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Rijndael is a block cipher designed by Joan Daemen and Vincent Rijmen in 1999. It is a 

combination of security, performance, efficiency, implementability and flexibility that 

makes it the best selection for Advanced Encryption Standard (AES). However, the 128- 

bit Rijndael Key Schedule does not satisfy the frequency (bit confusion) test for majority 

of Subkeys and does not satisfy the avalanche (bit diffusion) test for any Subkeys. These 

contribute to some attacks in the Key Schedule. Thus, a new transformation method 

which is called "ShiftRow" is proposed into the 128-bit Rijndael Key Schedule based 

upon information principles (bit confusion and diffusion properties). The new method 

shifts the rows of the Rijndael Subkey after the RCon function is being applied to the 

Subkey. This method improves the security of Rijndael Key Scheduling by increasing 
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the bit confusion and diffusion of the Rijndael Subkey. The new method has shown 

positive results in terms of the bit confusion and diffusion of Subkey and it has increased 

bit confusion and diffusion compared to the Subkey of the original Rijndael Key 

Schedule. 

© C
OPYRIG

HT U
PM
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Fakulti: Sains Komputer dan Teknologi Maklumat 

Rijndael adalah sebuah blok cipher yang telah direkabentuk oleh Joan Daemen dan 

Vincent Rijmen pada tahun 1999. Ia merupakan suatu kombinasi keselarnatan, 

persembahan, keefisyenan, perlaksanaan dan kesesuaian menjadikannya sebagai pilihan 

yang terbaik untuk Advanced Encryption Standard (AES). Bagaimanapun, Penjadualan 

Kunci Rijndael tidak berjaya melepasi ujian fiekuensi (pengeliruan bit) bagi kebanyakan 

Sub-Kekunci dan tidak berjaya melepasi ujian avalanche (pencampuran bit) bagi 

sebarang Sub-Kekunci. Hal ini akan menyumbang kepada pencerobohan ke atas 

Penjadualan Kunci. Oleh itu, satu kaedah transformasi baharu yang dinamakan 

"ShifiRow" telah diajukan untuk ditambah ke dalarn Penjadualan Kunci Rijndael yang 

mana ianya berdasarkan prinsip maklurnat (ciri-ciri pengeliruan dan pencampuran bit). 

Kaedah baru ini menganjak baris Sub-Kekunci Rijndael setelah fungsi RCon 
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diaplikasikan pada Sub-Kekunci. Kaedah ini memperelokkan keselamatan bagi 

Penjadualan Kunci Rijndael dengan meningkatkan pengeliruan dan pencampuran bit 

pada Sub-Kekunci Rijndael. Kaedah baru ini telah menunjukkan keputusan yang positif 

dari segi pengeliruan dan pencampuran bit bagi Sub-Kekunci dan ianya telah 

meningkatkan pengeliruan dan pencampuran bit dibandingkan dengan Sub-Kekunci 

Jadual Kunci Rijndael asal. 
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CHAPTER 1 

INTRODUCTION 

Introduction 

Cryptography is the science of encoding and decoding secret messages (Alex Brennen 

V., 2004). The term cryptanalysis is the study of cryptographic algorithms or resulting 

Ciphertext in order to determine their strengths and potential weaknesses. Often such 

analysis is performed to break an encryption algorithm or in order to perform key 

recovery (Alex Brennen V., 2004). Cryptology is the science of making and breaking 

secure codes. Cryptosystem is a protocol or method of performing encryption (Alex 

Brennen V., 2004). There are two types of cryptosystems: symmetric and asymmetric 

key. Both encrypt messages use computer algorithm and provide users with the secrecy 

through the use of cryptographic keys but still, there are differences in the way the keys 

are being used. A symmetric cryptosystem has a single key (see Figure 1.1), which is 

used for both encrypting and decrypting messages. Mathematical process is used in an 

algorithm to transform Plaintext into Ciphertext and vice versa, with each transformation 

depending on the value of the key. 
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Common key 

Plaintext 4 laintext 

Figure 1.1: A Symmetric Cryptosystem 

-- 
Data Encryption Standard (DES) is a well-known example of symmetric cryptosystem. 

Others are Triple DES, IDEA, RC2, RC4, RC5, and Blowfish. In contrast to symmetric 

cryptosystem, public-key cryptosystem uses complementary pair of keys to separate the 

process of encryption and decryption as shown in Figure 1.2. One key is considered a 

pair, with the private key kept secret while the other is made public. However, this 

research focuses on symmetric-key cryptosystem only. Hereinafter, detailed description 

for both cryptosystems will be explained in Chapter 2. 

Encrypt key Decrypt key 

Figure 1.2': A Public-Key Cryptosystem 

The growth of cryptology has made the variety of algorithms, including DES being 

exposed to various types of attack. In 1997, the National Institute of Standards and 
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Technology (NIST) US (an agency of the US Department of Commerce's Technology 

Administration), initiated a process to select a symmetric-key encryption algorithm to be 

used to protect sensitivity (unclassified) of Federal information in furtherance of NIST's 

statutory responsibilities and to be adopted as Advanced Encryption Standard (AES). 

In the same year, NIST announced the acceptance of fifteen candidate algorithms and 

requested assistance of the cryptographic research community in analyzing the 

candidates. NIST reviewed the results of the preliminary research and selected Rijndael, 

Twofish, R C ~ ~ ~ ,  MARS and Serpent as finalists. Having reviewed further public 

analysis of the finalists, NIST has decided to propose Rijndael as the Advanced 

Encryption Standard (AES) (Nechvatal et. al., 2000). Rijndael is a block cipher designed 

by Joan Daemen and Vincent Rijmen. According to Nechvatal et. al. (2000), it is a 

combination of security, performance, efficiency, implementability and flexibility that 

makes it an appropriate selection for AES for the purpose of usage in the current and 

future technology. 

There are many other further analysis and improvements that have been done on 

Rijndael (Daemen et. al., 1999). McLoon W. et. al. (2001) proposed Field 

Programmable Gate Arrays (FPGAs) Rijndael encryption design, utilizes look-up tables 

to implement entire Rijndael round function. In the same year, Jing et. al. (2001) derived 

a new algorithm for computing inverse in GF(2") on the standard basis. Sklavos et. al. 

(2002) designed alternative architectures and VLSI implementation designs. These 

designs operate for both encryption and decryption processes in the same device. 

Xinrniao et. al. (2002) addressed various approaches for efficient hardware 
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