MICROPROPAGATION OF Cyclanthus bipartitus POITEAU EX A. RICHARD
AND ASSESSMENT OF ITS GENETIC VARIABILITY

NUR FAUZANA MOHD KASIM

FP 2015 20
MICROPROPAGATION OF *Cyclanthus bipartitus* POITEAU EX A. RICHARD
AND ASSESSMENT OF ITS GENETIC VARIABILITY

By

NUR FAUZANA MOHD KASIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of Master of
Science

June 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

MICROPROPAGATION OF Cyclanthus bipartitus POITEAU EX A. RICHARD AND ASSESSMENT OF ITS GENETIC VARIABILITY

By

NUR FAUZANA MOHD KASIM

June 2015

Chair: Associate Professor Yahya Awang, PhD

Faculty: Agriculture

Cyclanthus bipartitus is characterized as a rhizomatous, and terrestrial shrub with divided leaves and the plant can grow up to 460 cm in height. The plant can be propagated using seeds but seed set is very low, as the pollination process for this plant requires a specific pollinator. Even though this plant can be propagated by cutting and division, micropropagation seems to be the best method for commercial purposes as mass multiplication can be done at a faster rate compared to the conventional method. Thus, this study was carried out to develop an efficient protocol for micropropagation of C. bipartitus. More specifically, the objectives of the study were to determine suitable source of explants and to evaluate the effects of varying concentration of 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (as plant growth regulators), and concentration of sucrose (as a carbon source) for micropropagation of C. bipartitus. The study also aimed at determining the genetic variability of regenerated plants following micropropagation protocols adopted.

Type of explants used in this study was first determined by excising 1 cm of explants from petiole and basal stem and 1 cm² explants from distal and basal lamina, and culturing them in sterilized MS medium for containing BAP and NAA 10 weeks. Compared to other explants, distal lamina and basal lamina generated equally high number of shoots (with a mean of 49 shoots/explant). The shoot was also found to be significantly longer than those generated by other explant. Due to its superiority, explants from lamina part of the plant were used in the following experiments.

An experiment to determine a suitable level of sucrose added to MS medium supplemented with BAP and NAA concentration was also performed. Explants were cultured in sterilized MS medium containing 1.0 mg/L of BAP and 0.5 mg/L NAA with five different concentrations of sucrose: 20 g/L, 25 g/L, 30 g/L, 35 g/L and 40 g/L. The highest number of shoots/explant (54.88), tallest shoots (3.80 cm), highest number of roots (3.12) and longest root (0.78 cm) were
obtained from explants cultured in MS media containing a combination of 1.0 mg/L of BAP, 0.5 mg/L of NAA and 30 g/L of sucrose after 10 weeks of culture. Genetic variability of regenerated plants at the DNA level was also analyzed by using random amplified polymorphic DNA (RAPD) molecular markers. Ten arbitrary primers were screened for RAPD use. Primers that produced score-able bands were chosen to analyse polymorphism in regenerated plant DNA. By PCR amplification, 26 score-able bands were amplified from 5 primers out of 10 arbitrary primers screened, where 18 of them were polymorphic and 8 were monomorphic, which gave 69.2% of polymorphism frequency. In conclusion, explants from lamina part of the plant were used for propagating Cyclanthus bipartitus in vitro in MS medium supplemented with BAP and NAA concentrations of 1.0 mg/L and 0.5 mg/L, respectively. Regenerated plants from the micropropagation were shown to have 69.2% of polymorphism frequency, which indicates the occurrence of genetic variation subcultured plants
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBIAKAN MIKRO DAN PENILAIAN VARIASI GENETIK BAGI POKOK Cyclanthus bipartitus POITEAU EX A. RICHARD

Oleh

NUR FAUZANA MOHD KASIM

Jun 2015

Pengerusi: Professor Madya Yahya Awang, PhD

Fakulti: Pertanian

Jenis eksplan yang digunakan dalam kajian ini pertama kalinya ditentukan dengan memotong eksplan berukuran 1 cm untuk eksplan dari bahagian tangkai daun dan dasar pokok 1 cm² daripada bahagian daun. Pengkulturan kesemua eksplan dilakukan di dalam media yang telah disterilkan selama 10 minggu. Eksplan dari bahagian hujung dan pangkal daun menghasilkan jumlah pucuk yang sama (dengan min 49 pucuk / eksplan). Eksplan bahagian hujung daun juga didapati menhasilkan daun yang lebih panjang berbanding eksplan yang lain. Justeru itu, eksplan daripada bahagian daun telah digunakan dalam eksperimen berikutnya.

Penentuan kadar sukrosa yang sesuai untuk ditambah kepada media MS yang dibekalkan dengan BAP dan NAA juga telah dilakukan. Eksplan dikulturkan dalam MS media yang mengandungi 1.0 mg/L daripada BAP dan 0.5 mg/L NAA dengan lima kepekatan sukrosa yang berbeza, iaitu 20 g/L, 25 g/L, 30 g/L, 35 g/L dan 40 g/L. Bilangan tertinggi pucuk per eksplan (54.88), pucuk
tertinggi (3.80 cm), jumlah tertinggi akar (3.12) dan akar terpanjang (0.78 cm) telah diperolehi daripada eksplan yang dikulturkan di dalam MS media yang mengandungi gabungan 1.0 mg/L BAP, 0.5 mg/L NAA dan 30 g/L sukrosa selepas 10 minggu.

Variasi somaklonal di dalam tumbuhan yang terhasil juga dianalisis menggunakan penanda molekul RAPD (Random Amplified Polymorphic DNA) dalam menentukan variability genetic susulan daripada pembiakan in vitro yang dilakukan. Sepuluh primer telah dipilih secara rawak dan telah disaring untuk penggunaan analisis RAPD. Primer yang menghasilkan ban yang boleh diskor telah dipilih untuk menganalisis tahap polemik DNA. Dengan menggunakan PCR (polymerized chain reaction), 26 ban yang boleh diskor telah diamplifikasikan dari 5 primer yang terpilih, yang mana 18 daripada mereka adalah polimorfik dan 8 pula adalah monomorfik, justeru memberikan 69.2% kekerapan polymorfisma. Kesimpulannya, eksplan daripada bahagian daun tumbuhan yang digunakan untuk pembiakan Cyclanthus bipartitus secara in vitro dalam media MS yang dibekalkan dengan BAP dan NAA masing-masing berkepekatan 1.0 mg/L dan 0.5 mg/L. Tumbuhan dijana dari mikropropagasi yang telah ditunjukkan mempunyai 69.2% daripada frekuensi polymorfisma, di mana nilai ini menunjukkan bahawa terdapatnya variasi di dalam genetic kesemua pokok yang telah digunakan.
ACKNOWLEDGEMENTS

I would like to express my gratitude to the following people who have helped me a lot in order for me to complete my master study. My Supervisor, Associate Professor Dr. Yahya Awang for his continuous support and kindness, criticism and encouragement, patience and guidance during my study and Associate Professor Dr. Saleh Kadzimin for his support and fatherly guidance and advices with my project.

I also would like to thank all staff in the Department of Crop Science, UPM, especially to Mr. Abdul Aziz Ismail, Mr. Mazlan Bangi, Mr. Mohd Helmy, Mrs. Mazlina Alias, and Mrs. Salmah Kassim. I am also indebted to my dear friends who were always there for me in times of hardship during my study, Miss Nur Izzah, Mrs. Nazihah, Mrs. Noor Shahida, Mrs. Nurul Hawa, Miss Asmaa Nafeesa, Mrs. Nur Adilah, Miss Sakina, Miss Aishah and Miss Minny. Million thanks are also due to the Malaysian government for the scholarship given to me throughout my study period provided to Universiti Putra Malaysia.

Finally, I’m fully indebted to my family, especially my parents and brothers for their prayers and support; also my aunties and uncles who have been showering me with tender, love and care. Above all, ALLAH SWT the Most Gracious and Most Merciful for He has given me the will and strength to continue doing work, complete my project and made things go well.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Yahya Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Saleh Kadzimin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: NUR FAUZANA MOHD KASIM (GS29145)
Declaration by Members of Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:
Assoc. Prof. Yahya Awang

Signature:
Name of Member of Supervisory Committee:
Assoc. Prof. Saleh Kadzimin
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1

2. **LITERATURE REVIEW**
 4
 2.1 *Cyclanthus bipartitus*
 4
 2.2 Propagation of *Cyclanthus bipartitus*
 6
 2.3 Tissue culture
 6
 2.4 Type of explants used in tissue culture
 7
 2.5 Culture medium
 9
 2.6 Plant growth regulators
 9
 2.6.1 Cytokinin
 9
 2.6.2 Auxin
 10
 2.7 Carbon source in tissue culture
 12
 2.8 Somaclonal variations
 12
 2.9 Random amplified polymorphic DNA (RAPD)
 14

3. **EVALUATION OF EXPLANT TYPES FOR MICROPROPAGATION OF CYCLANTHUS BIPARTITUS**
 16
 3.1 Introduction
 16
 3.2 Materials and methods
 16
 3.2.1 Plant materials
 16
 3.2.2 Preparation of MS medium
 17
 3.2.3 Preparation of PGR
 17
 3.2.4 Treatment
 17
 3.2.5 Data collection
 19
 3.2.5.1 Number of shoots
 19
 3.2.5.2 Number of roots
 19
 3.2.5.3 Shoot height
 19
 3.2.5.4 Root length
 19
 3.2.6 Experimental design and statistical analysis
 19
 3.3 Results and discussion
 19
 3.4 Conclusion
 23
1 \hspace{1em} \textbf{EFFECTS OF DIFFERENT CONCENTRATIONS OF BAP AND NAA ON SHOOT AND ROOT FORMATION} \hspace{1em} 24

4.1 Introduction \hspace{1em} 24
4.2 Materials and methods \hspace{1em} 24
4.3 Experiment I \hspace{1em} 24
\hspace{1em} 4.3.1 Materials and methods \hspace{1em} 24
\hspace{1em} 4.3.2 Results and discussion \hspace{1em} 25
4.4 Experiment II \hspace{1em} 27
\hspace{1em} 4.4.1 Materials and methods \hspace{1em} 27
\hspace{1em} 4.4.2 Results and discussion \hspace{1em} 28
4.5 Conclusion \hspace{1em} 30

2 \hspace{1em} \textbf{EFFECTS OF DIFFERENT CONCENTRATIONS OF SUCROSE ON SHOOT AND ROOT FORMATION} \hspace{1em} 31

5.1 Introduction \hspace{1em} 31
5.2 Experiment I \hspace{1em} 31
\hspace{1em} 5.2.1 Materials and methods \hspace{1em} 31
\hspace{1em} 5.2.2 Results and discussion \hspace{1em} 32
5.3 Experiment II \hspace{1em} 33
\hspace{1em} 5.3.1 Materials and methods \hspace{1em} 33
\hspace{1em} 5.3.2 Results and discussion \hspace{1em} 34
5.4 Conclusion \hspace{1em} 36

3 \hspace{1em} \textbf{EVALUATION OF GENETIC VARIABILITY OF REGENERATED PLANTS} \hspace{1em} 37

6.1 Introduction \hspace{1em} 37
6.2 Materials and methods \hspace{1em} 37
\hspace{1em} 6.2.1 Plant materials \hspace{1em} 37
\hspace{1em} 6.2.2 Plant materials for DNA extraction \hspace{1em} 38
\hspace{1em} 6.2.3 Preparation of template DNA \hspace{1em} 38
\hspace{1em} 6.2.4 Quantification of extracted DNA \hspace{1em} 39
\hspace{1em} 6.2.5 Screening of RAPD primers \hspace{1em} 39
\hspace{1em} 6.2.6 DNA amplification \hspace{1em} 40
\hspace{1em} 6.2.7 DNA electrophoresis \hspace{1em} 40
\hspace{1em} 6.2.8 Data analysis \hspace{1em} 41
6.3 Results and discussion \hspace{1em} 41
6.4 Conclusion \hspace{1em} 53

7 \hspace{1em} \textbf{SUMMARY AND GENERAL CONCLUSION} \hspace{1em} 54

REFERENCES \hspace{1em} 56
APPENDICES \hspace{1em} 64
BIODATA OF STUDENT \hspace{1em} 70
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Treatments used in Experiment I</td>
</tr>
<tr>
<td>4.2</td>
<td>Observation of explants grown on medium with different combinations of concentrations of BAP and NAA</td>
</tr>
<tr>
<td>4.3</td>
<td>Number of shoots, shoot height, number of roots and root length obtained when explants were cultured in MS medium supplemented with different combinations of BAP and NAA concentrations</td>
</tr>
<tr>
<td>4.4</td>
<td>Treatment combinations used in Experiment II</td>
</tr>
<tr>
<td>4.5</td>
<td>Number of shoots, shoot height, number of roots and root length produced by explants after 10 weeks of culture in MS medium supplemented with different combinations of BAP and NAA concentrations</td>
</tr>
<tr>
<td>5.1</td>
<td>Number of shoots, shoot length, number of roots and root length</td>
</tr>
<tr>
<td>5.2</td>
<td>Combinations of BAP, NAA and sucrose added to culture medium</td>
</tr>
<tr>
<td>5.3</td>
<td>Numbers of shoots, shoot length, number of shoots and root length affected by different combinations of concentrations of BAP, NAA and sucrose</td>
</tr>
<tr>
<td>6.1</td>
<td>List of 10 oligo primers used for RAPD primer screening</td>
</tr>
<tr>
<td>6.2</td>
<td>The purity DNA ratio and DNA concentration obtained from extractions of DNA from mother plant and offspring.</td>
</tr>
<tr>
<td>6.3</td>
<td>Primers used in RAPD analysis of genetic stability in Cyclanthus bipartitus regenerated plants and number of scoreable bands produced by each primer</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary of amplification products produced by primer OPE-01</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary of amplification products produced by primer OPE-05</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary of amplification products produced by primer OPE-08</td>
</tr>
<tr>
<td>6.7</td>
<td>Summary of amplification products produced by primer OPE-13</td>
</tr>
<tr>
<td>6.8</td>
<td>Summary of amplification products produced by primer OPE-15</td>
</tr>
<tr>
<td>6.9</td>
<td>Summary of amplification products produced by primer OPE-19</td>
</tr>
<tr>
<td>6.10</td>
<td>Summary of similarity matrix using Jaccard’s coefficient</td>
</tr>
</tbody>
</table>
6.11 Similarity percentage between parental plant and somaclones
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>5</td>
</tr>
<tr>
<td>Accurate illustration of Cyclanthus bipartitus plant showing divided adult leaves (AL) and undivided young leaf (George et al., 1982)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>11</td>
</tr>
<tr>
<td>Structural formula of plant growth regulators</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>18</td>
</tr>
<tr>
<td>Illustrated image of a stock plants and each number indicates part of plant that was used for culturing. Part 1 is the distal lamina; part 2 is the basal lamina; part 3 is the petiole and part 4 is the basal stem</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>20</td>
</tr>
<tr>
<td>Effects of source of explants on number of shoots of micropropagated C. bipartitus</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>21</td>
</tr>
<tr>
<td>Effects of source of explants on length of shoots of micropropagated C. bipartitus</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>21</td>
</tr>
<tr>
<td>Effects of source of explants on number of roots of micropropagated C. bipartitus</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>22</td>
</tr>
<tr>
<td>Effects of source of explants on length of roots of micropropagated C. bipartitus</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>44</td>
</tr>
<tr>
<td>Gel electrophoresis image of OPE-01 primer. The first column was loaded with DNA ladder, which can be broken down into bands of sizes 10000 base pairs (bp), 8000 bp, 6000 bp, 5000 bp, 4000 bp, 3000 bp, 2500 bp, 2000 bp, 1000 bp, 750 bp, 500 bp and 250 bp, respectively, reading from up to bottom.</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>45</td>
</tr>
<tr>
<td>Gel electrophoresis image of OPE-05 primer. The first column was loaded with DNA ladder, which can be broken down into bands of sizes 10000 base pairs (bp), 8000 bp, 6000 bp, 5000 bp, 4000 bp, 3000 bp, 2500 bp, 2000 bp, 1000 bp, 750 bp, 500 bp and 250 bp, respectively, reading from up to bottom.</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>46</td>
</tr>
<tr>
<td>Gel electrophoresis image of OPE-08 primer. The first column was loaded with DNA ladder, which can be broken down into bands of sizes 10000 base pairs (bp), 8000 bp, 6000 bp, 5000 bp, 4000 bp, 3000 bp, 2500 bp, 2000 bp, 1000 bp, 750 bp, 500 bp and 250 bp, respectively, reading from up to bottom.</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>47</td>
</tr>
<tr>
<td>Gel electrophoresis image of OPE-13 primer. The first column was loaded with DNA ladder, which can be broken down into bands of sizes 10000 base pairs (bp), 8000 bp, 6000 bp, 5000 bp, 4000 bp, 3000 bp, 2500 bp, 2000 bp, 1000 bp, 750 bp, 500 bp and 250 bp, respectively, reading from up to bottom.</td>
<td></td>
</tr>
</tbody>
</table>
6.5 Gel electrophoresis image of OPE-15 primer. The first column was loaded with DNA ladder, which can be broken down into bands of sizes 10000 base pairs (bp), 8000 bp, 6000 bp, 5000 bp, 4000 bp, 3000 bp, 2500 bp, 2000 bp, 1000 bp, 750 bp, 500 bp and 250 bp, respectively, reading from up to bottom.

6.6 Gel electrophoresis image of OPE-19 primer. The first column was loaded with DNA ladder, which can be broken down into bands of sizes 10000 base pairs (bp), 8000 bp, 6000 bp, 5000 bp, 4000 bp, 3000 bp, 2500 bp, 2000 bp, 1000 bp, 750 bp, 500 bp and 250 bp, respectively, reading from up to bottom.

6.7 Cluster analysis from Table 6.10 produced dendogram constructed using UPGMA (unweighted pair-group method with arithmetic averages, which represents relationships of similarity among parental plant and somaclones.
LIST OF ABBREVIATIONS

°C degree celcius
ANOVA analysis of variance
BA/BAP 6-benzylaminopurine
Bp base pair
cm centimeter
DMRT Duncan's Multiple Range Test
EDTA ethylenediaminetetraacetic acid
Et al et alia
g Gram
HCl hydrogen chloride
IBA indole-3-butyric acid
Kn kinetin
L litre
mg milligram
mg/L milligram per litre
µM micromolar
µ mol m⁻² s⁻¹ micromole per meter square per second
MS Murashige and Skoog
NAA naphthalene acetic acid
NaCl sodium chloride
PGRs plant growth regulators
pH hydrogen ion concentration/-log(H⁺)
RCBD randomized complete block design
TDZ thidiazuron
% percent
CHAPTER 1
INTRODUCTION

Cyclanthus bipartitus comes from the Cyclanthaceae family, which consists of 222 species in 12 genera. Cyclanthaceae family can be found exclusively in neotropical areas, which includes herbs, vines, and epiphytes; which most species prefer humid habitat at low and medium high altitudes (Erikson, 1994). The family can be divided into two subfamilies, Cyclanthoideae and Carludovicoidae; in which the former contains only the genus *Cyclanthus* and the latter the remaining 11 genera (Beach, 1982).

Cyclanthus bipartitus makes a beautiful landscape plant as it can grow up to 460 cm in height. Its leaves are shaped in extreme V-shaped formation, and can grow up to about 122 cm wide. This plant develops inflorescence that is an erect spadix, which bears both staminate and pistillate flowers arranged in alternating cycles along its length (Beach, 1982).

Not only that this plant makes a beautiful landscape plant, there also have been reports on its medicinal values used by the indigenous people for ethnomedicine, such as a cure for ant’s bite fever (Valadeau, 2010), to prevent hair loss (Luziatelli *et al.*, 2010), and a cure for snakebite (Odonne *et al.*, 2013). Apart from ethnomedicine use, *Cyclanthus bipartitus* can also be used for canine ethnoveterinary medicine for hunting dogs in order to cure them from an ant’s or a wasp’s sting on the eyes.

Propagation of this plant can be done by cutting and division. However, for rapid mass propagation, micropropagation may serve as a good technique for commercial production compared to the conventional method. Hence, the right method or protocol to perform tissue culture should be employed in order to optimize production in the shortest time frame.

Micropropagation follows several detailed stages. The first stage is the initiation stage, where a portion of a plant, called explant, is taken from an “*in vivo*” mother plant and brought into the laboratory for sterilization process. Explants are disinfected using sterile water, alcohol and bleach; all these steps are being performed in a laminar flow hood to prevent explants being contaminated. The second stage of tissue culture is multiplication, the sterilized explants are placed in sterilized flasks that contain culture media with desired ingredients needed for the explants to develop into new plants. At this stage, the desired outcome would be to have the explant to produce shoots from a callus. All cultures needed to be sub-cultured into fresh media in order to lengthen its life after they have used up what was supplemented in the media.

The third stage of tissue culture is the elongation stage, where all regenerated plants are transferred onto a medium that helps the shoots to elongate. All
steps are carried out in a laminar flow hood to prevent any contamination by bacteria or fungi. At this stage, stems would grow longer and begins to look like a little plant, which often referred as regenerated plantlets. The last stage of tissue culture, which is the fourth stage, is the acclimatization stage. Regenerated plantlets are transferred into a sterilized soil for hardening process under greenhouse environment. Over time, regenerated plants will acclimate to the greenhouse condition.

The correct choice of explant material would lead to the success of tissue culture (George et al., 2008). This is to ensure the effectiveness of tissue culture and achievement of the highest rate of multiplication, as seen in micropropagation of Anthurium andraeanum (Atak and Celik, 2009).

To date, no proper research had been published on the topic of micropropagation of Cyclanthus bipartitus. However, a number of research has been done on its relatives that can be used as references to this research. The most important thing in tissue culture procedure is to prepare the appropriate medium for explants to maximize its ability to fully utilize elements supplemented, and initiate the process of organ regeneration. It is crucial to supply the suitable concentration of plant growth regulators (especially cytokinin and auxin) into the medium in order to enhance and help the growth of the explants. Culture medium supplemented with auxins and cytokinins have been used to propagate many commercial ornamental plants by in vitro techniques (Preil, 2003; Rout and Jain, 2004).

Generally, cytokinin helps in shoot induction while auxin helps in root induction both working by stimulating cell division and differentiation (Trigiano and Gray, 2010). Two common cytokinins used in tissue culture are kinetin (Kn) and 6-benzylaminopurine (BAP). BAP was found to be more effective compared to other cytokinins (Varshney, 2012). This is due to the fact that BAP induces production of endogenous hormones, such as zeatin, or it is readily metabolized by plant tissues, compared to the other synthetic plant growth regulators (Zaerr and Mapes, 1982).

On the other hand, common auxins used for tissue culture procedure are the indole-3-butyric acid (IBA) and naphthalene acetic acid (NAA), which are widely used in combination with cytokinin (Trigiano and Gray, 2010). When cytokinin was combined with optimal auxin concentrations, the synergic influence was evident in both shoots and roots induction. In a study done by Varshney (2012), it showed that the addition of NAA to BAP distinctly enhanced the percentage of regeneration and number of shoots per explant.

Plant cells, tissues and organs are grown in vitro on media supplemented with artificial and exogenous nutrients needed for growth and development of the plantlets. The success of an in vitro culture as a mean of plant propagation is influenced by culture media composition. Micronutrients, macronutrients, plant growth regulators, amino acids, vitamins, nitrogen supplements and carbon source (sugars) are the elements required for rapid growth of plantlets in in vitro condition. Sugars are required in the culture media to replace the carbon,
which plants normally obtain from atmosphere and fixed by in vivo photosynthesis for growth and development (Yaseen et al., 2013).

Sucrose is known to be the most widely used as a major transport sugar in the phloem sap of many plants. It is also often assumed to be the sugar of choice in cell and tissue culture media as it is the most common carbohydrate in the phloem sap of many plants apart from being cheap and easily available (Thompson and Thorpe, 1987; Ahmad et al., 2007; Fuentes et al., 2000).

Tissue culture has been accepted as a common way to propagate crop plants for commercial purposes. Originally, all plants regenerated from cell or tissue culture were expected to have genetic materials identical to that of the parent plant. In spite of this, phenotypic variation was observed to be abundant amongst regenerated plants (Rasheed et al., 2005). This variation was later termed as somaclonal variation and defined as phenotypic and genetic variation among clonally propagated plants of a mother plant.

The presence of somaclonal variation has been related to growth regulators, variability of cultivar, the age of cultivars in culture, level of ploidy, explants sources and other endogenous culture conditions (Skirvin et al., 1994). As chemicals present in culture medium such as 6-benzyladenine (BA), indole-3-acetic acid (IAA) and 2,4-Dichlorophenoxyacetic acid may enhance the rate of this variation. Plantlets produced via *in vitro* propagation may have different genetic materials compared to the parents and this possibility is examined in this study.

Objectives of study

The first objective of this study was to determine suitable explants type to be used for commercial micropropagation of *Cyclanthus bipartitus*. Secondly, this study was conducted to determine the combination of BAP, NAA and sucrose used to supplement the MS medium used to culture the explants in order to obtain optimal growth of explants to plantlet. In the end of this study, DNAs of regenerated plantlets were tested to determine its somaclonal variation level when compared to mother plant.
REFERENCES

