UNIVERSITI PUTRA MALAYSIA

EFFECTS OF CUTTING SIZE AND ORGANIC ACID ON QUALITY AND ENZYME ACTIVITIES OF FRESH-CUT WAX APPLE (Syzygium samarangense (BLUME) MERILL & PERRY)

NUR IZZAH BINTI KADIR

FP 2015 21
EFFECTS OF CUTTING SIZE AND ORGANIC ACID ON QUALITY AND
ENZYME ACTIVITIES OF FRESH-CUT WAX APPLE (*Syzygium samarangense*
(BLUME) MERILL & PERRY)

By

NUR IZZAH BINTI KADIR

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirements for the Degree of Master of Science

May 2015
COPYRIGHT

All material content within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated to:

Kadir Zainal
Hawa Md. Ali
Siti Afifah Kadir
Ainul Wafa Kadir
Mohd Hafizuddin Kadir
Khairin Najihah Kadir
Ahmad Syakir Kadir
Ain Syakirah Kadir
Abstract of thesis presented to the Senate of Universiti Putra Malaysia on fulfilment of the requirement for the degree of Master of Science

EFFECTS OF CUTTING SIZE AND ORGANIC ACID ON QUALITY AND ENZYME ACTIVITIES OF FRESH-CUT WAX APPLE (Syzygium samarangense (BLUME) MERILL & PERRY)

By

NUR IZZAH BINTI KADIR

May 2015

Chair: Associate Professor Yahya Awang, PhD

Faculty: Agriculture

Wax apple seems to be one of the potential fruits for fresh-cut market. The knowledge on fresh-cut wax apple is still lacking especially on their enzymes activity with respect to cell wall softening and tissue browning and how these enzymes could contribute in maintaining products’ quality. Thus, the study was conducted in order to gain more knowledge on the changes that occurred during the processing of fresh-cut wax apples that might be affected by cutting sizes and dipping treatment while remaining or maintaining the quality almost as good as intact fruits.

In the first experiment, wax apples were stored as whole (control), halves, quartered, and wedged in domestic refrigerator (~5°C) for nine (9) days and observed at 0, 3, 6, and 9 day. Water loss was observed to be increasing from day zero to day nine and also significantly related with the cutting sizes in which the whole wax apples lost the least amount of water compared to other cutting sizes. Firmness, total soluble solid, and ascorbic acid of wax apples were reduced significantly throughout the nine days of storage meanwhile the titratable acidity and pH value was observed to increase throughout the storage period. Since cutting sizes did not showed much significant differences on post-harvest qualities except for weight loss and titratable acidity, it is recommended to process wax apple into wedged (1/8) since they have the ability to retain their moisture by absorbing back more water from the condensation that could prevent weight loss. In conclusion, it is possible to use Syzygium samarangense as fresh-cut products as the changes in the qualities of fresh-cut wax apples was not critical in a way that they could reduce the market value of wax apples.
For the second experiment, the wedged fresh-cut wax apples were dipped into three types of organic acids; ascorbic acid (AA), citric acid (CA), and oxalic acid (OA) at five different concentrations (0, 0.5, 1.0, 1.5 and 2.0%) and stored for nine days. The type of acids did not significantly affect water loss of the samples but the parameter was markedly varied under varying levels of acid concentration (P ≤ 0.01) and storage period (P ≤ 0.0001). The effect of acid concentration was apparently interacted significantly with period of storage (P ≤ 0.01). The titratable acidity of fresh-cut wax apples was significantly affected by different type of acids but their effects on TA varied depending on their concentration. At a lower concentration of organic acids, the TA measured were similar to each other for AA, CA, and OA but the TA in the OA-dipped fresh-cut wax apples started to increase significantly as the concentration of organic acids increased from 1.0 to 2.0%. In comparison to CA and OA, the concentration of AA dipping treatment caused the increased of the ascorbic acid content in fresh-cut wax apples without decreasing the pH that indicates sourness which can be an added value to fresh-cut wax apple in terms of nutrition. OA treated wax apples was recorded with the highest antioxidant activity which is 90.64% followed by CA (86.15%) and AA (81.17%) with the significant increased throughout nine days of storage period. Fresh-cut wax apples treated with OA (33.84 mg/100g) and CA (33.64 mg/100g) resulted in a significantly higher TPC in comparison to those dipped in AA (30.43 mg/100g) with the increased in TPC over nine days of storage period. As for enzyme activities, only pectin methylesterase and polyphenol oxidase activities were only affected by storage period whereas polygalacturonase activity was not affected by the treatment given.

Overall, it can be concluded that the treatment with the 2.0% of ascorbic acid was proven to be beneficial for fresh-cut wax stored up to 9 days since it was recorded with the highest amount of ascorbic acid content or better known as vitamin C compared to other concentrations but at the same time, the pH remains similar to others that may suggest the retention of the flavours for the fresh-cut wax apples.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

KESAN SAIZ POTONGAN DAN ASID ORGANIK KE ATAS KUALITI DAN AKTIVITI ENZIM BUAH JAMBU AIR (Syzygium samarangense (BLUME) MERILL & PERRY)

Oleh

NUR IZZAH BINTI KADIR

Mei 2015

Pengerusi : Professor Madya Yahya Awang, PhD

Fakulti : Pertanian

Jambu air merupakan salah satu buah yang berpotensi untuk menjadi produk potongan segar. Pengetahuan tentang jambu air potong ini masih lagi kurang terutamanya berkaitan rawatan celupan serta enzim yang mempengaruhi kekerasan serta pemerangan sel tisu jambu serta bagaimana enzim boleh memberi kesan dalam usaha mengekalkan kualiti produk. Oleh itu, kajian ini dilakukan untuk medapatkan lebih pengetahuan tentang perubahan yang berlaku semasa pemprosesan buah jambu air potong yang mungkin dipengaruhi oleh saiz potongan dan rawatan celupan dalam mengekalkan kualiti buah yang tidak diproses.

Untuk eksperimen pertama, jambu air telah disimpan secara keseluruhan, potongan separuh, potongan 4, dan potongan 8 di dalam bekas dan diletakkan ke dalam peti ais (~5°C) untuk 9 hari dan dianalisis pada hari 0, 3, 6, dan 9. Kehilangan air diperhatikan meningkat daripada hari kosong kepada hari ke sembilan dan berkaitan secara signifikan dengan saiz potongan di mana jambu air yang tidak diproses kehilangan sedikit air berbanding dengan saiz potongan yang lain. Kekerasan, jumlah pepejal larut dan asid askorbik berkurang dengan ketara sepanjang 9 hari penyimpanan sementara itu keasidan tertitrat dan nilai pH diperhatikan meningkat sepanjang tempoh penyimpanan. Memandangkan saiz potongan tidak menunjukkan banyak perbezaan dalam kualiti pasca tuai kecuali untuk kehilangan berat dan keasidan tertitrat, ianya dicadangkan untuk memproses buah jambu air pada potongan 1/8 memandangkan mereka mempunyai kebolehan untuk mengekalkan kelembapan dengan menyerap kembali lebih banyak air yang terhasil daripada proses kondensasi yang boleh mengurangkan kehilangan berat. Kesimpulannya, jambu air mempunyai potensi sebagai produk potongan segar kerana perubahan kualiti buah jambu air potong tidak kritikal sehingga mampu mengurangkan nilai pasaran jambu air.
Di dalam eksperimen kedua, jambu air potong 1/8 telah dicelup ke dalam tiga jenis asid organik termasuk asid askorbik (AA), asid sitrik (CA), dan asid oksalik (OA) pada 5 kepekatatan yang berbeza (0, 0.5, 1.0, 1.5, dan 2.0%). Hasil menunjukkan jenis asid tidak mempengaruhi kehilangan air secara signifikan tetapi berbeza di bawah kepekatatan asid yang berbeza (P≤0.01) dan juga tempoh simpanan (P≤0.0001) yang juga dikesan berinteraksi antara satu sama lain (P≤0.01). Keasidan tertitrat dipengaruhi secara signifikan oleh jenis asid tetapi berbeza bergantung kepada kepekatannya. Pada kepekatatan asid yang rendah, keasidan tertitrat untuk jambu air untuk celupan ke dalam AA, CA, dan OA adalah hampir sama tetapi untuk OA meningkat sebaik sahaja kepekatannya meningkat daripada 1.0% ke 2.0%. Berbanding dengan celupan ke dalam CA dan OA, kepekatatan celupan AA telah meningkatkan kandungan asid askorbik di dalam jambu air potong tanpa merendahkan pH yang menunjukkan tahap kemasaman yang boleh dijadikan nilai tambah untuk jambu air potong dari segi nutrisi. Jambu air potong yang dicelup dengan OA juga merekodkan kadar antioksida yang paling tinggi iaitu 90.64% diikuti dengan CA (86.15%) dan AA (81.17%) dengan peningkatan yang signifikan sepanjang sembilan hari penyimpanan. Kandungan fenolik untuk jambu air yang dicelup dengan OA (33.84 mg/100g) dan CA (33.64 mg/100g) adalah lebih tinggi daripada AA (30.43 mg/100g) yang menunjukkan peningkatan sepanjang tempoh penyimpanan. Untuk enzim aktiviti pula, hanya aktiviti pektin metilesterase dan polifenol oksida hanya dipengaruhi oleh jangka waktu simpanan sementara aktiviti polygalakturonase tidak berubah oleh rawatan yang diberikan.

Secara keseluruhannya, rawatan (celupan) ke dalam 2.0% asid askorbik dikenalpasti dapat memberi kelebihan untuk jambu air potong untuk penyimpanan sehingga sembilan hari memandangkan ianya direkodkan dengan jumlah asid askorbik atau lebih dikenali dengan vitamin C berbanding kepekatan yang lain tetapi pada masa yang sama dapat mengekalkan nilai pH sama dengan yang lain.
ACKNOWLEDGEMENTS

Alhamdulillah. Thanks to ALLAH S.W.T. for giving me HIS blessing and some strength in finishing my master degree in Universiti Putra Malaysia. I would like to express my endless gratitude and thankfulness to my supervisor, Associate Professor Dr. Yahya Awang for his kind advice, tremendous guidance and help, and also encouragement for me during my years of study. I would also like to extend my thanks to Associate Professor Dr Phebe Ding for her time, helps, and guidance in carrying out this study. The completion of this thesis was also supported by awesome people I have met in Crop Science Department in the Faculty of Agriculture including En Mazlan Bangi, En Helmy Hamisan, and En Azahar Othman who have helped in unconditionally during my research project and also all lecturers and staff in Crop Science Department.

I am also thankful towards bunch good friends of mine including Nur Fauzana Mohd Kasim, Nazihah Salehan, Noor Shahida Yamanludin, Nur Syazwani Shabudin, Farhana Ahmad Affandi, Sharul Azwim Azita, Adzzie Shazleen Azman, Nur Fatin Ahmad, Wan Farizatuul Akma (Shawl Kami Team) for giving me strength and support, physically and mentally in completing this study.

Last but not least, I would like to express my deepest thanks and appreciation towards my family, Encik Kadir Zainal (Abah), Puan Hawa Md Ali (Mak), Siti Afifah, Ainul Wafa, Mohd Hafizuddin, Khairin Najihah, Ahmad Syakir, and Ain Syakirah for their endless and unconditional love and support towards me all the time. Thanks are never enough to compare with what you guys have been giving me all this while.
I certify that a Thesis Examination Committee has met on 28 May 2015 to conduct the final examination of Nur Izzah binti Kadir on her thesis entitled "Effects of Cutting Size and Organic Acid on Quality and Enzyme Activities of Fresh-Cut Wax Apple (Syzygium samarangense (Blume) Merrill & Perry)" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Izham bin Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mahmud bin Tengku Muda Mohamed, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Normaniza Osman, PhD
Associate Professor
Universiti Malaya
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 August 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Yahya B. Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Phebe Ding, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)
BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotation, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification /fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: _____________________

Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012 – 2013) are adhered to.

Signature : __________________
Name of Chairman of Supervisory Committee : Prof Madya Yahya Awang

Signature : __________________
Name of Member of Supervisory Committee : Prof Madya Phebe Ding
TABLE OF CONTENTS

ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW
2.1 Wax Apple (Syzygium samarangense)
 2.1.1 Cultivation of wax apple
 2.1.2 Uses and nutrition facts of wax apple

2.2 Fresh-cut Fruits
 2.2.1 Fresh-cut fruit trend
 2.2.2 Physiology and biochemical changes of fresh-cut fruits
 2.2.2.1 Weight loss
 2.2.2.2 Firmness
 2.2.2.3 Colour
 2.2.2.4 Total soluble solid
 2.2.2.5 Titratable acidity
 2.2.2.6 pH value
 2.2.2.7 Ascorbic acid

2.2.3 Fruit Softening
 2.2.3.1 Enzymes involved in fruit softening
 2.2.3.1.1 Polygalacturonase
 2.2.3.1.2 Pectin methylesterase

2.2.4 Enzymatic Browning

2.2.5 Organic Acids and Fresh-cut Fruits Quality
3. EFFECT OF STORAGE PERIOD AND DIFFERENT CUTTING SIZES OF FRESH-CUT WAX APPLE (*SYZYGIUM SAMARANGENSE*)

3.1 Introduction

3.2 Materials and Methods

3.2.1 Experimental design and statistical analysis

3.2.2 Fruit materials

3.2.3 Fruit analysis

3.3 Results and Discussion

3.3.1 Weight Loss

3.3.2 Firmness

3.3.3 Total soluble solid content

3.3.4 Titratable acidity

3.3.5 pH value

3.3.6 Ascorbic acid content

3.4 Conclusion

4. EFFECT OF ORGANIC ACIDS ON POST-HARVEST QUALITIES AND ENZYME ACTIVITIES OF FRESH-CUT WAX APPLE (*SYZYGIUM SAMARANGENSE*)

4.1 Introduction

4.2 Materials and Methods

4.2.1 Experimental design and statistical analysis

4.2.2 Fruit materials

4.2.3 Fruit analysis

4.3 Results and Discussion

4.3.1 Weight Loss

4.3.2 Firmness

4.3.3 Total soluble solid content

4.3.4 Titratable acidity

4.3.5 pH value

4.3.6 Ascorbic acid content

4.3.7 Antioxidant activity

4.3.8 Total phenolic content

4.3.9 Polygalacturonase activity

4.3.10 Pectin methylesterase activity

4.3.11 Polyphenol oxidase activity

4.4 Conclusion
5. SUMMARY, CONCLUSION, AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES 45
APPENDICES 56
BIODATA OF STUDENT 84
PUBLICATIONS 85
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>4</td>
</tr>
<tr>
<td>4.1</td>
<td>32</td>
</tr>
</tbody>
</table>

2.1 Production of wax apple in major growing countries (2003 - 2006)

4.1 Summary of F-test of ANOVA for various parameters on the effects of different types of organic acids at different concentration (0, 0.5, 1.0, 1.5, and 2.0%) during 9 days of storage period for fresh-cut wax apple
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Weight loss (%) of fresh-cut red wax apple stored at 5°C for nine days.</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Firmness of fresh-cut red wax apple stored at 5°C for nine days.</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Total soluble solid content (TSS) of fresh-cut red wax apple stored at 5°C for nine days.</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>Titratable acidity of fresh-cut red wax apple stored at 5°C for nine days.</td>
<td>22</td>
</tr>
<tr>
<td>3.5</td>
<td>Changes in pH value of fresh-cut red wax apple stored at 5°C for nine days.</td>
<td>24</td>
</tr>
<tr>
<td>3.6</td>
<td>Changes in ascorbic acid concentration of fresh-cut red wax apple stored at 5°C for nine days.</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Weight loss of fresh-cut wax apple dipped into 0.0, 0.5, 1.0, 1.5, and 2.0 organic acids throughout nine days of storage at 5°C.</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Titratable acidity for fresh-cut wax apple dipped into different concentration of ascorbic acid, citric acid, and oxalic acid.</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>pH value for fresh-cut wax apple dipped into different concentration of ascorbic acid, citric acid, and oxalic acid.</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>Ascorbic acid content for fresh-cut wax apple dipped into different concentration of ascorbic acid, citric acid, and oxalic acid.</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Antioxidant activity for fresh-cut wax apple dipped into different concentration of ascorbic acid, citric acid, and oxalic acid.</td>
<td>38</td>
</tr>
<tr>
<td>4.6</td>
<td>Total phenolic content for fresh-cut wax apple dipped into different concentration of ascorbic acid, citric acid, and oxalic acid.</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>°C</td>
<td>degree celcius</td>
</tr>
<tr>
<td>AA</td>
<td>ascorbic acid</td>
</tr>
<tr>
<td>AAS</td>
<td>atomic absorption spectrophotometer</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>CA</td>
<td>citric acid</td>
</tr>
<tr>
<td>CRD</td>
<td>completely randomized design</td>
</tr>
<tr>
<td>FW</td>
<td>fresh weight</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
</tr>
<tr>
<td>OA</td>
<td>oxalic acid</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>TA</td>
<td>titratable acidity</td>
</tr>
<tr>
<td>TSS</td>
<td>total soluble solid</td>
</tr>
<tr>
<td>TPC</td>
<td>total phenolic content</td>
</tr>
<tr>
<td>GRAS</td>
<td>generally recognized as safe</td>
</tr>
<tr>
<td>PPO</td>
<td>polyphenol oxidase</td>
</tr>
<tr>
<td>PG</td>
<td>Polygalacturonase</td>
</tr>
<tr>
<td>PME</td>
<td>pectin methylesterase</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Syzygium samarangense or commonly known as wax apple is a species from the Myrtaceae family. The plants of Myrtaceae family can be found abundantly around South East Asia, South America, and Australia (Reynertson et al., 2008). Wax apple, a non-climacteric fruits, is presumed to be native to Philippines, Indonesia, and Malaysia (Rosnah et al., 2012). Khandaker et al., (2011) stated that wax apple is widely cultivated in Malaysia, Thailand, Taiwan, and Indonesia. The tree of wax apple is used to be popular as backyard trees before being cultivated for commercial purposes.

A number of cultivars have been developed and grown all over the tropical and subtropical region of the world (Simirgiotis et al., 2008). Wax apple is glossy and can be found in green to dark red colour depending on the variety (Nakasone and Paull, 1998). As for the shape there are pear-shaped and bell-shaped wax apple according to its variety (Simirgiotis et al., 2008; Rosnah et al., 2012). The length of the fruits may be found within the range of 4 to 5 cm and 5 to 8 cm wide (Rosnah et al., 2012). The fruit is fibrous with white-flesh pulp and sometimes contain 1 to 4 seeds (around 1 to 2 cm in diameter) (Simirgiotis et al., 2008), but can also be seedless (Morton, 1987).

Wax apple’s pulp is rich in water and crispy at the same time. Wax apple also produce subtle sweet and low acidic taste that becomes one of the special characteristics of this fruit. According to Food and Agriculture Organization (FAO) (2005), the combinations of the characteristics mentioned above has made wax apple to be favoured in Western countries.

Nowadays, fresh-cut fruits and vegetables has become a trend in order to encourage the consumption of healthy food for a healthier lifestyle. For example, the consumption of fresh-cut produces has been increasing in Asia, Australia, Western countries, and also Europe (Kim, 2007). Fresh-cut or minimally processed fruits and vegetables are defined as fruits and vegetables that are ready for consumption without further processing. In other words, the fruits and vegetables must have been trimmed or peeled or cut, washed, packaged, and maintained with refrigeration as 100% usable products before being sold to consumers.

Another common problem that arises in the fresh-cut industry is the occurrence of enzymatic browning. Enzymatic browning mostly occurs due to the presence of polyphenol oxidase (PPO) on phenolic compounds with the presence of activated enzyme, oxygen, and fibre (Kim and Jung, 2011). Generally, browning in fresh-cut products could reduce the appearance and nutritional values. Ascorbic acid (AA), citric acid (CA), and oxalic acid (OA), the three anti-browning agents that are generally recognized as safe (GRAS), being used as anti-browning agents due to its properties as weak organic acids and widely found in plant tissues. The effectiveness of AA, CA,
and OA on fresh-cut products varied depending on the types of organic acid, concentration being used and type of produces. This is due to the different PPO isozymes and/or phenolic substrates among products types (Suttirak and Manurakchinakorn, 2010).

At the same time, enzymes reactions could also resulted in the reduction of firmness of the fresh-cut products during storage and ripening. This is due to the modifications of the polymers’ network causing the loss of the firmness and change the texture of the produces (Brummel et al., 1999). Polygalacturonase (PG) and pectin methylesterase (PME) are enzymes that play roles in softening of cell wall. In the effort of reducing the firmness loss in fresh-cut produces, it is crucial for us to understand the behavior of cell wall degrading enzymes so that their activities could be controlled in order to lengthen the economical values of the fresh-cut products.

Due to the changes in the qualities of fresh-cut fruits in general, wax apple is not an exception. Hence, it is important to conduct this study so that researchers will be able to gain more knowledge on the changes that might occurred during the processing of fresh-cut wax apples and to figure out the most cutting sizes that allows the trading of fresh-cut wax apples while remaining or maintaining the quality almost as good as intact fruits. Additionally, the treatment with well known anti-browning agents such as AA, CA, and OA that is known to reduce or retard the degradation of the fresh-cut products was might also be beneficial in reducing the quality losses of fresh-cut wax apple as researchers in the fresh-cut field had been working extensively on how to reduce and/or retard the browning problem in fresh-cut products that might also be associated with the enzyme activities revolving inside the wax apple. The appropriate anti-browning agents dipping treatment could effectively delay the browning in fresh-cut wax apples can be determined through this study.

With the justification stated in the paragraph before, hence the objectives of this study were

1. To evaluate the retention of wax apple qualities throughout storage as whole and also potentially as fresh-cut fruits.
2. To evaluate the potential use of organic acids such as ascorbic acid, citric acid, and also oxalic acid as they are known to have the potential in retaining or reducing the qualities losses throughout the storage.
3. To investigate the activities of the cell wall enzymes such as polygalacturonase (PG), pectin methylesterase (PME), and also browning enzyme, polyphenol oxidase activities in affecting the qualities of fresh-cut wax apples.
REFERENCES

Lu, P.L. and Lin, P.H. (2011),. Physiology of fruit cracking in wax apple (Syzygium samarangense), Journal of Plant Science, 8, 70 – 76.

