analysis facilitates breeders in observation germplasm as well as in predict of potential genetic achievements (Chakravarthi and Naravaneni, 2006). The improvement of rice breeding plummeted progressively during the last ten years due to poor basis of the parent materials (Zhao et al., 2009). The research of rice genetic variety is essential for cultivars rating,
identification, conservation and purity as well as breeding (Saini et al., 2004). Genetic diversity is mainly measured based on the morphological differences of quantitative important traits. However, this method has some disadvantages, such as time and labor costs. In addition, this method cannot define the exact level of genetic diversity among germplasms, because the trait appears through interaction between genes and the environment (Zeng et al., 2004; Schulman, 2007). Gene expression is affected by environment, so selection-based on morphological traits are seductive (Astarini et al., 2004; Asif et al., 2005).

Among the PCR-based markers, for example the SSR markers, are proved very efficacious tools in the study of genetic diversity and organism relationships among all types of molecular markers, since they show higher level of polymorphism (Ishii et al., 2001; He et al., 2003). For marker-assisted selection as well as gene tagging, rice microsatellites (RM) had shown their utility (Chen et al., 1997; McCouch et al., 1997). The SSR markers can be effectively applied for developing unique DNA profiles of rice genotypes because of having high level of polymorphism and greater information. Moreover, these profiles might be valuable to clearly differentiate rice cultivars in order to get plant variety protection (Rahman et al., 2009).

Similarly, the ISSR markers also play important role in the determination of genetic diversity and organism relationships. The ISSR markers are useful not only in understanding the evolutionary relationships of Oryza but also in the fingerprinting of cultivated and wild species of germplasm. Moreover, these markers have high resolution power in fingerprinting and diversity analysis of rice observed by Joshi et al. (2000). Furthermore, using the ISSR markers it was found that higher diversity among rice species and variation exist between wild and cultivated rice as noticed by Girma (2007), in Ethiopia among the different types of molecular markers, PCR-based molecular markers such as microsatellites and inter-simple sequence repeat are valuable tools for studying genetic diversity and organism relationships, because they can show high levels of polymorphism (Ishii et al., 2001; He et al., 2003).

Problem statement

Low yield is a common phenomenon of aromatic rice and consequently rice breeders are trying to improve the agronomic characters to gain a better grain yield (Faruq et al., 2011). In addition, Malaysia is a tropical country, so it is highly potential area for cultivating aromatic rice. Unfortunately, there is no enough information published with regards to breeding, genetics, and morphological characteristics of aromatic rice. Obtaining comprehensive information on genetics and morphological characteristics as well as genetic diversity of aromatic rice in Malaysia is important for crop breeding programs.
Research objectives

The objectives of this research were:

i. To evaluate the performance of different accessions of Malaysian aromatic rice.

ii. To determine the genetic diversity of aromatic rice accessions with SSR and ISSR markers.

iii. To identify several superior accessions of aromatic rice for future breeding programs.
REFERENCES

Girma, G. (2007). Relationship between wild rice species of Ethiopia with cultivated rice based on ISSR Marker. MSc Thesis presented to the school of graduate studies of the Addis Ababa University.

Islam, M. A. 2007. Effect of spacing and nitrogen on yield of transplanted aman rice Cv. BRRI dhan 41. M.S. Thesis (abstract), Department of Agronomy, Bangladesh Agricultural University, Mymensingh

genotypes resistant to bacterial blight revealed by quantitative traits and ISSR markers. Physiologia Plantarum 149(3): 432-447.

Shu, A.-P., Zhang, Y.-Y., Cao, G.-L., Lu, Q., Zhang, S.-Y. and Han, L.-Z. (2010). Analysis of Genetic Similarity for Improved Japonica Rice Varieties from

