

UNIVERSITI PUTRA MALAYSIA

FINITE ELEMENT ANALYSIS OF SPRING BACK PHENOMENON IN V-BENDING OF SHEET METAL

RAMADAN MUFTAH IMHEMED ELWIRFALLI.

FK 2004 24

FINITE ELEMENT ANALYSIS OF SPRING BACK PHENOMENON IN V-BENDING OF SHEET METALS

By

RAMADAN MUFTAH IMHEMED ELWIRFALLI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Partial Requirements for the Degree of Master of Science

June 2004

Dedicated to my Parents

And to my wife and kids Muftah, Elmoatasem Belah, Ryan

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the partial requirements for the degree of Maser of Science

FINITE ELEMENT ANALYSIS OF SPRING BACK PHENOMENON IN V-BENDING OF SHEET METAL

By

RAMADAN MUFTAH IMHEMED

June 2004

Chairman: Associate Professor Abdel Magid S. Hamouda, Ph.D.

Faculty: Engineering

The objective of this study is to determine numerically, the effect of different parameters on springback phenomenon during sheet metal forming process. Nonlinear numerical simulation was performed using a finite element commercial MSC MARC software. Numerical results were verified with available experimental data obtained from the literature.

Four parameters namely, the effect of material type, sheet thickness, friction and punch radius were evaluated in springbak phenomena.

In evaluating the effect of material types on springback phenomenon, high tensile steel (HTS), mild steel (MS), deep drawing steel (DDS) and commercially pure aluminium (CA) were used. The computational results showed that the value of springback is influenced by type of material.

Deep drawing steel displayed the highest value of springback (3.48°), while the lowest springback value was recorded for mild steel (2.06°).

The effect of friction coefficient on springback phenomenon was determined using different friction coefficient ranging between 0.1 and 0.5 with increment of 0.1. Friction coefficient 0.5 displayed the highest value of springback (3.8°) and the lowest value of springbak (2.4°) was recorded for friction coefficient 0.1 which means that springback increases as friction coefficient increases.

Sheets have thickness of (3mm, 5mm, 8.3mm, 10mm and 12.8mm were evaluated for springback phenomenon. The results showed that the springback values decreases as sheet thickness increases. 3 mm sheet computed to have the highest value of springback (7.65°), 12.8 mm sheet had the lowest springback value (2.88°).

Finally, (3mm, 5mm, 8mm, 10mm and 12mm) punch radius were also evaluate to study their effect on developed springback,. The results showed that as the punch radius increases the springback values increases. The punch with 12mm radius exhibited the highest value of springback (5.84°) and the lowest springback value of 1° was computed for punch with radius of 3mm.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Master Sains

ANALISIS UNSUR TERHINGGA TERHADAP FENOMENA MEMBIDAS BAGI BENGKOKAN –V TERHADAP KEPINGAN LOGAM

Oleh

RAMADAN MUFTAH IMHEMED

June 2004

Pengerusi: Professor Madya. Abdel Magid S. Hamouda, Ph.D.

Fakulti: Kejuruteraan

Tumpuan kerja ini adalah bagi mengkaji secara berangka kesan parameter yang berbeza ke atas fenomena membidas semasa proses pembentukan kepingan logam. Simulasi berangka tak lelurus telah dijalankan menggunakan perisian komersial MSC MARC. Keputusan berangka telah disahkan dengan data eksperimen yang sedia ada dari literature. Empat parameter telah diambilkira dalam kajian ini iaitu, kesan terhadap jenis bahan, kesan ketebalan kepingan, kesan geseran dan kesan jejari penebuk.

Untuk kesan jenis bahan terhadap fenomena membidas, empat jenis bahan telah diambilkira iaitu keluli tegangan tinggi (HTS), keluli lembut (MS), keluli penarikan dalam (DDS) dan aluminium tulen komersial (CA). Keputusan berkomputer sangat sensitive kepada jenis bahan. Mengikut urutan, keluli penarikan dalam mempamirkan nilai membidas tenaga tertinggi (3.48°), manakala nilai membidas terendah telah direkod oleh keluli lembut (2.06°).

Sebaliknya kesan angkali geseran ke atas fenomena membidas, angkali geseran yang berbeza telah diubah diantara 0.1 dan 0.5 dengan tokokan 0.1. Angkali geseran (0.5) telah menghasilkan nilai membidas (3.8°) tertinggi dan nilai membidas terendah telah direkod oleh angkali geseran 0.1. Ini bermakna membidas bertambah dengan pertambahan angkali geseran.

Lima nilai ketebalan logam telah dikenalpasti bagi mengkaji kesan ke atas fenomena membidas. Untuk tujuan ini, kepingan dengan ketebalan berbeza telah dikenalpasti (3mm, 5mm, 8.3mm, 10mm dan 12.8mm). Keputusan menunjukkan nilai membidas berkurangan dengan pertambahan ketebalan kepingan. Mengikut urutan, logam dengan ketebalan 3mm menghasilkan nilai membidas yang tertinggi (7.65°), manakala nilai membidas yang terendah telah direkod oleh ketebalan logam 12.8mm.

Akhir sekali, lima nilai jejari penebuk (3mm, 5mm, 8mm, 10mm dan 12mm) telah di ambilkira untuk mengaji kesannya ke atas membidas. Keputusan menunjukkan yang nilai membidas bertambah dengan penambahan jejari penebuk. Penebuk dengan jejari 12mm menunjukkan nilai membidas tertinggi (5.84°) dan nilai membidas terendah sebanyak (1°) telah menghasilkan untuk penebuk berjejari 3mm.

ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful

First by the Grace of Allah (sbt), the controller of the whole universe, who has provided me with good health to finish this study in time. Secondly, I would like to express my sincere gratitude to the chairman of the supervisory committee Assoc.Prof. Dr. Abdel-Magid Salem Hamouda for his continuous help, support and encouragement throughout this study.

I also wish to thank Assoc.Prof Dr.Megat Mohamad Hamdan and Dr.El- Sadiq M. A. Saad the members of the supervisory committee for their necessary help, guidance and valuable suggestions.

I also wish to express my thanks to my friends in the faculty of engineering for their help and support.

I am grateful to my country Libya and the management of the Great Man Made River Project having support me for pursuing the graduate study at University Putra Malaysia. Special thanks to all the lovely members of my family and relatives without whose encouragement and overwhelming support this study would not have been possible.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVALS	vii
DECLARATION	ix
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
NOMENCLATURE	xx
CHAPTERS	
1. INTRODUCTION	1
1.1 Important of Study	2
1.2 Problem Statement	3
1.3 Objectives of this Study	4
1.4 Thesis Layout	4
2. LITRATUREREVIEW	6
2.1 Introduction	6
2.2 Sheet Metal Forming Process	8
2.3 Shearing	9
2.3.1 Punch Force	10

2.3.2 Shearing Operation	10
2.4 Bending	13
2.4.1 Minimum Bend Radius	15
2.4.2 Springback Phenomena	17
2.4.3 Compensation for Springback	18
2.4.4 Bending Force	19
2.4.5 Bending Operation	20
2.5 Factors Affecting Springback	21
2.6 Material for Sheet Metal Forming	22
2.6.1 Steel Sheet Metal	23
2.6.2 Non-Ferrous Sheet Metal	25
2.7 Sheet Metal Characteristics	27
2.7.1 Elongation	28
2.7.2 Yield-Point Elongation	28
2.7.3 Necking	28
2.7.4 Anisotropy	29
2.7.5 Grain Size	31
2.8 Stress – Strain Curves and Young's Modulus	31
2.9 Yield Criterion	33
2.10 Von Mises Criterion	34
2.11 Total Plastic Strain	35
2.12 Friction and Lubrication	36
2.12.1 Causes of Friction	37
2.12.2 Effect of Lubrication	38
2.13 Die Consideration	38
2.14 Introduction to Finite Element Method	39
2.14.1 Definition of Finite Element Method	39
2.14.2 Background and Application of Finite Element Method	40

2.14.3 Finite Element Library	41
2.14.4 Errors in Finite Element Analysis	42
2.14.5 Benefits of Sheet Forming Simulation	43
2.14.6 Core Benefits of Sheet Forming Simulation	45
2.15 Springback Simulation	45
2.16 Conclusion	49
3. METHODOLOGY	50
3.1 design Parameters	53
3.1.1 Effect of Material Type	53
3.1.2 Effect of Material Thickness	54
3.1.3 Effect of Friction Coefficient	54
3.1.4 Effect of Punch Radius	54
3.2 Model Generation	55
3.3 Element Type and Mesh Generation	56
3.4 Material Properties	56
3.5 Boundary Conditions	57
3.6 Loading	58
3.7 Solution	58
3.8 Conclusion	60
4. FINITE ELEMENT MODELLING	61
4.1 Finite Element Model	62
4.2 Create a Model of Rectangular Patch and Convert to Finite Element	64
4.3 Create the Curves Required for Punch and Die	65
4.4 Apply the required Fixed Displacement and Material Data	65
4.5 Identifying the contact bodies and Definition of the Punch Motion	66
4.6 Defining the Incremental Steps and Testing Parameters	66

4.7 Create the Job and Submit it to Run in the Background	67
4.8 Post processing the result displaying the deformed Structure,	
Residual Stress and Strain	68
4.9 Conclusion	70
5. RESULTS AND DISCUSSION	71
5.1 Verification of the Finite Element Model	71
5.2 Effect of Coefficient of Friction	75
5.2.1 Effect of Friction on Springback	75
5.2.2 Effect of Friction on Total Equivalent Plastic Strain	76
5.2.3 Effect of Friction on Equivalent Von Mises Stress	77
5.2.4 Effect of Friction on Punch Load-Displacement	78
5.3 Effect of Material Type	79
5.3.1 Effect of Material Type on Springback	79
5.3.2 Effect of Material Type on Total Equivalent Plastic Strain	80
5.3.3 Effect of Material Type on e Equivalent Von Mises Stress	81
5.3.4 Effect of Material Type on Punch Load-Displacement	82
5.4 Effect of Material Thickness	84
5.4.1 Effect of Material Thickness on Springback	84
5.4.2 Effect of Material Thickness on Total Equivalent Plastic Strain	86
5.4.3 Effect of Material Thickness on Equivalent Von Mises Stress	87
5.4.4 Effect of Material Thickness on Punch Load-Displacement	88
5.4.5 Effect of Stress on Material Thickness	90
5.5 Effect of Punch Radius	91
5.5.1 Effect of Punch Radius on Springback	91
5.5.2 Effect of Punch Radius on Total Equivalent Plastic Strain	93
5.5.3 Effect of Punch Radius on Equivalent Von Mises Stress	94
5.5.4 Effect of Punch Radius on Punch Load-Displacement	95
5.5.5 Stress-Strain Curve for Critical Nodal Points	96

5.6 Deformation Analysis of the Bending Process	97
5.7 Conclusion	106
6. CONCLUSIONS AND RECOMMENDATIONS	108
6.1 Conclusion	108
6.2 Recommendations for Future Works	110
REFERENCES	111
APPENDICES	118
BIODATA OF THE AUTHOR	133

LIST OF TABLES

Table		Page
2.1.	MBR for Various Materials at Room Temperature	15
3.1	Characteristics of Material Used for Study	53
3.2	Effect Factors Considered in the Study	54
3.3	Mechanical Properties for Stainless Steel N08904	56
5.1	Comparison between Experiment Results and Simulation Results	72
5.2	Springback Values under different Frictions	75
5.3	Springback Values for different Materials	79
5.4	Springback Values for different Material Thickness	85
5.5	Springback Values for different Punch Radius	92

LIST OF FIGURES

Figure		Page
2.1	Sheet Metal Forming Processes	9
2.2	Shearing with Punch and Die and Some Variables involve	10
2.3	Fine Blanking Die Process	12
2.4	Bending Terminologies	14
2.5	Relationship between R/T ratio and tensile reduction of	16
2.6	Area for Sheet Metals Springback in Bending	17
2.7	Methods of reducing or eliminating Springback in	18
2.8	Bending Operation The Die Opening Dimension (w) used in calculating	20
	bending Forces	
2.9	Formation of Anistropic Material from Isotropic Material	30
2.10	Atypical Stresses – Strain Curve	32
2.11	Von Mises Criterion in Material	35
2.12	Sample of Finite Element Library	42
3.1	Method of Approach adopted	51
3.2	Basic Steps to Carryout the Simulation	52
3.3	The Generated Mesh	55
3.4	The Boundary Conditions	57
4.1	Schematic view of the Bending Process	63
4.2	Rectangular Model Patch Converted into Finite Element	65
4.3	Model Construction Steps	69

5.1	Air Bending: The sheet before and after unloading	74
5.2	Total Equivalent Plastic Strain as a function of time for Stainless Steel N08904 for different Friction Coefficients	76
5.3	Equivalent Von Mises Stress as a function of time for Stainless Steel N08904 for different Friction Coefficients	77
5.4	Load-Displacement Curves for Stainless Steel N08904 for different Friction Coefficients	78
5.5	Total Equivalent Plastic Strain as a function of time for different Material Types	80
5.6	Equivalent Von Mises Stress as a function of time for different Material Types	81
5.7	Load-Displacement Curves for different Material Types	82
5.8	Total Equivalent Plastic Strain as a function of time for Stainless Steel N08904 for different Sheet Thickness	86
5.9	Equivalent Von Mises Stress as a function of time for Stainless Steel N08904 for different Sheet Thickness	87
5.10	Load-Displacement Curves for Stainless Steel N08904 for	88
	different Sheet Thickness	
5.11	Stress variation a cross the Sheet Thickness	90
5.12	Total Equivalent Plastic Strain as a function of time for Stainless Steel N08904 for different punch radius	93
5.13	Equivalent Von Mises Stress as a function of time for Stainless Steel N08904 for different punch radius	94
5.14	Load-Displacement Curves for different punch radius	95
5.15	Comparison for Stress-Strain curves	96
5.16	Total equivalent plastic strain (mm/mm) for N08904 at friction coefficient of 0.3	98
5.17	Equivalent von mises stress (MPa) for N08904 at friction coefficient of 0.3	99
5.18	Total equivalent plastic strain (mm/mm) for high tensile steel	100
5.19	Equivalent von mises stress (MPa) for high tensile steel	101

5.20	Total equivalent plastic strain (mm/mm) for sheet thickness of	102
5.20	8.3 mm	102
5.21	Equivalent von mises stress (MPa) for sheet thickness of 8.3	103
5.22	Total equivalent plastic strain (mm/mm) for punch radius of 12 mm	104
5.23	Equivalent von mises stress (MPa) for punch radius of 12 mm	105
Al	Effect of Friction on Total Equivalent Plastic Strain for	119
	Stainless Steel N08904	
A2	Effect of Material Type on Total Equivalent Plastic Strain	120
A3	Effect of Material Thickness on Total Equivalent Plastic	121
	Strain for Stainless Steel N08904	
A4	Effect of Punch Radius on Total Equivalent Plastic Strain for	122
	Stainless Steel N08904	
B 1	Effect of Friction on Von Mises Stress for Stainless Steel	124
	N08904	
B2	Effect of Material Type on Von Mises Stress	125
B3	Effect of Material Thickness on Von Mises Stress for	126
	Stainless Steel N08904	
B4	Effect of Punch Radius on Von Mises Stress for Stainless	127
	Steel N08904	
C1	Effect of Friction on Punch Load-Displacement for Stainless	129
	Steel N08904	
C2	Effect of Material Type on Punch Load-Displacement for	130
	Stainless Steel N08904	
C3	Effect of Material Thickness on Punch Load-Displacement for	131
	Stainless Steel N08904	
C4	Effect of Punch Radius on Punch Load-Displacement	132

xviii

NOMENCLATURE

Symbol

E	Young's Modulus (GN/m ²)
K	Numerical Constant
L _b	Bend Allowance
n	Strain Hardening Exponent
MBR	Minimum Bend Radius
R	Bend Radius
UTS	Ultimate Tensile Strength
Т	Sheet Thickness
W	Width of Die Opening in Span of Beam
α	Bend Angle (in radian)
3	Strain
v	Poisson's Ratio
σ	Stress (N/m ²)
σy	Uniaxial Yield Strength
Ks	Strength Coefficient
$\Delta \theta_{\text{EXP}}$	Experimental Springback Angle
$\Delta \theta_{\text{FEM}}$	Predicted Springback Angle
u ·	Nodal Displacement Vector
K _t	Current Tangent Stiffness Matrix
F	External Load Vector
I	Internal Force Vector
B _k	Stress-Displacement Matrix for the kth Element
Vk	Element Volume
σn	Normal Stress (N/m ²)
σ_{μ}	Tangential Friction Stress (N/m ²)
μ	Friction Coefficient
t	Tangential Vector in the direction of the Relative Velocity
v _r	Relative Sliding Velocity

r	Tensile reduction of area
Р	Bending Force
L	Length of the bend
Α	Cross-Sectional Area (mm) ²
α_1	Bend angle under load
α_2	Bend angle after load
σ_{0}	Yield stress in a simple tension test (N/m ²)
$ au_{0}$	Yield stress in a simple shear test (N/m ²)
k1, k2	Material constants
N08904	Stainless steel material type

CHAPTER 1

INTRODUCTION

Sheet metal parts are produced in large quantities using special tooling and highvolume production techniques. The processes are predominantly tensile in nature and the amount of deformation that can be achieved in a single stage may be limited by the onset of tensile instability, necking and tearing. On the other hand, the sheet is usually thin so the buckling or wrinkling may take place in regions where one of the membrane stresses is compressive. The art and science of sheet metal forming is to devise processes in which the required shapes can be achieve without tearing or wrinkling and, furthermore, that the margin of safety in the operation is sufficient to tolerate variation in material properties and tooling conditions that will inevitably occur in a production system. Many sheet parts are of low cost and sold in a highly competitive market. The material cost may be a large fraction of the overall value and the part must be formed from the smallest possible piece of sheet or "blank".

As automotive industry is growing rapidly the demand for precise and accurate information concerning parts design and formability of metal sheet becomes essential. Aluminium sheet becomes favourable compared to steel with regards to some improvement at aerodynamic designs, increased engine efficiency and fuel economy.

Wide range of aluminium automotive product included doors, fenders, bumpers face bars, seat frames and backs, heat shields and roof panels have been produced.

Proper design of part geometries, forming tools and processes, and effective lubrication can effectively produce high quality fracture-free aluminium component. Strong understanding of forming process is critical to produce high quality and cost effective products. New equipment and control capabilities may lead to improve the forming process of complex shapes.

1.1 Importance of Study

Sheet metal forming is a technologically important process in manufacturing industries that allows economical production of parts with complex shapes from flat sheet stock. In industry, a great deal of time and money is consumed in finding appropriate tool geometries and manufacturing parameters by trial and error, whereby physical experiments must be performed and tools are repeatedly modified in response to the experimental results. The design of the required tooling and the process specifications represent critical issues that affect the cost and schedule associated with the production of sheet metal parts.

The aim of most current sheet metal forming research is to minimize the time and cost for process development and production while minimizing scrap and optimizing the quality of the parts produced. Finite element analysis is recognized by both researchers as well as industrial practitioners to be the key enabling technology for achieving these goals. Finite element simulations, can be used for predicting key outcomes of the forming process such as the final shape of the part, flow of material, possibility of failure based on necking, wrinkling, and/or forming limit diagrams and amount of spring back. Finite element analysis can be advantageously used to

minimize die tryout and in addition provide the insights needed to guide the determination of optimum process parameters to minimize the cost of production. Finite element techniques are probably the only practical tool or analysis of realistic sheet metal forming operations with complex 3-D geometries, multiple forming steps and complex material models.

1.2 Problem Statement

Sheet Metal Forming is a very old process. Sheet forming dates back to 5000 B.C, when household utensils and jewellery were made by hammering and stamping gold, silver and copper. Currently sheet is produce by sheet mills and machines carry out forming process. Because of low cost and generally good strength and formability characteristics, low-carbon steel is the most commonly commercial material used for sheet metal. Where as in automobile, aircraft and aerospace applications common sheet materials are aluminium and titanium. Nowadays the use of aluminium is increasing especially in automobile industries.

Sheet metal forming consists of three basic processes: -

- Cutting to form a shape (blank).
- Forming by bending and stretching.
- Finishing.

In sheet metal forming operations, the final shape of metal sheet greatly depends on the rate of springback after the removal of the applied loads from the deformed sheet.