EFFECTS OF NITROSAMINES ON HEPATIC ENZYMES ACTIVITIES AND HISTOPATHOLOGICAL STUDIES OF WHITE MICE (MUS MUSCULUS)

JEEVEN A/L KARRUPPAN.

FBSB 2005 5
EFFECTS OF NITROSAMINES ON HEPATIC ENZYMES ACTIVITIES AND HISTOPATHOLOGICAL STUDIES OF WHITE MICE (MUS MUSCULUS)

By

JEDEVEN A/L KARRUPPAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2005
DEDICATION

To the memory of my late grandfather Chadayan and my father Karruppan, to my mother Kamatchi, my dear wife Janagiammal and my son Logganaath who were the source of inspiration and encouragement throughout the period of this study.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

EFFECTS OF NITROSAMINES ON HEPATIC ENZYMES ACTIVITIES AND HISTOPATHOLOGICAL STUDIES OF WHITE MICE (MUS MUSCULUS)

By

JEEVEN A/L KARRUPPAN

December 2005

Chairman: Associate Professor Johari Ramli, PhD

Faculty: Biotechnology and Biomolecular Sciences

Dietary and environmental hepatocarcinogens will be metabolized to active compounds and it must be detoxified in order to maintain liver integrity. In this study the feeding of nitrosamines and their effects on tumour marker enzymes Alkaline Phosphatase (ALP), Gamma-Glutamyl Transpeptidase (GGT), Glutathione S-transferase (GST) and Uridyl diphospho-glucuronosyl transferase (UDPGT) were analyzed in mice liver.

The initial work involved homogenization of liver samples with different buffers at various concentrations. Results with ALP and GGT shows highest specific activities for liver samples extracted with 0.01M Tris-HCl at pH 7.5. Further work on the use of different solvents, surfactants and detergents to optimize the extraction of alkaline phosphatase and gamma-glutamyl transpeptidase were
conducted. The results obtained showed that 0.01M Tris-HCl buffer at pH 7.5 alone is sufficient to extract these membrane bound enzymes.

Acute studies were conducted by feeding mice with 2-20% of LD$_{50}$ of N-Nitrosodimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA) and mice were killed at 24th, 36th, 48th, 60th and 72nd hours and the liver ALP and GGT were assayed for their activities. Mice fed with 5mg of NDMA/kg of body weight dose for 36 hours showed highest and significant (p<0.05) activation of liver ALP and GGT compared to respective controls suggesting that feeding of NDMA had activated liver marker enzymes activities. The enzyme activities of ALP and GGT for treated mice were 4.215 IU/g protein and 0.656 IU/g protein respectively and in the control liver ALP activity were 1.084 IU/g protein and GGT activity were 0.375 IU/g protein.

Chronic toxicity study was conducted with oral feeding of 5mg NDMA/kg of body weight on weekly basis for 20 weeks. The control and treated mice were sacrificed every fortnight. The severity of neoplasia was studied by histological evaluations and the activity of ALP, GGT, GST and UDPGT were assayed. Studies on these enzymes show significant elevation at (p<0.05) for ALP, GGT and GST compared to respective controls. UDPGT does not show any changes in control and treated mice. ALP and GST was significantly (p<0.05) elevated compared to control at 2nd, 16th and 20th week and GGT was significantly higher than control at week 8th, 10th, 16th and 20th. The highest enzymes activities...
measured for the three enzymes were on the 20th week of experiment. The activities of liver enzyme in treated mice were 5.63 IU/g protein, 1.55 IU/g protein and 2.55 μmole/min/mg protein respectively for ALP, GGT and GST and the activities in control mice during the same week was 1.27 IU/g protein for ALP, 0.376 IU/g protein for GGT and 1.39 μmole/min/mg protein for GST. Histological evaluations through Hematoxilin and Eosin (H&E) staining and Transmission Electron Microscopy (TEM) obtained showed chronic ingestion had caused loss of normal cell organization in liver. Observation with H&E staining and TEM also showed the shrinking of nucleus, cellular and vacuolar degeneration and paler hepatocytes. From 10th week onwards significant (p<0.05) increase in lesion score in liver compare to control liver was observed in slides stained with H&E. The present result suggests even at low dose and at weekly feeding to mice, NDMA is capable in elevating tumour marker enzymes in liver and this compound also caused disruption to the normal cell organization of the liver.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN NITROSAMINA KE ATAS AKTIVITI ENZIM HATI DAN KAJIAN HISTOPATOLOGI PADA MENCIT (MUS MUSCULUS)

Oleh

JEEVEN A/L KARRUPPAN

Disember 2005

Pengerusi: Profesor Madya Johari Ramli, PhD
Faculti: Bioteknologi dan Sains Biomolekul

Proses detoksifikasi adalah amat penting dalam penyingkiran bahan terkumpul akibat metabolisma bahan karsinogen dari persekitaran atau pun dari permakanan dan proses ini dapat memelihara organ hati. Dalam kajian ini kesan nitrosamina terhadap hati mencit telah dilakukan. Pemberian nitrosamina dan perubahan pada enzim-enzim penanda tumor Alkaline Phosphatase (ALP), Gamma-Glutamyl Transpeptidase (GGT), Glutathione S-transferase (GST) and Uridyl diphospho- glucuronosyl transferase (UDPGT) telah diselidiki pada hati mencit.

Kajian awal dilakukan melibatkan penghomogenanan sampel hati dengan dengan penimbal-penimbal yang berbeza kepekatan dan pHnya. Pengukuran aktiviti spesifik ALP dan GGT adalah tinggi dengan apabila hati diempar dengan penimbal 0.01M Tris-HCl pada pH 7.5. Seterusnya solven, surfaktan dan
detergen ditambah pada sample hati dan dihomogenisasikan bersama penimbal 0.01M Tris-HCl pada pH 7.5 untuk memaksimkan pengekstrakan ALP dan GGT dari hati. Selepas pengemparan, didapati tiada kesignifikan pada aktiviti enzim ALP dan GGT apabila dibandingkan dengan peggunaan penimbal sahaja maka penimbal 0.01M Tris-HCl (pH 7.5) sudah memadai untuk pengekstraksian maksima enzim-enzim ini.

Penyelidikan seterusnya ditumpukan kepada kesan akut pemberian nitrosamina NDMA dan NDEA sebanyak 2-20% daripada LD₅₀ pada kumpulan mencit dan haiwan ini dibunuh pada 24, 36, 48, 60 dan 72 jam dan enzim-enzim ALP dan GGT diasai pada sampel hati tersebut. Mencit yang diberi dos 5mg/kg berat badan NDMA menunjukkan aktiviti yang paling tinggi serta signifikan pada p<0.05 berbanding dengan hati kawalan. Aktiviti spesifik hati pada mencit yang dirawat ialah 4.215 IU/g protin untuk ALP, 0.656 IU/g protin untuk GGT manakala untuk kawalan aktiviti ALP ialah 1.084 IU/g protin dan GGT pula 0.375 IU/g protin.

Seterusnya kajian melibatkan kajian ketoksikan kronik selama 20 minggu. Dos rawatan ialah 5mg NDMA/kg dari berat badan mencit dan dos diberikan setiap minggu. Mencit dibunuh setiap dua minggu dan enzim penanda hati ALP dan GGT GST dan UDPGT diukur aktivitinya. Analisis enzim-enzim penanda ALP, GST dan GGT ini menunjukkan aktiviti spesifik yang signifikan (p<0.05) berbanding dengan sampel kawalan. UDPGT pula tidak menunjukkan sebarang
perubahan pada aktiviti enzim pada hati yang dirawat dan kawalan. Aktiviti ALP dan GST adalah signifikan (p<0.05) berbanding kawalan pada minggu kedua, ke-16 dan ke-20 dan aktiviti GGT pula signifikan (p<0.05) berbanding kawalan pada minggu kelapan, ke-10, ke16 dan ke-20. Aktiviti spesifik yang paling tinggi diukur untuk kesemua enzim-enzim ini ialah pada minggu ke-20 dan aktivitinya pada sampel hati yang dirawat ialah, ALP sebanyak 5.63 IU/g protin, GGT pula 1.55 IU/g protin dan 25.55 µmole/min/mg protin ialah aktiviti GST. Pada tempoh yang sama aktiviti spesifik untuk kawalan ialah 1.27 IU/g protin, 0.376 IU/g protin dan 1.39 µmole/min/mg protin masing-masing untuk ALP, GGT dan GST. Pada sampel hati ini juga, kajian dilakukan dari segi histologi dengan teknik pencerapan Hematoxilin and Eosin (H&E) dan kaedah elektron mikroskop. Dari minggu ke-10 pada slaid yang dicerap dengan H&E, lesion neoplastik diadapati bertambah secara signifikan (p<0.05) berbanding pada hati kawalan. Keputusan melalui kedua-dua kaedah histologi menunjukkan di sel hati ada kekecutan pada nucleus, perubahan bentuk atau degenerasi pada sellular dan vakuol dan sel-sel yang pucat. Keputusan kajian ini menunjukkan bahawa walaupun NDMA diberi pada dos yang rendah dan hanya seminggu sekali, tetapi karsinogen ini mampu meningkatkan aktiviti enzim-enzim penanda dan kompaun ini juga menyebabkan kehilangan penyusunan sel-sel normal.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere appreciation and deepest gratitude to my supervisor, Assoc. Prof. Dr Johari Ramli and co-supervisors Prof. Dr. Mohd Arif Syed, Assoc. Prof. Dr. Juzu Hayati Arshad and Prof. Dr. Nor Aripin Shamaan, for their support throughout the course of study. Without their guidance, advice, suggestions and encouragement, I would not have been able to present this work as it is today.

I would also like to extend my heartfelt thanks to Dr. Abu Bakar bin Hj. Hussin, Director of Food Technology Centre, MARDI, Puan Normah Omar and Dr. Kamariah Long for providing facilities, suggestions and encouragement. Sincere thanks to Dr. Fauziah Othman for providing facilities as well as valuable guidance and assistance in the histological evaluations.

My sincere gratitude also goes to the technical staff from the Department of Biochemistry and Microbiology, UPM, my friends and colleagues in UPM and MARDI especially Dr. Yunus, Isam, Paricher, Arif Zaidi Jusoh, Liza, Sashikala and Sharizan for their help and assistance.

I would also like to take this opportunity to express deepest appreciation to my friends Raj Pacyappan, Janaki, Kumaran and Shashikumar for their unwavering
support during the years of studies. Thanks are due to all who have helped or contributed in one way or other towards the completion of this study.

Lastly I wish to express my deepest and heartfelt feelings to my mother for providing me with guidance and support since my childhood. My heartfelt appreciation to my wife Janagiammal for being supportive and understanding. Special thanks to my son Logganaath for the enjoyable moments.
I certify that an Examination Committee met on 13th December 2005 to conduct the final examination of Jeeven a/l Karruppan on his Doctor of Philosophy entitled “Effects of Nitrosamines on Hepatic Enzymes Activities and Histopathological Studies of White Mice (Mus Musculus)” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Marziah Mahmood, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Abdul Manaf Ali, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Norhani Abdullah, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Azimahtol Hawariah Lope Pihie, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Independent Examiner)

HASANAH MOHD GHIZALE, PhD
Professor/ Deputy Dean
School Of Graduate Studies
Universiti Putra Malaysia

Date: 27 FEB 2006
The thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as a fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee are as follows:

Johari Ramli, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Juzu Hayati Arshad, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mohd Arif Syed, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Nor Aripin Shamaan, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School Of Graduate Studies
Universiti Putra Malaysia
Date: 09 MAR 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institution.

JEEVEN A/L KARRUPPAN

Date: 27th January 2006
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL xi
DECLARATION xiii
LIST OF FIGURES xviii
LIST OF TABLES xxii
ABBREVIATIONS xxiv

CHAPTER

I INTRODUCTION 1

II LITERATURE REVIEW 6
Cancer 6
Carcinogenesis 7
Hepatocellular carcinoma 10
Mechanism of carcinogenesis 11
Chemical carcinogen 13
Epidemiology of cancer 14
Methods of carcinogenesis detection 15
N-nitrosoocompounds 16
N-nitrosamines 17
Formation of N-nitrosamines in body 18
Volatile nitrosamines 21
NDMA metabolism in liver 25
Acute and chronic exposures of nitrosamine 33
Phase I and II enzymes 34
Gamma-glutamyl transpeptidase 36
GGT and Carcinogenesis 40
Alkaline Phosphatase 41
ALP and Carcinogenesis 43
Glutathione s-transferases 45
GST and Carcinogenesis 46
Uridyl-diphosphoglucuronyl transferases 48
UDPGT and Carcinogenesis 53
Histological changes during nitrosamine feeding 55
Significance of Study 57

III GENERAL MATERIALS AND METHODS 61
Experimental Design 61
Chemicals 62
Animals
Preparations of test solutions
Animal treatment
Analysis of ALP and GGT activity after extraction with different pH's and concentration of buffer and extractability with solvents
Treatment of mice for acute study
Treatment of mice for chronic study
Termination of experiment
Preparation of cytosol and microsomal fraction
Enzyme assay procedures
 ALP assay
 GGT assay
 UDPGT assay
 GST assay
Protein determination
Histological method
Light Microscopy (H&E Staining)
Lesion Scoring
Transmission Electron Microscopy
Statistical Analysis

IV
EXTRACTABILITY AND STABILITY OF MEMBRANE BOUND ENZYMES γ-GLUTAMYL TRANSPEPTIDASE AND ALKALINE PHOSPHATASE
Introduction
Materials and Methods
Preparation of buffer with various pH's and concentrations for extraction of ALP and GGT
Experimental design of extraction with solvents and detergents
Results
 ALP and GGT specific activity after extraction with various pH's and concentrations (0.01M, 0.10M and 1.00M) of buffer.
 Extraction with surfactants, detergents and organic solvents
Discussion
Conclusion

V
ACUTE TOXICITY OF N-NITROSODIETHYLAMINE (NDEA) AND N-NITROSODIMETHYLAMINE (NDMA) AND ON LIVER MARKER ENZYMES γ-
Introduction
Materials and Methods
Results
Discussion
Conclusion

VI CHRONIC DOSE ADMINISTRATION OF NDMA (LONG TERM LOW DOSE) AND THE EFFECT ON LIVER ALP, GST, GGT AND UDPGT OF MALE MUS MUSCULUS
Introduction
Materials and Methods
Results
Discussion
Conclusion

VII HISTOLOGICAL CHANGES INDUCED BY CHRONIC EXPOSURE OF NDMA IN THE LIVER OF MUS MUSCULUS
Introduction
Materials and Methods
Results
Lesion Score
Hematoxylin and Eosin (H&E) Staining
Transmission Electron Microscopy
Discussion
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A model of the process in multistage of carcinogenesis</td>
</tr>
<tr>
<td>2</td>
<td>Formation of nitrosamines</td>
</tr>
<tr>
<td>3</td>
<td>Structure of different classes of nitrosamines</td>
</tr>
<tr>
<td>4</td>
<td>Decomposition pathway of N-nitrosodimethylamine (NDMA)</td>
</tr>
<tr>
<td>5</td>
<td>General outline of metabolic activation and detoxification pathways</td>
</tr>
<tr>
<td>6</td>
<td>The metabolic pathway of precarcinogens</td>
</tr>
<tr>
<td>7</td>
<td>Illustration of localization of GGT and its central activities</td>
</tr>
<tr>
<td>8</td>
<td>Glutathione cycle</td>
</tr>
<tr>
<td>9</td>
<td>Scheme of metabolic activation and inactivation and inactivation of NNK by cytochrome P450 and UDPGT</td>
</tr>
<tr>
<td>10</td>
<td>Pathway for activation and inactivation of food mutaging and absorption from colon to excretion on metabolic organ liver by UDPGT</td>
</tr>
<tr>
<td>11</td>
<td>Summary diagram of the methods used to prepare samples for measuring the specific activity of marker enzymes</td>
</tr>
<tr>
<td>12</td>
<td>Summary of the methods used to prepare samples for histological work</td>
</tr>
<tr>
<td>13</td>
<td>Procedure for extraction of ALP and GGT with different pHs and concentrations of buffer from liver</td>
</tr>
<tr>
<td>14</td>
<td>Procedure for extraction of ALP and GGT with different concentrations of solvent, surfactant and detergent</td>
</tr>
<tr>
<td>15</td>
<td>Summary of methods used for ALP and GGT assay</td>
</tr>
<tr>
<td>16</td>
<td>Effects of various oral doses of NDEA on ALP specific</td>
</tr>
</tbody>
</table>
activity in liver of *M. musculus* strain ICR

17 Effects of various oral doses of NDEA on GGT specific activity in liver of *M. musculus* strain ICR

18 Effects of various oral doses of NDMA on ALP specific activity in liver of *M. musculus* strain ICR

19 Effects of various oral doses of NDMA on GGT specific activity in liver of *M. musculus* strain ICR

20 Summary diagram of procedure and methods used to prepare liver sample for measuring various enzyme activities in long term study

21 Effect of feeding 5mg NDMA/kg of body weight in the liver of *M. musculus* strain ICR

22 Normal Cellular morphological structure of mice liver. Showing the hepatocytes and Sinusoids in normal arrangement (H&E stain 100x).

23 Normal structure of mice liver in higher magnification. Showing the regular arrangement of sinusoid lining cell (H&E stain, 200x)

24 Early stages of hepatocarcinogenesis (Week 2). The hepatocytes and sinusoids were in irregular arrangement but the nucleus was of the same size (H&E stain, 200x).

25 Morphological changes in mice liver (Week 10) showing abnormality of the liver. The nucleus and cytoplasm undergoing degeneration. Arrangements of cells and sinusoids lining cannot be seen (H&E stain, 200x).

26 Cellular and morphological changes of week 12 mice liver section showing the poor arrangement of cells and blood congestion in central vein and hemorrhage. The nucleus was of different sizes (H&E stain, 200x).

27 The mice liver of week 16 shows densely stained nucleus and massive hepatic necrosis (H&E stain, 200x)

xix
Morphological changes in mice liver of week 20. There was severely vacuolar degeneration causing the poor arrangement and abnormal structure of liver. The nuclei were of different sizes and appear shrunk (H&E stain, 200x).

TEM of normal hepatocyte showing round nucleus and numerous mitochondria in the cytoplasm (9000 x).

TEM pictograph shows a normal liver's Endoplasmic reticulum and intact mitochondria (25500 x).

Transmission electron micrograph of the liver exposed to NDMA for six weeks. Rough endoplasmic reticulum moderately dilated (25500x).

TEM of liver exposed to NDMA for 10 week. Note irregular nuclei border (25500 x)

TEM micrograph of liver exposed to NDMA for 12 week. Note numerous irregular nucleus with marginated chromatin (x 3500).

TEM of exposure of liver to NDMA. Note malignant cell showing irregular nuclear border with cytoplasmic invagination for 16 week (x 30000).

16th week liver sample shows Vesiculation of endoplasmic reticulum (30000 x).

TEM of moderately dilated rough endoplasmic reticulum at week sixteen (x 25500).

TEM of liver exposed to NDMA at week sixteen shows micropinocytosis vermiformis (x 30000).

TEM showing enlarged prominent vesicular nucleolus for 20 week (x 30000).
TEM shows numerous lysosome and lipid droplet for 20th week (x 25500).
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>International Variance in Cancer Incidence</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Types of Nitrosamines and Organs affected</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>The number of mice in experiment for each nitrosamine group</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>LD$_{50}$ of nitrosamines on rat after oral feeding. Both compounds can cause hepatocellular carcinoma in rat liver.</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Number of mice used for chronic study (n=8) (C= control, T= treated)</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>Tissue dehydration in the Histokinette</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>Colourization with Hematoxilin and Eosin (H&E)</td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td>Tissue dehydration for Transmission Electron Microscopy</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>Tissue infiltration with Resin and Acetone mixture</td>
<td>79</td>
</tr>
<tr>
<td>9</td>
<td>The range of pH’s and concentrations of buffer prepared for extraction.</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>Volume of buffer and solubilizers used for enzyme extraction</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>The specific activity of ALP (IU/g) in liver after extraction with various pH’s and concentrations of buffers</td>
<td>88</td>
</tr>
<tr>
<td>12</td>
<td>The specific activity of GGT (IU/g) in liver after extraction with various pH’s and concentrations of buffers</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>The specific activity of ALP after extraction of with organic solvents, detergents/surfactants and alcohols</td>
<td>92</td>
</tr>
</tbody>
</table>

xxii
15. The specific activity of GGT after extraction with organic solvents, detergents/surfactants and alcohols.

16. Effect of different doses of NDEA on Alkaline Phosphatase (IU/g) activity in liver.

17. Effect of different doses of NDEA on gamma-Glutamyl Transpeptidase (IU/g) activity in liver.

18. Effect of different doses of NDMA on Alkaline Phosphatase (IU/g) activity in liver.

19. Effect of different doses of NDMA on gamma-Glutamyl Transpeptidase (IU/g) activity in liver.

20. GGT specific activity (IU/g) in white mice liver treated with 5.0mg/kg of NDMA.

21. GST specific activity (μmole/min/mg protein) in white mice liver treated with 5.0mg/kg of NDMA.

22. ALP specific activity (IU/g) in white mice liver treated with 5.0mg/kg of NDMA.

23. UDPGT specific activity (μmole/min/mg protein) in white mice liver treated with 5.0mg/kg of NDMA.

24. Liver Somatic Index during chronic administration of 5mg NDMA/kg of body weight.

25. Lesion score of the treated group with chronic exposure.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAF</td>
<td>2-Acetylaminofluorene</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CDNB</td>
<td>1-chloro-2,4-dinitrobenzene</td>
</tr>
<tr>
<td>C.V.</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>DEN</td>
<td>diethylnitrosamine</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma Glutamyl Transpeptidase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-tranferases</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrogen chloride</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and eosin</td>
</tr>
<tr>
<td>NNC</td>
<td>N-nitrosocompounds</td>
</tr>
<tr>
<td>NDMA</td>
<td>N-Nitrosodimethylamine</td>
</tr>
<tr>
<td>NDEA</td>
<td>N-Nitrosodiethylamine</td>
</tr>
<tr>
<td>NPYR</td>
<td>N-Nitrosopyrrolidine</td>
</tr>
<tr>
<td>PNP</td>
<td>p-nitrophenol</td>
</tr>
<tr>
<td>PNPP</td>
<td>p-nitrophenol phosphate</td>
</tr>
<tr>
<td>RER</td>
<td>Rough Endoplasmic Reticulum</td>
</tr>
</tbody>
</table>