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i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Master of Science 

 

DIAGONALLY IMPLICIT MULTISTEP BLOCK METHODS FOR SOLVING 

FIRST ORDER ORDINARY AND FUZZY DIFFERENTIAL EQUATIONS 

 

By 

 

AZIZAH BINTI RAMLI  

 

December 2015 

 

Chairperson: Zanariah binti Abdul Majid, PhD 

Faculty: Institute for Mathematical Research 

 

In this study, two-point diagonally implicit multistep block methods are proposed for 

solving single first order ordinary and fuzzy differential equations. The methods are 

based on the diagonally implicit multistep block methods. It approximates two points 

simultaneously at 
1n

y


 and 
2n

y


 in a block along the interval. Subsequently, the 

methods of order three, four and five are implemented and numerically tested using 

constant step size. 

 

The numerical results show that the two-point diagonally implicit multistep block 

methods could solve the ordinary differential equations without any difficulty. These 

methods are also able to reduce the number of steps and execution times even when the 

number of iterations is being increased. 

 

Meanwhile, the first order fuzzy differential equations is interpreted based on 

Seikkala’s derivative. By including characterization theorem, the fuzzy differential 

equations can be replaced by the equivalent system of ordinary differential equations. 

The numerical results show that the two-point diagonally implicit multistep block 

methods could solve the fuzzy differential equations. The accuracy of the approximate 

solutions is obtained by means of implementation of the method under the Seikkala’s 

derivative interpretation. Nevertheless, these methods respectively have the advantage 

in terms of reducing the number of function evaluations, total steps and execution 

times. 

 

In conclusion, the diagonally implicit multistep block methods are suitable for solving 

the single first order ordinary and fuzzy differential equations. 
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ii 

 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

 

KAEDAH-KAEDAH BLOK MULTILANGKAH PEPENJURU TERSIRAT 

UNTUK MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA DAN 

KABUR PERINGKAT PERTAMA 

 

Oleh 

 

AZIZAH BINTI RAMLI 

  

Disember 2015 

 

Pengerusi: Zanariah binti Abdul Majid, PhD 

Fakulti: Institut Penyelidikan Matematik 

 

Dalam kajian ini, kaedah-kaedah blok multilangkah pepenjuru tersirat dua titik 

dikemukakan untuk menyelesaikan persamaan pembezaan biasa dan kabur tunggal 

peringkat pertama. Kaedah-kaedah ini berasaskan kaedah blok multilangkah pepenjuru 

tersirat. Ia menghasilkan nilai hampir dua titik secara serentak pada 
1n

y


 dan 
2n

y


 

dalam satu blok sepanjang selang. Kemudian, kaedah-kaedah pada peringkat ketiga, 

keempat dan kelima dilaksana dan diuji secara berangka menggunakan saiz langkah 

yang malar. 

 

Keputusan berangka menunjukkan kaedah-kaedah blok multilangkah pepenjuru tersirat 

dua titik dapat menyelesaikan persamaan pembezaan biasa tanpa sebarang kesukaran. 

Kaedah-kaedah ini juga dapat mengurangkan bilangan langkah dan masa pelaksanaan 

walaupun bilangan lelaran meningkat. 

 

Manakala persamaan pembezaan kabur peringkat pertama diterjemahkan berdasarkan 

terbitan Seikkala. Dengan teorem pencirian, persamaan pembezaan kabur dapat 

digantikan dengan sistem yang sama dengan persamaan pembezaan biasa. Keputusan 

berangka menunjukkan kaedah-kaedah blok multilangkah pepenjuru tersirat dua titik 

dapat menyelesaikan persamaan pembezaan kabur. Ketepatan bagi nilai hampir adalah 

berdasarkan pelaksanaan kaedah di bawah terjemahan terbitan Seikkala. Walau 

bagaimanapun, kaedah ini masing-masing mempunyai kelebihan dari segi 

mengurangkan jumlah penilaian fungsi, jumlah langkah dan masa pelaksanaan. 

 

Kesimpulannya, kaedah-kaedah blok multilangkah pepenjuru tersirat dua langkah 

adalah sesuai untuk menyelesaikan persamaan pembezaan biasa dan kabur tunggal 

peringkat pertama. 
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1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

According to Atkinson (2015), numerical mathematics is a part of mathematics and 

computer science which creates, develops, analyzes and implements algorithms in 

solving numerically the problems of continuous mathematics. The real-world 

applications ranging from physical sciences and biological sciences to engineering, 

medicine, finance and business are actually initiated from the branch of mathematics. 

These problems can be formulated in mathematical terms of differential equations 

(DEs). 

 

A DE is an equation that involves variables and their rates of change (i.e., derivatives). 

For example, the equation 

'y y      (1.1)+ 

relates the function  y y t  and its derivative 
 

'
dy t

y
dt

 .  

 

The DEs consists of two types which are ordinary DEs and partial DEs. The ordinary 

DEs is an equation of function with only one variable while the partial DEs is an 

equation of function with two or more variables. The ordinary DEs can be classified by 

their order. The order is considered by the highest derivatives that occur in the 

equation.  

 

An initial-value problem (IVP) provides initial condition which is the solution to a 

DEs. The IVP for first order ordinary DEs is defined by 

   

 

' , , , ,

,

y f t y t a b

y a 

 


   (1.2) 

where   is the given initial condition. The existence of a unique solution of the IVP 

can be known based from the theorem proved in Henrici (1962). 

 

The real-world applications problems are complicated and hard to obtain by exact 

method. Hence, methods for approximating the solution are used, where the problems 

are solved by approximation. The numerical methods can be classified into two 

families which are Single-step methods and Linear Multistep Method (LMM). 

 

However, the information of the problems arise from engineers (civil, chemical, 

biomedical), natural scientists (biology, chemistry, and physic), social scientists 

(economics and finance) and variety of field are frequently pervaded with uncertainty. 

The problems are lacking of information. Therefore, it is essential to have some 

mathematical tools and theory to describe uncertainty notions.  
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2 

 

1.2 Linear multistep method 

In Lambert (1973), multistep methods are methods that used the approximation at more 

than one previous point to determine the approximation at the next point. The general 

LMM can be written as 

0 0

k k

j n j j n j

j j

y h f 
 

 

     (1.3) 

where 

i. 
j

  and 
j

  are constants and  

ii. assume 0
k

   and  

iii. that not both 
0

  and 
0

  are zero.  

Since (1.3) can be multiplied on both sides by the same constant without altering the 

relationship, the coefficients 
j

  and 
j

  are arbitrary to the extent of a constant 

multiplier. It can be simplified by taking 1
k

  . The method (1.3) is explicit if 0
k

  , 

and implicit if 0
k

  . 

 

The approximation produced by the explicit methods can be improved by the implicit 

multistep methods. The explicit method worked as a predictor where it predicts the 

approximation and the implicit method worked as a corrector, corrects the prediction. 

The combination of the explicit and implicit methods is called a predictor-corrector 

method. It is denoted by PEC  mode or PECE  mode, where P  indicates an 

application of the predictor, C  is a single application of the corrector and E  is an 

evaluation of f  in terms of known values of its arguments. There are various types of 

calculation for predictor-corrector method. The calculation depends on m  times the 

corrector is applied, similarly denoted by  
m

P EC mode or  
m

PE CE  mode. 

 

1.3 Fuzzy theory 

The real problems are often lack of information and do not have a specific criteria of 

membership.  For example, a “beautiful person” does not clearly determine who is 

beautiful or who is not beautiful. Since the criterion of “beautiful” is not clarified, the 

uncertainty lies in the meaning of the word. 

 

Most modeling, reasoning and computing tools are crisp, deterministic, and precise in 

character. However, these tools are inconvenient on definition where the word of 

relationship is not clear or dichotomous. The degree of membership in a set is 

expressed by number 0 or 1 only. This rarely happen since the real problems cannot be 

described precisely.  

 

Several theories exist in order to describe and illustrate this uncertainty. Zadeh (1965) 

propose fuzzy theory which is a mathematical theory. Fuzziness involves with 

uncertainty, vagueness and ambiguity.  Fuzzy theory states fuzziness by means of the 

concept of sets. A classical (crisp) set is defined as a collection of elements or objects. 

For a fuzzy set, the characteristic function, in which 1 indicates membership and 0 is 

non-membership, allows various grades of membership for the elements of a given set. 

The fuzzy set theory generalizes the classical set theory. 
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3 

 

1.4 Fuzzy initial value problem 

Fuzzy DEs is a theory of DEs that involves with uncertainty. It consists of constants 

and the initial values are fuzzy numbers. The fuzzy number is characterized by an  - 

cut (also r -level set).  The  - cut of a fuzzy set is a crisp set that contains all the 

elements of the universal set that have a membership grade in the interval. There are 

numerous membership functions such as triangular, trapezoidal, parallelogram, 

Gaussian, generalized bell and sigmoid. This leads to a fuzzy IVP. The fuzzy IVP is 

defined by  

      

 

0

0 0

' , , ,y t f t y t t t T

y t y

 


 (1.4) 

where y  denotes as a fuzzy function of t , 
0

y is fuzzy number,  ,f t y  is a fuzzy 

function of crisp variable t  and fuzzy variable of y , and 'y  is the fuzzy derivative of

y . The fuzzy IVP has a unique solution. The proof can be found in Seikkala (1987). 

 

1.5 Objective of the study 

The aim of this study is to solve the single first order ordinary and fuzzy DEs by using 

the two-point diagonally implicit multistep block (2DIMB) method. The objectives are: 

i. To extend the 2DIMB method derived by Majid (2004) and to include the 

2DIMB methods of order three and order five. 

ii. To investigate the stability analysis of the 2DIMB methods. 

iii. To solve single first order ordinary DEs and fuzzy DEs based on Seikkala’s 

derivative by using constant step size. 

 

1.6 Scope and limitation of the study 

The single first order ordinary and fuzzy DEs are solved by using 2DIMB methods. 

The 2DIMB methods are of order three, four and five. The solutions are approximated 

by moving two points in a block. Runge-Kutta (RK) method of order three and four are 

being chosen to compute the initial point for the 2DIMB methods of order three, four 

and five respectively. The stability analysis is being discussed. Constant step size of 

0.1h   and 0.01h   are used. 

 

The single first order fuzzy DEs is interpreted using Seikkala’s derivative. The 

interpretation implies the future behaviour of the solutions. Based from Ahmadian et al. 

(2012), the Seikkala’s derivative has certain defect in some problems. In this study, the 

triangular, trapezoidal and parallelogram membership functions are being used in order 

to validate the performances of the 2DIMB methods under the Seikkala’s derivative. 

The convergences of 2DIMB methods based on fuzzy DEs are also presented. 

 

1.7 Outline of the thesis 

In this chapter, explanations on ordinary and fuzzy DEs are given. The objectives, 

scope and limitations of the study are included. 
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Chapter 2 introduces the literature review for the block method, ordinary and fuzzy 

DEs. Short reviews on the development of the 2DIMB methods are stated. This chapter 

also comprises some related notations, definitions and theorems. 

 

In Chapter 3, the 2DIMB methods are presented. The formulations of the 2DIMB 

methods by using Lagrange interpolation polynomial are shown from order three to 

four and five. The stability analysis, stability region and algorithm of the 2DIMB 

methods are given. The 2DIMB methods are implemented to solve the single first order 

ordinary DEs. Numerical results for the 2DIMB methods are tabulated and presented. 

 

Chapter 4 presents the fuzzy version of 2DIMB methods of order three, four and five. 

Under the fuzzy DEs setting, the convergences of the 2DIMB methods are shown. This 

chapter also includes some related theorems for fuzzy DEs. 

 

In Chapter 5, the implementation and results of the 2DIMB methods are furnished. 

These methods are numerically experimented on fuzzy IVP at constants step size and 

the results are tabulated. The results are compared with RK methods. This chapter 

includes parts which analyzes and describes the performance of the method. 

 

Finally, Chapter 6 summarizes the conclusions from this study. Recommendations and 

outlines for further study in this area are stated. 
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