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One thousand and two hundred base pairs (bp) of open reading frame (ORF) 

encoding for an organic solvent tolerant lipase gene was cloned and 

expressed intra- and extracellularly. The intracellular expression was done 

using pBAD TOPO TA expression vector with 0.02% (vlv) of L-arabinose as 

optimum inducer after 4 h of incubation. at 37°C with an optimum lipase 

activity of 0.5 Ulml. The extracellular expression was obtained by co- 

transforming pJL3 expression vector encoding bacteriocin release protein 

(BRP) into E. coli TOP10 harbouring the recombinant pBAD TOPO TA. The 

secretory expression of recombinant organic solvent tolerant 205y lipase 

increased the lipase activity tremendously to 2.5 Ulml. 

The 205y lipase was purified to 8-fold and 32% recovery using two steps 

purification, ultrafiltration and hydrophobic interaction chromatography (HIC). 
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The molecular mass of the purified 205y lipase revealed homogeneity on 

SDS-PAGE at approximately 30 kDa. 

The optimum pH for the purified 205y lipase was found at 7.0-8.0 and its 

stability showed a broad range of pH value between pH 5.0 to pH 13.0 at 37 

"C. The purified 205y lipase exhibited an optimum temperature of 55°C. The 

lipase activity of the purified 205y lipase was enhanced in the presence of 

alkaline metal such as (Na) and alkaline earth metal such as ( ~ g ~ ' ,  ca2' and 

~ a ~ ' ) .  However, the 205y lipase activity was inhibited in the presence of 

transition metal ions, zn2', cu2' and ~ e ~ ' .  The chelating agent, 

ethylenediaminetetraacetic acid (EDTA), did not affect the purified 205y 

lipase activity while serine hydrolase inhibitor, phenylmethane sulfonoyl 

fluoride (PMSF), inhibited the lipase activity. 

The activity of the purified 205y lipase demonstrated good stability in the 

presence of methanol, p-xylene and n-decane with Dimethylsulfoxide 

(DMSO) being the most stabilizing. The purified 205y lipase showed a 

preference toward hydrolysing medium carbon chain length of triglycerides, 

tricaprin (C10). The purified 205y lipase also exhibited 1,3- regiospecific 

nature of the enzyme. 
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Satu ribu dua ratus pasangan bes daripada rangka bacaan terbuka yang 

mengkodkan gen lipase toleran kepada pelarut organik telah diklonkan dan 

diekspeskan secara intrasel dan juga ekstrasel. Pengekspresan secara 

intrasel dijalankan dengan menggunakan vektor pengekspresan pBAD 

TOPO TA dengan 0.02% (vlv) L-arabinosa sebagai penggalak optimum 

selepas 4 jam pengeraman pada suhu 37OC dengan aktiviti optimum lipase 

sebanyak 0.5 Ulml. Pengekspresan ekstrasel diperolehi dengan 

kotransformasi vektor pengekspresan pJL3 yang mengkodkan protein bebas 

bakteriosin (BRP) ke dalam E. coli TOP10 yang mengandungi pBAD TOPO 

TA rekombinan. Pengekspresan ekstrasel bagi lipase toleran kepada pelarut 

organik telah meningkatkan aktiviti lipase secara mendadak kepada 2.5 Ulml. 

Lipase 205y telah ditulenkan sebanyak 8 kali dengan 32% perolehan 

menggunakan dua langkah penulinan, ultrafiltrasi dan kromatografi interaksi © C
OPYRIG

HT U
PM
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hidrofobik. Jisim molekular bagi lipase 205y yang tulen telah menunjukkan 

kehomogenan melalui SDS-PAGE dengan anggaran sebanyak 30 kDa. 

pH optimum lipase 205y yang tulen adalah di antara 7.0-8.0 dan 

menunjukkan kestabilan pada nilai pH yang has di antara pH 5.0 hingga pH 

13.0 pada suhu 37OC. Suhu optimum bagi lipase 205y yang tulen adalah 

pada suhu 55OC. Aktiviti lipase 205y yang tulen ini ditingkatkan dengan 

kehadiran logam alkali seperti (Na) dan logam alkali bumi seperti ( ~ g ~ ' ,  ca2' 

dan ~ a ~ ' ) .  Walau bagaimanapun, aktiviti lipase 205y yang tulen ini direncat 

dengan kehadiran ion logam peralihan, zn2', cu2* and ~ e ~ ' .  Agen 

pengkelatan, ethylendiamintetraacetat (EDTA), tidak memberi sebarang 

kesan ke atas aktiviti lipase 205y ini, manakala perencat serine hydrolase, 

phenylmethylsulfonyl fluoride (PMSF), merencatkan aktiviti lipase. 

Aktiviti lipase 205y yang tulen ini menunjukkan kestabilan dengan kehadiran 

metanol, p-xylena dan n-dekana dangan Dimetilsulfoksida (DMSO) 

menunjukkan lebih stabil. Lipase 205y yang tulen ini menunjukkan 

kecenderungan menghidrolisiskan rantaian tengah trigliserida, tricaprin 

(C10). Lipase 205y rekombinan yang toleran terhadap pelarut organik yang 

telah ditulenkan ini juga telah menunjukkan 1,3-regiospesifik. 
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CHAPTER 1 

INTRODUCTION 

Enzymes or biological catalysts are complex proteins produced by all living 

cells. They are responsible for supporting almost all of the chemical reactions 

meaning that they speed up the chemical reactions in living things. Currently 

enzymes are grouped into six functional classes by the International Union of 

Biochemists (I.U.B), where lipases (E.C.3.1.1.3) belong to the class of 

hydrolases enzymes and the family of carboxylic ester. Lipases have the 

ability to hydrolyse long-chain acylglycerols ( 2  Clo), whereas esterases 

hydrolyse ester substrate with short-chain fatty acids ( I C l o )  (Rahman, ef a/., 

2003). 

According to Bornscheuer et a/. (2002) lipase catalysis occurs at the lipid- 

water interface and most of lipases show the phenomenon of a so-called 

interfacial activation whereby high catalytic activity is observed only in the 

presence of a hydrophobic phase, a lipid droplet dispersed in water or an 

organic solvent. This phenomenon has been related to the presence of a 

hydrophobic oligopeptide (the lid or flap) covering the entrance to the active 

site. 

Although lipases are of widespread occurrence throughout the Earth's flora 

and fauna, they are found more abundantly in microbial flora comprising 

bacteria, fungi and yeast (Pandey ef a/., 1999). Microbial lipases have 
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potential in industrial value due to their substrate specificity and ability to 

remain active in organic solvent (Sharon et al., 1998). They had been widely 

used in chemical reactions, especially in optical resolution (Fukusaki et a/., 

1991 ; Matsumae et al., 1994). 

Bacillus represents a genus of Gram-positive bacteria, which are ubiquitous 

in nature (soil, water, and airborne dust) capable of forming heat-resistant 

endospores and producing a variety of degradative extracellular enzymes. 

Recently, several extracellular lipases have been reported from the genus 

Bacillus such as B. subtilis (Dartois et al., 1992; Eggert et al., 2003), 6. 

liqueniformis (Khyami, l996), B. catenulatus (Schmidt et al., 1996; 1994), 6. 

megaterium (Ruiz et a/., 2002) and B. stearothermophilus (Hwang et al., 

2004). 

Organic solvent tolerance has become a desirable characteristic for many 

lipases due to their functionality in the presence of organic solvent used in 

many industrial processes. The synthetic potential of lipases in organic 

solvent has been widely recognized and documented in several publications. 

Substrates and products of lipase are often insoluble in aqueous solutions, 

and the enzyme is usually insoluble in organic solvents. Some reactions 

catalysed by lipase were carried out in organic aqueous two-phase media, 

which are favourable because the separation of enzyme from substrates or 

products is easy. However, in general, enzymes are easily denatured and 

their catalytic activities disappear in the presence of organic solvents (Ogino 

et a/., 1999) unless the enzymes or lipases are organic solvent tolerant. 
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Other advantageous of using lipases in organic solvent is at low water activity 

many side-reactions that are water dependent can be prevented, including 

the denaturation of enzymes (Secundo and Carrea, 2002). The use of 

organic solvents as reaction media can thus greatly expand the repertoire of 

enzyme-catalysed transformations. Consequently, a number of potential 

applications of enzymes that are either impossible or marginal in water 

become quite feasible and commercially attractive in other solvents 

(Klibanov, 2001 ). 

The recently acquired ability to incorporate exogenous DNA into bacteria, 

and to have that DNA replicated as part of the bacterial genetic complement, 

is of considerable scientific interest. But commercial applications of this new 

technology demand that foreign genes implanted into bacteria be expressed 

into protein encoded by that DNA (Levin et a/., 1983). On the other hand, 

microbial lipases are very diverse in their enzymatic properties as well as 

characteristics that make them attractive for industrial applications. 

Therefore, the objectives of this research are: 

1. To express the organic solvent tolerant lipase gene from Bacillus 

sphaericus 205y. 

2. To purify the organic solvent tolerant recombinant lipase from Bacillus 

sphaericus 205y. 

3. To characterize the organic solvent tolerant recombinant lipase from 

Bacillus sphaericus 205y. © C
OPYRIG
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Organic solvent tolerant lipases 

Lipases (Glycerol ester hydrolases EC 3.1.1.3) are a group of enzymes 

related to the degradation or synthesis of lipids such as acylglycerols. The 

mode of actions of lipase are varied from an environment to another, in 

aqueous solutions with high water content, lipase can hydrolyse acylglycerols 

or fatty acids esters, while in those with low water content, such as organic 

solvents; the synthetic reaction of acylglycerols or exchange of fatty acids is 

catalysed. The lipase reaction can be represented as follows according to 

Stehr et a/., in (2003): 
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Lipase is believed to be able to perform the reverse reaction of synthesis of 

triacylglycerols from free fatty acid and glycerol as shown in the previous 

reaction. This property is extensively used in trans- and inter-esterification 

reactions in organic solvents to produce useful acylglycerols (Kamini et a/., 

2000). Lipases can also act at the interface between a hydrophobic lipid 

substrate and hydrophilic aqueous medium. This phenomenon is due to the 

presence of a hydrophobic oligopeptide, the lid or flap, covering the entrance 

of the active site. In hydrophobic environment, the lid moves aside and the 

substrate can enter the binding pocket. Even so, not all lipases are 

considered to present this phenomenon (Bornscheuer et a/., 2002). 

The use of lipase in organic solvents instead of in water provided numerous 

advantageous. These advantageous such as increasing solubility of 

hydrophobic substrates, shifting of thermodynamic equilibrium to favour the 

synthesis over hydrolysis and increasing thermostability of the enzymes 

(Persson et a/., 2002). Nevertheless, not all the lipases will exhibit the same 

degree of tolerances towards the organic solvents. The stability of a 

particular protein toward different organic solvents mainly depends on the 

native conformation of the proteins it self. The reason is due to the organic 

solvents may distort enzyme molecules or may become competitive inhibitors 

through specific interaction kinetics and substrate specificity (Ogino and 

Ishikawa, 2001 ). 

Many questions have been raised among enzymologists regarding the use of 

enzymes in organic solvents. Perhaps the most obvious question is whether 
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the protein can conserve its native conformation when it is transferred from 

the tranquillity of an aqueous buffer to the harsh realities of a non-aqueous 

process environment (Yang and Russell, 1996). Several hypotheses were 

proposed by many enzymologists in order to answer the question. One of the 

current hypotheses is that when an appropriately prepared enzyme is placed 

in an anhydrous organic solvent, it is kinetically trapped in its native-like 

conformation (Zaks and Klibanov, 1988) and thus the protein is able to 

maintain its native structure. Nonetheless, the organic solvent tolerant 

enzymes have their own profitable as compared to those non-organic solvent 

tolerant enzymes. 

2.2 Sources of lipases and their industrial applications 

Lipases are widely distributed among microorganisms, animals, and plants. 

Different microorganisms have been known to produce a large number of 

lipases, including yeast, moulds, and bacterial. Microbial lipases are very 

diverse in their enzymatic properties and substrate specificity, which makes 

them attractive for industrial applications. The vast majority of wild type 

microbial lipases reported in the literature are extracellular enzymes, being 

excreted through the external membrane into the culture medium (Aires- 

Barros et a/., 1994). 

Due to their extracellular nature, most of microbial lipases can be produced in 

large quantities and are stable under non-natural conditions such as high 

temperatures and non-aqueous organic solvents employed in many 
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applications (Schmidt-Dannert, 1999). However, the quantity of these 

extracellular lipases produced naturally, in terms of activity, is less as 

compared to the recombinant lipases. Therefore, recently many scientists 

have started to manipulate these lipase genes of wide variety seeking for 

greater level. For example, the Bacillus thermocatenulatus lipase gene, 

BTL2, was expressed in Escherichia coli in order to obtain large amounts of 

the active enzyme (Schlieben et a/., 2004). 

In terms of industrial applications, according to Jaeger et al., in (1997), the 

estimated world-wide sales volume for industrial enzymes in 1995 was US$ 1 

billion and this volume is definitely forecasted to double until 2005. Among 

these enzymes, lipases are considered to be the third largest group based on 

the total volume. The most commercially important field of application for 

hydrolytic lipases is their addition to detergents, which are used mainly in 

household dishwasher and industrial laundry, as well as in removing the pitch 

from the pulp produced in the paper industry and flavour development for 

dairy products, achieved by selective hydrolysis of fat triglycerides to release 

free fatty acids; these can act as either flavour or flavour precursors. Lipases 

have also been employed in catalysis reactions in organic chemistry such as 

the synthesis of chiral amines and the synthesis of the calcium antagonist 

Diltiazem TM (Reetz and Jaeger, 1998). Biopolymers such as polyphenols, 

polysaccharides and polyesters are receiving increasing attention because 

they are biodegradable and produced from renewable natural resources. 

Lipases are used as catalysts for the polymeric synthesis with the major 

advantages being their high selectivity under mild reaction conditions. 
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