

UNIVERSITI PUTRA MALAYSIA

SEQUENCE AND FUNCTIONAL ANALYSES OF SALINITY TOLERANCE GENES ISOLATED FROM THE MANGROVE PLANT, ACANTHUS EBRACTEATUS (SEA HOLLY)

NGUYEN PHUOC DANG.

FBSB 2005 3

SEQUENCE AND FUNCTIONAL ANALYSES OF SALINITY TOLERANCE GENES ISOLATED FROM THE MANGROVE PLANT, *Acanthus ebracteatus* (SEA HOLLY).

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

SEQUENCE AND FUNCTIONAL ANALYSES OF SALINITY TOLERANCE GENES ISOLATED FROM THE MANGROVE PLANT, *Acanthus ebracteatus* (SEA HOLLY).

By

NGUYEN PHUOC DANG

December 2005

Chairman : Ho Chai Ling, PhD

Faculty : Biotechnology and Biomolecular Sciences

Salinity is a major abiotic stress that greatly affects plant growth and crop production. Most trees and crop plants are sensitive to salty conditions. Sodium ions are toxic to plants because of their adverse effects on potassium nutrition, cytosolic enzymes activities, photosynthesis and metabolism. Mangrove plants are good models to study plant tolerance to salinity as they possess salinity tolerance genes that allow them to survive under with high salinity conditions. The objectives of this study are to identify, isolate and characterize salinity tolerance genes from a mangrove plant, *Acanthus ebracteatus* using expressed sequence tag (EST) and bacterial functional assay approaches.

The leaves of *A. ebracteatus* were collected from the mangrove area at Morib, Selangor. Total RNA was isolated from the leaves of *A. ebracteatus*, and a cDNA library was constructed from cDNA fractionated between 500 to 5,000 bp. A total of eight hundred sixty four randomly selected clones were

isolated from the primary cDNA library from which 521 clones were sequenced. Among these ESTs, 138 of them were assembled into 43 contigs whereas 383 were singletons. A total of 349 of these ESTs showed significant homology to functional proteins and 18 % of them are particularly interesting as they correspond to genes involved in the stress response. Some of these clones, including mannitol dehydrogenase, plastidic aldolase, secretory peroxidase, ascorbate peroxidase, and vacuolar H⁺-ATPase, may be related to salinity tolerance mechanisms such as osmotic homeostasis, ionic homeostasis and detoxification.

In this study, a bacterial functional assay was also performed to identify cDNAs that confer salinity tolerance. A total of 120 salinity tolerant candidate genes from *A. ebracteatus* were isolated from 2 X YT medium supplemented with 400 mM NaCI and sequenced. Among these clones, 27 of them may be related to salinity tolerance such as manganese superoxide dismutase (Mn-SOD), putative salt tolerance protein, glutathione S-transferase, etc. The results showed that plants and bacteria may share some similar mechanisms for salinity tolerance.

A total of six cDNA clones from *A. ebracteatus* were fully sequenced and three of them were characterized by Southern hybridization and Northern hybridization. Clone A290 encoded a putative plastidic aldolase that may be involved in osmoprotection by converting triose phosphate into hexose. This gene was found to be expressed predominantly in the leaves of *A. ebracteatus*. There may be more than one family member of plastidic

aldolase in *A. ebracteatus*. Meanwhile, clone A303 was found to be a putative H^* -ATPase, an enzyme known to play an important role in ion homeostasis, a salinity tolerance mechanism. This gene most probably exists as a single copy gene in *A. ebracteatus*. The expression of H^* -ATPase was detected in all tissues of *A. ebracteatus*. Clone A325 encoded a putative monodehydroascorbate reductase which is involved in the detoxification mechanism. This gene was also expressed in all tissues and is most probably a single copy gene in the genome of *A. ebracteatus*.

Sequence analysis of the putative salinity tolerant cDNAs isolated by bacterial functional assay and ESTs suggested that the salinity tolerance mechanisms in *A. ebracteatus* may involve ion homeostasis, osmotic homeostasis, detoxification and other supporting mechanisms.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISIS JUJUKAN DAN FUNGSI GEN-GEN KETAHANAN TERHADAP GARAM DARIPADA TUMBUHAN BAKAU, Acanthus ebracteatus (SEA HOLLY).

Oleh

NGUYEN PHUOC DANG

Desember 2005

Pengerusi : Ho Chai Ling, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Kegaraman (salinity) merupakan tekanan abiotik utama yang amat berkesan terhadap pertumbuhan pokok dan penghasilan tanaman. Kebanyakan pokok dan tanam-tanaman adalah sensitif terhadap keadaan yang masin. Ion natrium adalah toksik kepada tumbuhan disebabkan kesan yang buruk terhadap nutrisi potassium, aktiviti enzim sitosolik, fotosintesis dan metabolisma. Pokok bakau merupakan model yang baik untuk mengkaji ketahanan tumbuhan terhadap garam kerana mereka mempunyai gen ketahanan terhadap garam yang membolehkannya hidup di dalam kegaraman yang tingyi. Tujuan kajian ini adalah untuk mengenalpasti, memencilkan dan mencirikan gen ketahanan terhadap garam daripada pokok bakau, *Acanthus ebracteatus* dengan menggunakan 'expressed sequence taq' (EST) dan pendekatan esei bakteria berfungsi.

Daun *A. ebracteatus* telah dikumpulkan daripada kawasan hutan bakau di Morib, Selangor. RNA telah diekstrak daripada daun *A. ebracteatus* dan

perpustakaan cDNA telah dibina daripada fraksi cDNA di antara 500 ke 5000 bp. Sejumlah 864 klon telah dipilih secara rawak dan dipencilkan daripada perpustakaan cDNA primer di mana 521 klon telah dijuzuk. Di antara EST tersebut, 138 daripadanya wujud sebagai 43 kontig dan 383 yang selebihnya adalah singleton. Sebanyak 349 daripada EST ini menunjukkan homologi yang berkesan terhadap protein yang berfungsi dan 18 % daripadanya amat menarik kerana berhubungkait dengan gen-gen yang terlibat dengan tindak balas tekanan. Di antara klon-klon ini termasuk mannitol dehidrogenase, plastidik adolase, sekretori peroksidase, askorbat peroksidase, vakuolar H⁺-ATPase, yang mungkin berhubungkait dengan homeostasis osmotik, homeostasis ionik dan detoksifikasi.

Di dalam kajian ini, esei bakteria berfungsi dibuat untuk memencilkan cDNA yang mempunyai ketahanan terhadap garam. Sebanyak 120 gen yang menunjukkan ketahanan terhadap garam daripada *A. ebracteatus* telah dipencilkan daripada media 2 X YT yang mengandungi 400 mM NaCl dan analisis jujukan telah dibuat. Antara klon-klon ini, 127 daripadanya mungkin berhubungkait dengan protein ketahanan garam, glutathione S-transferase dan sebagainya. Keputusan menunjukkan bahawa tumbuhan dan bakteria berkongsi sesetengah mekanisma yang serupa di dalam ketahanan terhadap garam.

Sebanyak enam cDNA klon daripada *A. ebracteatus* telah jujuk sepenuhnya dan tiga klon cDNA telah dicirikan dengan menggunakan penghibridan 'Southern' dan 'Northern'. Klon A290 yang mengkodkan plastidik adolase,

mungkin terlibat di dalam 'osmoprotection' dengan mengubahkan trios fosfat kepada heksosa. Gen ini dizahirkan dengan banyaknya pada daun *A. ebracteatus*, dan didapati mungkin lebih daripada satu salinan dalam *A. ebracteatus* yang tergolong dalam keluarga yang sama. Manakala klon A303 merupakan putatif H⁺-ATPase, yang memainkan peranan penting di dalam homeostasis ion di dalam mekanisma toleransi terhadap garam. Gen ini berkemungkinan besar wujud sebagai satu salinan. Pengzahiran H⁺-ATPase telah dikesan pada semua tisu *A. ebracteatus*. Klon A325 yang mengekodkan putatif monodehidroaskorbat reduktase mungkin terlibat mekanisma nyahtoksik. Gen ini juga dizahirkan di dalam semua tisu dan berkemungkinan besar adalah salinan gen tunggal di dalam genom *A. ebractreatus*.

Analisa jujukan putatif cDNA yang berketahanan terhadap garam yang dipencilkan melalui esei bakteria berfungsi dan EST mencadangkan bahawa mekanisma ketahanan terhadap garam di dalan *A. ebracteatus* mungkin melibatkan hemoestasis ion, homeostasis osmotik, detoksifikasi dan mekanisma sokongan yang lain.

ACKNOWLEDGEMENTS

I would like to thank Dr. Ho Chai Ling for giving me the opportunity to work under her guidance for the last three years. Thanks for the encouragement. You have been an excellent mentor and your friendship as well as your guidance has been an honor to me.

I would like to express my sincere gratitude to my supervisors Assoc. Prof. Dr. Jennifer Ann Harikrishna, Assoc. Prof. Dr. Raha Abdul Rahim and Dr. Michael C.V.L.Wong for their guidance, support, advice and help throughout my thesis.

Many thanks to the laboratory members of Genetic laboratory, Faculty of Biotechnology and Biomolecular Sciences at Universiti Putra Malaysia: Mr. Ong, Choong, Lee, Swee Sen, Chan, Sudha, Seddon, Tony, Yeen Yee, Ummi, Alfred, Joey, Sock Hwa, Tzer, Kam Lock, Siti and all the others, for the friendship, support, and encouragement.

I would like to thank Dr. Le Viet Dung, College of Agriculture and Cantho University, Viet Nam for providing the financial support during my study. Many thanks to my friends Tung, Ky, Thuc, Mai Anh, Tam, Thach, Nghia in UPM for their support, and encouragement.

Last, but not least, many thanks go to my family for their love and support which have upheld me over the long years of my education.

TABLE OF CONTENTS

		Page
ABST ACKN APPR DECL LIST	TRACT TRAK NOWLEDGEMENTS ROVAL LARATION OF TABLES OF FIGURES OF ABBREVIATIONS	ii v viii ix xi xvi xvii xvii xxi
CHAF	PTER	
1	INTRODUCTION	1
2	 LITERATURE REVIEW 2.1 Mangrove 2.1.1 Definition of Mangrove 2.1.2 Classification 2.1.3 The Ecology and Economical Role of Mangrove 2.1.4 Response of Mangrove to Salt 2.1.5 The Salt Tolerance Adaptation of Mangrove 2.2 Acanthus ebracteatus Vahl 2.3 Salt Stress in Plants 2.3.1 Effects of Salinity on Agriculture 2.3.2 Na⁺ Toxicity in Plants 2.3.3 Sodium Influx in Plants 2.3.4 Sodium Efflux in Plants 2.3.4 Sodium Efflux in Plants 2.4.1 Homeostasis 2.4.2 Detoxification 2.4.3 Plant Growth Regulation 2.4.4 Salt Secretion by Salt Glands 2.5 Salt Tolerance Genes in Plants 2.6 RNA extraction 2.7 Expressed Sequence Tags (EST) 2.7.1 cDNA Library Generation and EST Sequencing 2.7.2 EST Clustering 2.7.3 Employing Bioinformatics Tools for Annotation of EST 	4 4 5 7 8 10 12 16 16 17 20 22 4 25 30 35 36 38 45 47 9 51 52
3	 MATERIALS AND METHODS 3.1 Plant Materials-Sample Collection 3.2 Isolation of Total RNA 3.2.1 Method 1: Cesium chloride Method (Glišin <i>et al.</i>, 1974) 	56 56 56 57

		3.2.2 Method 2: Hexacetyltrimethyl ammonium bromide (CTAB method) (Apt <i>et al.</i> 1995)	58
		3.2.3 Method 3: Modified Jill-Winter Method	59
		(Rochester <i>et al.</i> , 1986)	00
		3.2.4 RNA Quantification	61
		3.2.5 Formaldehyde Agarose Gel Electrophoresis	62
	3.3	Isolation of mRNA from Total RNA	62
		3.3.1 Isolation of mRNA	62
		3.3.2 Quantification of mRNA	63
		3.3.3 Ethidium bromide Plate Assay	64
	3.4	Extraction of Genomic DNA	65
	3.5	Construction of cDNA Library	66
		3.5.1 First-Strand cDNA Synthesis	68
		3.5.2 Second-Strand cDNA Synthesis	68
		3.5.3 Blunting the cDNA Termini	69
		3.5.4 Ligation with <i>Eco</i> R I Adapter	69
		3.5.5 Phosphorylating the <i>Eco</i> R I End	70
		3.5.6 Digestion with Xho I	70
		3.5.7 Size Fractionation of cDNA	70
	3.6	cDNA Purification	72
		3.6.1 Ligating cDNA into the Uni-ZAP XR Vector	72
	0 7	3.6.2 Packaging with Gigapack III Extract	73
	3.7	Preparation of XL1 BlueMRF' Cells for Plating	72
	3.8	Amplification of the cDNA Library	74
	3.9	Random Selection of Plaques from Primary cDNA	75
		Library 3.9.1 In vivo Excision	75
			75
	3.10	3.9.2 Plasmid Preparation	76
	3.10	PCR Amplification with Plasmid DNA Bacterial Functional Assay	78
	J. 11	3.11.1 Screening for Salt Tolerant Candidates	79 79
		3.11.2 Mass Excision	79 79
		3.11.3 Plating	79 80
	3.12	Sequence Analysis	81
	3.13		83
	3.14	Southern Blot Hybridization	84
	3.15		87
	3.16	Hybridization Analysis	87
			0.
4	RESU	ILTS	90
	4.1	RNA Extraction	90
	4.2	Isolation of mRNA from Total RNA	94
	4.3	Genomic DNA Extraction	94
	4.4	Construction of cDNA Library	98
		4.4.1 Quality of the Constructed cDNA Library	98
		4.4.2 PCR-based Screening of A. ebracteatus cDNA	98
		clones	
	4.5	EST Analysis	101
	4.6	Bacterial Functional Screening	112
	4.7	Sequence Analyses and Molecular Characterization of	117

	Salt Tolerance Genes			
		4.7.1	Sequence Analysis	117
			Bacterial Functional Assay of Salt Tolerance	146
		470	Candidates	4.40
		4.7.3	Molecular Analysis of Salt Tolerance Genes	146
5	DISC	USSIO	N	156
	5.1	Scree ebrac	ning for Salt Tolerance Genes from <i>A.</i> teatus	156
		5.1.1	Expressed Sequence Tag Generation	156
		5.1.2	Classification of ESTs	158
		5.1.3	Putative Salt Tolerance Clones	161
	5.2	Bacte	rial Functional Screening of Salt Tolerance Genes	168
	5.3		cterization of Putative Salt Tolerance Clones	171
		5.3.1	Clone A290	173
		5.3.2	Clone A303	175
		5.3.3	Clone A325	177
6	CONC	LUSIC	N	182
DEFE	DENCI	FC		100
				186
				214
BIODATA OF THE AUTHOR 23				231

C

LIST OF TABLES

Table		Page
1	A comparison on the yield and purity of RNA from the three methods of RNA extraction from <i>A. ebracteatus</i> leaves	91
2	The yield and purity of RNA from modified Jill-Winter method from different tissues of <i>A. ebracteatus</i> .	93
3	ESTs from <i>A. ebracteatus</i> leaf cDNA library that may be related to salt tolerance	107
4	Putative function of some positive clones that may be related to salt tolerance.	114
5	Summary of 6 cDNA clones selected for full-length sequencing	118
6	The putative of candidate clones that may be related to salt stress tolerance.	163

LIST OF FIGURES

Figure		Page
1	Leaves of Acanthus ebracteatus	14
2	The flower of A. ebracteatus	15
3	Sodium ion uptake and extrusion at the plasma membrane. (reproduced from Blumwald <i>et al.</i> , 2000)	23
4	Pathway for reactive oxygen species (ROS) scavenging in plants. (reproduced from Asada, 2002)	34
5	The SOS pathway for salt tolerance. (reproduced from Zhu, 2002)	41
6	The cDNA synthesis flow chart. (source: cDNA synthesis kit instruction manual. Stratagene).	67
7	Northern blotting through gravitational transfer.	85
8	Formaldehyde agarose gel electrophoresis of RNA extracted from <i>A. ebracteatus</i> leaves using (A) CsCl method (lane 1), CTAB method (lane 2), and (B) Modified Jill-Winter method.	92
9	Formaldehyde agarose gel $(1.5 \% (w/v))$ electrophoresis of RNA extracted from different tissues of <i>A. ebracteatus</i> using modified Jill-Winter method.	95
10	Estimation of mRNA concentration by using ethidium bromide plate assay.	96
11	Gel electrophoresis of DNA extracted from <i>A. ebracteatus</i> leaves.	97
12	Size fractionation of the double-stranded cDNA.	99
13	Amplification of cDNA inserts from randomly chosen clones of <i>A. ebracteatus</i> leaf cDNA library using T3 and T7 primers.	100
14	The size distribution of 731 cDNA inserts from the <i>A. ebracteatus</i> leaf cDNA library.	102
15	Distribution of ESTs from the <i>A. ebracteatus</i> leaf cDNA library according to BLASTX score.	104

	16	The classification of ESTs from <i>A. ebracteatus</i> leaf cDNA library based on their putative functions.	106
	17	The ESTs from <i>A. ebracteatus</i> leaf cDNA library match with genes of various plant species.	110
	18	Classification of contigs according to the number of ESTs per contig.	111
	19	The classification of cDNA sequences that conferred salt tolerance to <i>E. coli</i> based on their putative functions.	115
	20	The cDNA sequences of <i>A. ebracteatus</i> leaf cDNA library from the bacterial functional screening with genes from various plant species.	116
	21	The nucleotide and deduced amino acid sequence of clone A89. The asterisk indicates a stop codon.	121
	22	Amino acid sequence alignment of A89 with secretory peroxidase from other species.	123
	23	The nucleotide and deduced amino acid sequence of clone A163.	126
	24	Amino acid sequence alignment of A163 with plastidic aldolase from other species.	128
	25	The nucleotide and deduced amino acid sequence of clone A290.	131
	26	Amino acid sequence alignment of A290 with plastidic aldolase from other species.	133
	27	Amino acid sequence alignment of A163 with A290 amino acid sequences.	134
	28	The nucleotide and deduced amino acids sequence of clone A303.	136
	29	Amino acid sequence alignment of A303 with vacuolar H ⁺ - ATPase amino acid sequences from other species.	137
	30	The nucleotide and deduced amino acids sequence of clone A310.	139
	31	Amino acid sequence alignment of A310 with cytosolic ascorbate peroxidase from other species.	140

- 32 The nucleotide and deduced amino acids sequence of clone 143 A325.
- 33 Amino acid sequence alignment of A325 with 145 monodehydroascorbate reductase from other species.
- 34 Eight candidate clones from *A. ebracteatus* leaf cDNA 147 library were examined on 2 X YT medium supplemented with or without 500 mM of NaCI.
- Southern blot analysis with (A) A. ebracteatus genomic 150 DNA (20 μg) digested with 6 resriction enzymes:1- BamH I,
 2- EcoR I, 3- EcoR V, 4- Hind III, 5- Not I, 6- Xba I, M λPst I marker. (B) Genomic southern blot analysis using A290 cDNA as probe.
- Southern blot analysis with (A) A. ebracteatus genomic 151
 DNA (20 μg) digested with 6 resriction enzymes:1- BamH I,
 2- EcoR I, 3- EcoR V, 4- Hind III, 5- Not I, 6- Xba I, M λPst I marker. (B) Genomic Southern blot analysis using A303 as probe.
- 37 Southern blot analysis with (A) A. ebracteatus genomic 152
 DNA (20 μg) digested with 6 restriction enzymes:1- BamH I,
 2- EcoR I, 3- EcoR V, 4- Hind III, 5- Not I, 6- Xba I, M λPst I marker. (B) Genomic southern blot analysis using A325 as probe.
- 38 Northern blot analysis with (A) Expression of A290 (plastidic 153 aldolase) in various tissues of *A. ebracteatus*. (B) As a control, the same blot was also hybridized with actin as loading control. (C) RNA (15 μg) was separated on a denaturing formaldehyde gel.
- 39 Northern blot analysis with (A) Expression of A303 154 (vacuolar-H⁺-ATPase) in various tissues of *A. ebracteatus*. (B) As a control, the same blot was also hybridized with actin as loading control. (C) RNA (15 μ g) was separated on a denaturing formaldehyde gel.
- 40
- Northern blot analysis with (A) Expression of A325 155 (monodehydroascorbate reductase) in various tissues of *A*. *ebracteatus*. (B) As a control, the same blot was also hybridized with actin as loading control. (C) RNA (15 μg) was separated on a denaturing formaldehyde gel.

α	alpha
β	beta
λ	lambda
×g	gravitational acceleration
μg	microgram
μL	microliter
°C %	degree Centigrade percentage
AMV	avian myel <mark>oblastosis v</mark> irus
BLAST	Basic Local Alignment Search Tool
bp	base pairs
BSA	bovine serum albumin
Са	calcium
cDNA	complementary DNA
CIP	calf intestinal phosphatase
CI	chloride
cm	centimeter
CsCl	cesium cholride
СТАВ	hexacetyltrimethyl ammonium bromide
dATP	2'-deoxy-adenosine-5'-triphosphate
dCTP	2'-deoxy-cytidine-5'-triphosphate
DEPC	diethyl pyrocarbonate
dGTP	2'-deoxy-guanosine-5'-triphosphate

(C)

	DMSO	dimethylsulphonyl oxide
	DNA	deoxyribonucleic acid
	DNase	deoxyribonuclease
	dNTPs	deoxynucleotides
	ds	double-stranded
	DTT	dithiothreitol
	dTTP	thymidine-5'-tryphosphate
	EDTA	ethylenediaminetetraacetic acid
	EtBr	ethidium bromide
	g	gram
	HCI	hydrochloric acid
	HEPES	N-2-hydroxyethylpiperazine-N'-2 ethanesulfonic acid
	IPTG	isopropyl-β-D-thiogalactoside
	к	potassium
	kb	kilo base-pair
	L	liter
	LB	Luria-bertani
	LiCI	lithium chloride
	Μ	molar
	Mg	magnesium
	MgCl ₂	magnesium chloride
	MgSO₄	magnesium sulfate
	MOPS	3-(N-morpholino) propane-sulphonic acid
	mL	milliliter
	mM	millimolar

- mRNA messenger RNA
- Na sodium
- NaCl sodium chloride
- NaOAc sodium acetate
- NaOH sodium hydroxide
- NCBI National Center for Biotechnology Information
- ng nanogram
- NH₄OAc ammonium acetate
- OD optical density
- ORF open reading frame
- PCR polymerase chain reactions
- PVP polyvinylpyrrolidone
- *pfu* plaque forming units
- ppm part per million
- RNA ribonucleic acid
- RNase A ribonuclease A
- ROS reactive oxygen species
- rpm revolution per minute
- RT reverse transcriptase
- SDS sodium dodecyl sulphate
- SOS salt overly sensitive
- TAE tris acetate EDTA
- TE Tris-EDTA
- U unit
- v/v volume per volume

xxi

w/v weight per volume

X-gal 5-bromo-4-chloro-3 indolyl- β -D-galactopyranoside

CHAPTER 1

INTRODUCTION

Salinity is one of the major abiotic stresses that affects plant growth and productivity globally. Salt stress can lead to changes in development, growth and productivity, and severe stress may threaten survival. High salinity causes both hyper osmotic and hyper ionic stress effects, and the consequence of these can be lethal to the plants. Therefore, a better understanding of the mechanisms that enable plants to adapt to salinity stress and to maintain growth will ultimately help in selection of stress tolerant cultivars for planting in saline soil.

In addition, due to the increased demand for food crops and plant products, the use of irrigated agriculture in the world has increased during the past 35 years (Chaturvedi, 2000). The rapid expansion in irrigation combined with the increase use waters containing high salt have led to the decrease in crop productivity, which is primarily due to salinity stress.

Mangroves represent the dominant soft bottom plant communities of the marine-terrestrial transition in tropical and subtropical regions. The mangrove species are members of terrestrial families that have adaptations to survive under conditions of high salinity, low oxygen and nutrient availability in the soil (Pernetta, 1993). Mangroves are divided into two distinct groups on the basis of their salt management strategies. One is "secreters" which have salt

glands or salt hairs and the other is "non secreters" lacking such morphological features for excretion of excess salt. The *Acanthus ebracteatus* is included in the first group.

Acanthus. spp is also known as Sea holly, holly mangrove, and "jeruju putih" (Malay). *A. ebracteatus* grows on the mud near the tide mark, often on mud lobsters mound. It can grow equally well under trees and in open areas, the plant can sometimes cover a large area and form thickets. The most striking feature of mangrove plant species is their ability to tolerate NaCl found in seawater up to the 500 mM level (Takemura *et al.*, 2000).

In order to elucidate salt tolerance mechanisms in higher plants, numerous key factors have been cloned such as late embryogenesis abundant protein (LEA) (Xu *et al.*, 1996), P5CS (Kishor *et al.*, 1995), DREB1A (Kasuga *et al.*, 1999), and AtNHX1 (Apse *et al.*, 1999). In contrast, the mechanisms that explain how plants can grow in saline conditions are still unclear. In order to grow under salinity stress, the mangrove plants must have acquired some proteins essential for salt tolerance mechanisms during their evolution. Recently, many reports addressing the mechanisms of mangrove plants at organ level were available (Werner and Stelzer, 1990). However, there were few reports about their mechanisms at molecular level because only a few model systems are available to analyze these mechanisms (Yamada *et al.*, 2002). Therefore, it is necessary to carry out molecular genetic studies on mangrove.

