
 
 

UNIVERSITI PUTRA MALAYSIA 
 

NUMERICAL SOLUTIONS OF STIFF ORDINARY DIFFERENTIAL  
EQUATIONS AND DIFFERENTIAL ALGEBRAIC EQUATIONS  

USING ONE-STEP IMPLICIT HYBRID METHODS 
 
 
 
 
 
 
 
 
 
 
 

KHOO KAI WEN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IPM 2015 14 



© C
OPYRIG

HT U
PM 

NUMERICAL SOLUTIONS OF STIFF ORDINARY DIFFERENTIAL 

EQUATIONS AND DIFFERENTIAL ALGEBRAIC EQUATIONS USING ONE-

STEP IMPLICIT HYBRID METHODS 

 

 

 

 

 

By 

KHOO KAI WEN 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 

Fulfilment of the Requirements for the Degree of Master of Science 

December 2015 



© C
OPYRIG

HT U
PM

 
 

All material contained within the thesis, including without limitation text, logos, icons, 

photographs and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis 

for non-commercial purposes from the copyright holder. Commercial use of material 

may only be made with the express, prior, written permission of Universiti Putra 

Malaysia.  
 

 

Copyright © Universiti Putra Malaysia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the Degree of Master of Science 

 

 

NUMERICAL SOLUTIONS OF STIFF ORDINARY DIFFERENTIAL 

EQUATIONS AND DIFFERENTIAL ALGEBRAIC EQUATIONS USING ONE-

STEP IMPLICIT HYBRID METHODS 

 

By 

 

KHOO KAI WEN 

 

December 2015 

 

 

Chairman  :   Zanariah binti Abdul Majid, PhD  

Faculty       :  Institute for Mathematical Research 

 

 

The numerical solutions of stiff ordinary differential equations and differential 

algebraic equations have been studied in this thesis. New one-step implicit hybrid 

methods are developed to solve stiff ordinary differential equations (ODEs) and semi-

explicit index-1 differential algebraic equations (DAEs). These methods are formulated 

by using Lagrange interpolating polynomial. The developed one-step methods will 

solve ODEs and DAEs with the introduction of off-step points by constant step size.  

The source codes were written in C language. 

 

 

Stiff equations in Mathematics indicate that for a certain numerical method to solve 
differential equations that may give unstable results unless the step size taken is 

extremely small. Newton’s iteration is implemented together with the developed 

method to solve stiff equations. The numerical results showed that the performance of 

the methods outperformed compared to existing method in terms of maximum error 

and average error. 

 

 

Further, this study is extended by using the developed method to solve DAEs. Semi-

explicit index-1 DAEs is the system of ordinary differential equations with algebraic 

constrains. Newton’s iteration is implemented with the developed methods to solve 

DAEs. The numerical results showed the performance of the developed methods is 
more efficient then existing methods in terms of maximum error and average error.  

 

 

In conclusion, the proposed one-step implicit hybrid methods are suitable for solving 

stiff ordinary differential equations and semi-explicit index-1 differential algebraic 

equations. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains 

 

 

PENYELESAIAN BERANGKA PERSAMAAN PEMBEZAAN KAKU DAN 

PERSAMAAN PEMBEZAAN ALGEBRA DENGAN MENGGUNAKAN 

KAEDAH SATU-LANGKAH HIBRID TERSIRAT  

 

Oleh 

 

KHOO KAI WEN 

 

Disember 2015 

 

 

Pengerusi    :   Zanariah binti Abdul Majid, PhD 

Fakulti        :   Institut Penyelidikan Matematik 

 

 

Penyelesaian berangka bagi persamaan pembezaan kaku dan persamaan pembezaan 

aljabar telah dikaji dalam tesis ini. Kaedah satu-langkah hibrid tersirat yang baharu 

telah dibangunkan untuk menyelesaikan persamaan pembezaan (PP) kaku dan 

persamaan pembezaan aljabar (PPA) semi-tak tersirat indeks-1. Kaedah ini diperolehi 

daripada polynomial interpolasi Lagrange. Kaedah satu-langkah ini akan 

menyelesaikan PP kaku dan PPA dengan memperkenalkan titik langkah luar 

menggunakan saiz langkah malar. Sumber kod telah ditulis dalam pengaturcaraan C.  

 

 

Istilah persamaan kaku dalam Matematik menunjukkan bahawa penyelesaian daripada 
kaedah berangka bagi persamaan pembezaan kaku itu adalah tidak stabil kecuali 

pengambilan saiz langkah yang amat kecil. Lelaran Newton telah dilaksanakan 

bersama dengan kaedah yang dibangunkan untuk menyelesaikan persamaan pembezaan 

kaku. Keputusan berangka menunjukkan prestasi kaedah tersebut adalah lebih baik dari 

segi ralat maksimum dan ralat purata berbanding kaedah sedia ada.  

 

 

Di samping itu, kajian ini diperluaskan dengan menggunakan kaedah yang 

dibangunkan untuk menyelesaikan PPA. PPA semi-tak tersirat terdiri daripada sistem 

persamaan pembezaan biasa dan persamaan aljabar. Lelaran Newton telah dilaksanakan 

bersama dengan kaedah yang dibangunkan untuk menyelesaikan PPA. Keputusan 
berangka menunjukkan prestasi kaedah yang dibangunkan memberikan keputusan yang 

baik dari segi ralat maksimum dan ralat purata. 

 

 

Kesimpulannya, kaedah satu-langkah hibrid tersirat yang dicadangkan adalah sesuai 

untuk menyelesaikan persamaan pembezaan dan persamaan pembezaan aljabar semi-

tak tersirat indeks-1. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction  

Mathematical models are often developed to facilitate the understanding of physical 

phenomena in the disciplines of science and engineering. One of the common 

mathematical problems that arise from the formulations of these mathematical models 

in the field of science and engineering is differential equation. 

 

 

A differential equation in which the unknown is a function of a single independent 

variable is prevalently referred to as ordinary differential equations (ODEs). The 

general form of an ODEs is as follows: 

),,(' yxfy 
      

,)( 0yay 
      

.bxa                        (1.1) 

 

Stiffness occurs when some components of the solution decay much more rapidly than 
the others (Lambert, 1991). When ODEs have different decaying time dependencies, 

then the ODEs can be classified as stiff ODEs. Stiff ODEs have to be solved by using 

small step size to get a stable and accurate solution unless an A -stability properties 

method is used.  

 

A differential algebraic equation (DAE) is an equation that involves an unknown 

function and its derivatives.  A DAE is an equation that involves algebraic equations 

and is generally difficult to solve. DAEs can be classified by using index number. A 

higher index number indicates a higher difficulty in solving it.   
 

The application of DAEs arises in a variety of applications in scientific and engineering 

area. These include chemical process, electric circuit design, chemical, and optimal 

control. Most commonly, ODEs and DAEs arises from the modeling of physical 

phenomena and there are no exact solutions. Therefore, the development of numerical 

methods is essential in order to find the approximate solutions for ODEs and DAEs. 

 

The numerical method is a differential equation involving a number of consecutive 

approximations kjy jn ,1,0,   from which it will be possible to compute 

sequentially the sequence },,2,1,0|{ Nnyn  ; naturally, this differential equation will 

also involve the function f  (Lambert, 1991). The numerical methods estimate 

solutions by consecutive approximation steps, using iteration process. 

 

Generally, there are two classes of methods, prevalently known as are one-step method 

and multistep method. The one-step method uses information from only one of the 

previous points to determine the next approximate point. The multistep method uses 
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information that more than one previous point to determine the approximate value at 

the next point. This research will focus on using one-step method to solve stiff ODEs 

and DAEs. 

 

1.2  Objective of the Thesis 

The main objective of this thesis is to develop three new one-step implicit hybrid 

methods for the numerical solutions of stiff ODEs and DAEs. These objectives can be 

achieved by: 

1. Deriving three one-step implicit hybrid methods to solve stiff ODEs and semi-

explicit index 1 DAEs by using constant step sizes. 

 
2. Analyzing basic properties of the developed methods which include order, 

error constant and region of absolute stability.  

 

3. Developing the algorithm of implicit hybrid methods to solve stiff ODEs and 

semi-explicit index 1 DAEs by using constant step sizes. 

 

 

1.3 Stiff Differential Equations  

A stiff equation is a differential equation that gives unstable result and it is a 

predicament to solve. Based on Curitess (1952), a stiff equation is exceedingly difficult 

to solve by ordinary numerical procedures.  

 

Definition 1 

If a numerical method with a finite region of absolute stability, applied to a system with 
any initial conditions, is forced to use in a certain interval of integration with a step 

length which is excessively small in relation to the smoothness of the exact solution in 

that interval, then the system is said to be stiff in that interval. 

 

Stiff equations in mathematics indicate that for certain numerical methods, solving 

differential equation will be numerically unstable, unless the step size taken is 

extremely small.  Based on Lambert (1991), a linear constant coefficient system is stiff 

if all of its eigenvalues have negative real parts and the stiffness ratio is large. 

 

.)( tety 
            

 (1.2) 

 

 

Most commonly, the stiffness of the differential equation can be identified by the 

values of the negative part of the eigenvalues. The higher the value of  , the more stiff 

the equation is. The equation will be moderately stiff if 1 and the equation will be 

highly stiff if 1000 . 
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An example of a stiff ODE model from science application is shown as follows: 
1. Flame propagation 

               

.
2

0

,)0(

,' 32











t

y

yyy

             
(1.3) 

Where initial radius of the flaming ball is .  

 

1.4 Differential Algebraic Equations 

Generally, there are two forms of differential algebraic equations (DAEs), which are 

fully implicit DAEs and semi-explicit DAEs. The general forms of DAEs are shown as 

follows: 

1. Fully implicit DAEs 

          
.0),',( zyyF
             

(1.4) 

2. Semi-explicit DAEs 

           
).,(0

),,('

zyg

zyfy





             
(1.5) 

A fully implicit DAE is a system of ODEs in which the partial derivative 












'y

F
 is 

singular. The unknowns are y

 

and z  which represent differential variables and 

algebraic variables respectively. A semi-explicit DAE is a system of ODEs with 

algebraic constraints. Examples of DAE models from engineering application are 

shown as follows: 

 

 

 
1. Simple pendulum 
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(1.6) 
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