UNIVERSITI PUTRA MALAYSIA

BARRIERS TO CIM IMPLEMENTATION FOR SMES IN THE KLANG VALLEY

LIM THIAM LAI.

FK 2004 19
BARRIERS TO CIM IMPLEMENTATION FOR SMES IN THE KLANG VALLEY

LIM THIAM LAI

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2004
BARRIERS TO CIM IMPLEMENTATION FOR SMES IN THE KLANG VALLEY

By

LIM THIAM LAI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2004
DEDICATIONS

To:

My Mother,

My Wife,

My sons.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

BARRIERS TO CIM IMPLEMENTATION FOR SMES IN THE KLANG VALLEY

By

LIM THIAM LAI

March 2004

Chairman: Associate Professor Abdel Magid Hamouda, Ph.D.

Faculty: Engineering

Small and Medium Enterprises (SMEs) in Malaysia play a very important role in the country’s economic development. In the year 2002, SMEs comprised 90.0% of the total manufacturing establishments in Malaysia and contributing to 33.3% of total employment in the country.

Undoubtedly, in the new millennium, the Malaysia SMEs will face new opportunities as well as challenges, particularly in view of the liberalization of trade and investment under the ASEAN Free Trade Area (AFTA), the ASEAN Investment Area (AIA), the European Union (EU) and the emerging market economies of Eastern Europe and China.

The increasing global competition, technology advances, social changes, changes in government trade and investment policies and changing consumers markets will be some of the difficulties facing the Malaysian
SMEs. Therefore, the SMEs must formulate and implement new strategies that will enable them to cope with these new challenges.

It is essential to conduct research and study on the Malaysian SMEs to provide useful information so to enhance effort to transform the manufacturing industry into a more dynamic sector with high value added, capital intensive, high technology as well as skill and knowledge intensive industries.

The purpose of this study is to investigate how the SMEs perceive automation like computer integrated manufacturing system and how the factors like management mindset; company size and level of computer literate of the workforce can influence on the decision to implement computer integrated manufacturing, CIM.

This study gathered information on the barriers of implementing CIM. The research is an empirical study on the SMEs within Klang Valley. The method of the research is the questionnaire survey method. A total of 290 questionnaires were mail to the selected SMEs companies listed in the SMI Directory 2001 and the FMM Directory 2001. Selection of SMEs was based on stratified sampling method on the basis of 25%. A total of 56 responses were collected and data was analysed using SPSS version-10.0 software.
Analysis techniques used were the test of correlation (Chi-square) and linear regression.

Result of the findings shows that the management understanding and knowledge of CIM and level of computer literate operator has a significant influence to the decision to implement CIM. But, the size of company does not have significant influence on the implementation of CIM. The findings also indicate that to improve the adaptation of CIM, SMEs needs to improve the level of computer integration. Training has been identified as the key issue before the implementation of CIM. Therefore, in order to make implementation successful in SMEs a comprehensive and effective training program is required.

Keywords: CIM, SMEs, Management Mindset, Technical strength
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

HALANGAN KEPADA PELAKSANAAN SISTEM PEMBUATAN BERINTEGRASI KOMPUTER BAGI PEKILANG-PEKILANG KECIL DAN SEDERHANA DI LEMBAH KLANG

Oleh

LIM THIAM LAI

March 2004

Pengerusi: Profesor Madya Abdel Magid Hamouda, Ph.D.

Fakulti: Kejuruteraan

Pekilang kecil dan sederhana memainkan peranan penting dalam pekembangan ekonomi negara. Pada tahun 2002, pekilang kecil dan sederhana merangkumi 90.0% daripada keseluruhan pertubuhan kilang pembuatan di Malaysia dan menyumbangkan 33.3% pekerjaan negara.

Tidak boleh dinafikan, pada abad baru ini, pekilang kecil dan sederhana akan menghadapi peluang dan juga cabaran baru, terutamanya, dari segi pengliberasasi dagangan dan pelaburan dibawah Rantau Perdagangan Bebas ASEAN (AFTA), Rantau Pelaburan ASEAN (AIA), Perpakatan Eropah (EU) dan pasaran ekonomi baru seperti Eropah timur dan China.

Peningkatan persaingan antarabangsa, peningkatan teknologi, pertukaran social, pertukaran polisi dagangan dan pelaburan kerajaan serta pertukaran pasaran pengguna akan merupakan masalah yang dihadapi oleh pekilang kecil dan
sederhana di Malaysia. Maka, pekilang kecil dan sederhana mesti membentuk dan melaksanakan strategi baru yang akan menolong mereka menghadapi cabaran baru ini.

Adalah difikirkan menjadi suatu keperluan untuk melaksanakan penyelidikan dan kajian mengenai pekilang kecil dan sederhana di Malaysia, supaya dapat memberi maklumat berguna untuk memperkuatkan usaha untuk menukar industri pembuatan kepada satu sektor yang bernilai tambahan yang tinggi, modal yang intensif, berteknologi tinggi dan juga industri yang berdasarkan ilmu dan kemahiran yang intensif.

Tujuan penyelidikan ini adalah untuk mengkaji apakah pandangan pekilang kecil dan sederhana terhadap automasi seperti sistem pembuatan berintegrasi komputer dan bagaimana faktor-faktor seperti pemikiran pihak pengurusan; saiz syarikat dan tahap kefahaman mengenai komputer antara pekerja-pekerjanya dapat mempengaruhi keputusan untuk melaksanakan sistem pembuatan berintegrasi komputer, CIM.

berdasarkan kaedah pesampelan stratified dengan peratus pemilihan sebanyak 25%. Sejumlah 56 jawapan telah diterima dan dianalisa dengan perisian SPSS Ver. 10. Teknik analisa adalah ujian korelasi, iaitu chi-square dan regrasi linear.

Keputusan kajian ini menunjukkan bahawa pengetahuan dan kefahaman pihak pengurusan mengenai CIM dan tahap kefahaman pekerja mengenai komputer mempunyai pengaruh yang nyata terhadap keputusan untuk melaksanakan CIM. Tetapi, saiz syarikat tidak menunjukkan kaitan yang nyata terhadap pelaksanaan CIM. Keputusan kajian juga menunjukkan bahawa untuk meningkatkan pelaksanaan CIM, pekilang-pekilang perlu meningkatkan integrasi komputer di dalam kilang mereka. Latihan merupakan faktor utama sebelum pelaksanaan CIM. Maka, untuk memastikan kejayaan pelaksanaan CIM, suatu program latihan yang menyeluruh dan berkesan adalah suatu keperluan.

Perkataan Utama: CIM, pekilang-pekilang kecil dan sederhana, pemikiran pihak pengurusan, kefahaman komputer
ACKNOWLEDGEMENTS

I wish to thank God for giving me health and strength to complete this research, which I hope will contribute to the welfare of mankind.

I wish to record and express all my sincere thanks to my supervisor, Associate Professor Dr. Abdel Magid Hamouda. This thesis would not be completed without the support, encouragement and comments from him. I would also like to extend my thanks and appreciation to the member of my supervisory committee, Associate Professor Dr. Megat Mohamad Hamdan Megat Ahmad and Associate Professor Dr. Napsiah Ismail.

I also wish to thank all librarians in SMIDEC, MITI MIDA and UPM library for giving me lots of helps in finding necessary information.

Finally, I would like to thank my mother, wife, brothers and sisters who have given me lots of support and motivation towards my study.
I certify that an Examination Committee met on 25th March 2004 to conduct the final examination of Lim Thiam Lai on his Master of Science thesis entitled “Barriers to CIM Implementation for SMEs in the Klang Valley” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MD. YUSUF ISMAIL, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

ABDEL MAGID HAMOUDA, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

MEGAT MOHAMAD HAMDAN MEGAT AHMAD, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

NAPSIAH ISMAIL, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 JUN 2004
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

ABDEL MAGID HAMOUDA, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

MEGAT MOHAMAD HAMDAN MEGAT AHMAD, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

NAPSIAH ISMAIL, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 JUL 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for other degree at UPM or other institutions.

LIM THIAM LAI

Date: 10 - 6 - 2004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>6</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>9</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>10</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>12</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>16</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>17</td>
</tr>
<tr>
<td>LIST OF GOVERNMENT AGENCIES</td>
<td>20</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Introduction 21
 1.2 SMEs in Malaysia 23
 1.3 Problem Statement 24
 1.4 Objectives 26
 1.5 Hypothesis 26
 1.6 Thesis Overview 27

2. **LITERATURE REVIEW**
 2.1 Introduction 28
 2.2 Overview of CIM 29
 2.3 Historical Development of CIM 30
 2.4 Manufacturing Innovation 32
 2.5 CIM Wheel 34
 2.6 Challenges in the Past and Today’s Manufacturing Enterprise 36
 2.7 Development of CIM Research 39
 2.8 Stages of CIM adaptation 40
 2.9 CIM and SMEs 40
 2.10 Barrier to CIM Implementation 44
 2.11 Merits of CIM 46
 2.12 Summary 47
3 METHODOLOGY
3.1 Overview 49
3.2 Design and Development of the Survey 50
3.3 Research Flow Chart 52

4 RESULTS
4.1 Respondent and Industry 56
4.2 Years of Incorporation 57
4.3 Annual Sales Turnover 58
4.4 Level of Automation 60
4.5 Product Market 61
4.6 Number of Product Types 62
4.7 Summary for the profile of the respondents 63
4.8 Stages of CIM Adaptation 64
4.9 Chi-Square test and Linear Regression Analysis 66
4.10 Management Mindset and the Implementation of CIM 69
4.11 Company Size and the Implementation of CIM 69
4.12 Level of Computer Literate and the Implementation of CIM 70
4.13 Merits of CIM 71
4.14 Barriers of CIM 72
4.15 Preparation Prior to CIM Implementation 73
4.16 Assistance Measures to Help the Implementation of CIM 74

5 DISCUSSION
5.1 Overview of Findings 76
5.2 Limitations 79

6 CONCLUSION
6.1 Conclusion 80
6.2 Recommendations 81
6.3 Thesis Contribution 83

REFERENCES 84
APPENDICES 91
BIODATA OF THE AUTHOR 101
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grouping of questionnaire</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Grouping of selected SMEs by industries</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Industries and respondent</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Descriptive statistic (years since incorporation)</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>Descriptive statistic (annual sales turnover)</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>Descriptive statistic (level of automation)</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>Descriptive statistic (product market)</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>Descriptive statistic (number of product types)</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>Question related to the stages of CIM implementation</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>Stages of adaptation</td>
<td>67</td>
</tr>
<tr>
<td>11</td>
<td>Result of regression analysis</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>Descriptive statistic (merits of CIM)</td>
<td>71</td>
</tr>
<tr>
<td>13</td>
<td>Descriptive statistic (barriers of CIM)</td>
<td>72</td>
</tr>
<tr>
<td>14</td>
<td>Descriptive statistic (preparation measures)</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>Descriptive statistic (assistance measures)</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manufacturing Innovation</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>CIM Wheel</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Research flow chart</td>
<td>5</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AHS: Automated handling system
AMT: Advanced manufacturing technology
ASRS: Automated storage and retriever system
CAD: Computer-aided design
CAM: Computer-aided manufacturing
CAP: Computer-aided planning
CAPM: Computer-aided production management
CAPP: Computer-aided process planning
CAQ: Computer-aided Quality Assurance
CAT: Computer-aided technology
CIM: Computer integrated manufacturing
CNC: Computer numerical control
ERP: Enterprise resources planning
FMS: Flexible manufacturing system
GT: Group technology
IRM: Integrated resource management
ISA: Integrated system architecture
IT: Information technology
MNC: Multi national company
MRP: Material requirement planning
MRP II: Manufacturing resources planning
OMT: Object oriented technology
OS: Operating system
PPS: Production planning systems
QC: Quality circle
ROI: Return of investment
SADT: Structural analysis and design technique
SCM: Supply chain management
SME: Small and medium enterprises

WIP: Work in progress

VM: Virtual manufacturing
<table>
<thead>
<tr>
<th>No.</th>
<th>Agency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FMM</td>
<td>Federation of Malaysian Manufacturers</td>
</tr>
<tr>
<td>2.</td>
<td>MATRADE</td>
<td>Malaysia External Trade Development Corporation</td>
</tr>
<tr>
<td>3.</td>
<td>MIDA</td>
<td>Malaysian Industrial Development Authority</td>
</tr>
<tr>
<td>4.</td>
<td>MIDF</td>
<td>Malaysia Industrial Development Finance Berhad</td>
</tr>
<tr>
<td>5.</td>
<td>MITI</td>
<td>Ministry of International Trade and Industry</td>
</tr>
<tr>
<td>6.</td>
<td>MTDC</td>
<td>Malaysian Technology Development Corporation</td>
</tr>
<tr>
<td>7.</td>
<td>NPC</td>
<td>National Productivity Corporation</td>
</tr>
<tr>
<td>8.</td>
<td>SMIDEC</td>
<td>Small and Medium Industries Development Corporation</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Introduction

Malaysia has transformed herself from an agriculture based economy to an economy that is based on industrialization. For more than two decades, the Malaysian economy has experienced tremendous growth due to industrialization. Today, Malaysian manufacturing industries are facing increasing competition from other emerging industrialized countries, like Thailand, China and Eastern Europe (Hashim, M.K. and Wafa, S.A., 2002). Furthermore, introduction of trade liberalization like ASEAN Free Trade Area (AFTA), ASEAN Investment Area (AIA) would mean that Malaysian industries have to be better prepared to face greater challenges ahead. In the global market, the characteristics of order-qualifiers for manufacturing industries is the capability of producing high quality products with shorter delivery lead time and the ability to produce according to the diverse requirements of the customers (Nagalingam, S.V. and Lin, G.C.I., 1999). Hence, in order to overcome the above issues, it is necessary for Malaysian industries to adopt advanced manufacturing technology (AMT) and computer integrated manufacturing (CIM).
The concept of CIM was coined by Dr. Joseph Harrington in 1973 in the book called “Computer Integrated Manufacturing” (Harrington, J., 1973). CIM only became commonly known from early 1980. The proposal of CIM in the early 1970s might have appeared to be over futuristic. Today, with the tremendous developments in computer, electronics and mechanical technologies, CIM became a reality that can be achieved without much difficulty.

Small and Medium Enterprise (SMEs) as compared to large firms, produce much smaller quantity of products in batches. In order to compete with the larger firms, they must always look for niche market by customized their products according to the changing needs of their customers. Therefore, by adopting CIM, it will certainly help to enhance flexibility to meet the above goal. In the wave of globalization, CIM was named as the factor that, not only determine the development but also the survival of many companies (Luong, L.H.S., 1998). The benefits of CIM are well documented. Some of these benefits include, shorter lead time, gain in productivity, reduce in work-in-progress, lower cost and improve competitiveness (Quantz, P.A., et al., 1984; Babbar, S. and Rai, A., 1990 and Bedworth, D.D., et al., 1991). Clive Vassell urge the SMEs to adopt CIM (Vassell, C., 1999).
1.2 SMEs in Malaysia

Small and Medium Industries is defined as the company that is incorporated under the Companies Act 1965, having less than 150 full time employees and with an annual sales turnover that is less than RM25 million. A small-scale enterprise referred to a company with an annual sales turnover of less than RM 10 million and not more than 50 full-time employees and a medium-scale enterprise was referred to a company with an annual sales turnover between RM10 million to RM25 million and has between 51 to 150 full-time employees (SMIDEC, 2001).

In many developed countries, the small and medium industries contributed substantially to the economic development of the countries as well as providing job opportunities to the job market. SMEs in Japan comprised 99.7 per cent, Taiwan 98.1 per cent and Germany 99.0 per cent of total manufacturing establishments. In Malaysia, based on the media statement by Y.B. Dato’ Seri Rafidah Aziz, Minister of International Trade and Industry of Malaysia on 22 August 2002, SMEs comprised 90.0 per cent of the total manufacturing establishments in Malaysia and contributing to 33.3 percent of total employment of the country.

Malaysia has set its vision of becoming a fully industrialized nation by the year 2020. This has initiated the government to emphasize on the effort to