THE EFFECT OF THIN-LAYER ELEMENTS IN STRUCTURAL MODELING OF RAIL-TRACK SUPPORTING SYSTEM

By

YEAT CHOOI FONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

December 2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

THE EFFECT OF THIN-LAYER ELEMENTS IN STRUCTURAL MODELING OF RAIL-TRACK SUPPORTING SYSTEM

By

YEAT CHOOI FONG

December 2006

Chairman: Associate Professor Jamaloddin Noorzaei, PhD

Faculty: Engineering

A conventional track system consists of rails, sleepers, ballast, sub-ballast and subgrade. A track foundation on the basis of live load response and permanent settlement, it is necessary to use an analytical model that will realistically represent the actual behaviour of this track system subjected to actual load. This study deals with the development of numerical modeling of Malaysian railway track along with the supporting system. The model is capable to simulate the sleeper, ballast, sub-ballast, soil layers and their interaction as a single compatible unit. Under plane strain condition, the coupled finite-infinite elements were implemented to represent the near field and far field behaviour of media. Thin-layer elements have been used to represent the interfacial behaviour between sleepers and ballast. The following constitutive relationships were adopted in this study:

(i)-Linear Elastic

(ii)-Elasto-plastic

Based on the above physical and material modeling, an existing two dimensional finite element program has been extensively modified in view of including the new elements as well as the new constitutive law. After verification of the modified

version of the program, the applicability of the program was shown in analysis of railway track supporting system. The response of the railway track supporting system has been presented under static and dynamic loading. The behavior of the railway track supporting media has been discussed with respect to displacements, accelerations and rate of plastic flow.

This analysis shows that the thin layer element is reliable to be used as an interface element to represent the contact surface between two different materials.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN BAGI ELEMENT LAPISAN NIPIS DALAM PEMODELAN SISTEM SOKONGAN RANGKAIAN KERETAPI

Oleh

YEAT CHOOI FONG

Disember 2006

Pengerusi: Profesor Madya Jamaloddin Noorzaei, PhD

Fakulti: Kejuruteraan

Secara umumnya, sistem landasan keretapi terdiri daripada rel, penidur, ballast, subballast dan bahagian tanah. Model yang bersifat analitik dimama dapat mempersembahkan kelakuan sebenar bagi asas landasan keretapi yang menanggung beban hidup dan mengalami pemindahan yang kekal adalah amat diperlukan. Kajian ini merangkumi pemodelan sistem sokongan yang direkabentuk untuk landasan keretapi di Malaysia. Model ini berupaya mempersembahkan kelakuan rel, penidur, ballast, sub-ballast, lapisan tanah dan juga keadaan lapisan antara dua jenis bahan pembinaan yang berbeza. Hubungan yang dikaji dalam pemodelan ini adalah::

- (i) Elastic linear
- (ii) Elasto-plastic

Dalam proses memodel sistem sokongan landasan keretapi secara fizikal dan bahan pembinaan, satu program analisis unsure terhingga yang sedia ada telah diubahsuai dari segi penggunaan unsure yang baru dimana merupakan suatu constitutive bahan yang baru. Pengesahan telah dilakukan ke atas program yang telah diubahsuai bagi memastikan bahawa program tersebut dapat menganalisis sistem sokongan landasan keretapi di Malaysia. Kelakuan ke atas sistem rangkaian keretapi Malaysia telah dibentang dan dibincangkan di bawah beban static dan dinamik. Di samping itu, perubahan bentuk ke atas sistem sokongan landasan keretapi juga dibincangkan.

Kajian ini telah membuktikan bahawa pemodelan suatu lapisan dapat mempersembahkan kelakuan sebenar di antara dua jenis bahan pembinaan yang berlainan.

ACKNOWLEDGEMENTS

As with any other text, the number of individuals who have made it possible far exceeds those whose names grace the cover. At the hazard of leaving someone out, I would like to explicitly thank the following individuals for their contribution.

The following professor and friends helped to solve problems, proofread text, prepare illustrations, raise embarrassing questions and generally make sure the students could understand it: Prof. Madya Ir. Dr. Jamaloddin Noorzaei, Prof. Madya. Ir. Dr. Mohd. Saleh Jaafar, Prof. Madya Dr. Waleed A. Thanoon and Huda A. Thanoon, University Putra Malaysia. To them a hearty thank you!

To my family, who, I believe, is inquisitive and questioning in the space beyond, which is congruent to that of mine.

To those giants of mechanics, physics and philosophy, on whose contributions I stand and extend. This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Jamaloddin Noorzaei, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Saleh Jaafar, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Waleed Abdul Malik Thanoon, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 08 MARCH 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

YEAT CHOOI FONG

Date: 13 FEBRUARY 2007

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	iv
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF NOTATIONS/GLOSSARY OF TERMS	xvi

CHAPTER

Ι	INTRODUCTION	
	Historical Background of Malaysian Railway Network	1
	General	2
	Statement of the Problem	5
	Objectives	7
	Scope	7
	Organization of the Thesis	10
	Limitation of the Present Work	10
	Assumption	11
П	LITERATURE REVIEW	
	Introduction	12
	Earlier Work on Modeling of the Railway Track-	
	Supporting System	12
	Concluding Remarks	33
	Summary	34
ш	FINITE ELEMENT FORMULATION	
	Finite Element Analysis and Solution of Dynamic-	
	Equation	36
	Introduction	36
	Formulation Finite Element of Linear Continuum	
	Mechanics	37
	Isoparametric Elements	40
	Eight- and Six-Node Isoparametric Finite	
	Element	41
	Five-Node Isoparametric Infinite Element.	43
	Interface Element	44
	Thin-Layer Element	47
	Formulation in Local Coordinate System	49
	Formulation in Global Coordinate System	54
	Proposed Physical Modeling Railway Track-	
	Supporting System	57

III	Numerical Integration in Isoparametric Element	58
	Formulation of Non-linear Continuum Mechanics	59
	Yield Criterion	60
	Work Hardening	62
	Plastic Stress-Strain Relationship Suitable for Finite	
		63
	Element Method	66
		66
	Flasto-Plastic Formulation Thin-I aver Flement	67
	Flasticity Condition	70
	Perfectly Plastic Condition	70
	Constitutive Modeling	72
	Finite Flement Formulation of Dynamic Problem	77
	Solution of Dynamic Equation	80
	Host Finite Flement Program	80
	Calibration for Static Analysis and Learning Process	86
	Example 1 – Cantilever Beam	91
	Example 2 – Column and Beam	99
	Example 3 - Foundation	100
	Calibration for Dynamic Analysis	101
	Thin-Laver Element	102
	Spherical Shell Example	109
	Foundation	
	Concluding Remarks	

	ANALYSIS OF RAILWAY TRACK SUPPORTING MEDIA	112
	Introduction	
	Finite Element Analysis of Railway Track Bedding	
	System	113
	Problem Definition	114
	Loading	116
	Finite Element Mesh	118
	Result and Discussion on Static Analysis	119
	Linear Static Response	124
	Elasto-Plastic Static Analysis	128
	Result and Discussion on Dynamic Analysis	131
	Linear Dynamic Response	138
	Elasto-Plastic Dynamic Behaviour	146
	Concluding Remarks	
V	CONCLUSION	147
REFER	ENCES	150
APPEN	DICES	156
BIODAT	TA OF THE AUTHOR	176

IV

LIST OF TABLES

Table		Page
3.1	Physical Modeling of Malaysian Railway	57
3.2	Gauss Points and Weights for Gaussian Quadrature	58
3.3	Proposed Material Modeling in Analysis	70
3.4	Newmark's Algorithm	74
3.5	Explicit Predictor-Corrector Algorithm	75
3.6	Comparison of Deflection for Cantilever Beam	82
3.7	Comparison of Maximum Deflection for Cantilever Beam	85
3.8	Comparison of Maximum Deflection for Column and Beam	91
3.9	Comparison of Deflection for Foundation	98
3.10	Shear Stress (psi) in Thin-Layer Element at Gauss Point	100
3.11	Comparison of Displacement for Spherical Shell	102
3.12	Comparison of Displacement for Load Type 1	104
3.13	Comparison of Displacement for Load Type 2	106
3.14	Comparison of Displacement for Load Type 3	107
4.1	Material Properties	114
4.2 4.3	<i>Train Traffic Data</i> Types of Static Analysis Performed	116 118
4.4	Selection of Time Step	130
4.5	Comparison No. of Gaussian Point Yielded against Static	
	and Dynamic Analysis	146

LIST OF FIGURES

Figure 1.1	Malaysian Railway Network System	Page 8
1.2	Support System of Railway Track in Malaysia	8
2.1	Track Model - European Rail Research Institute (ERRI)	14
2.2	Dynamic Wheel Load during Passage over a Weld	18
2.3	Track Model to describe Nikex Construction	18
2.4	Impulse Force and Displacement of Nikex Construction	
	Determined with TILLY	19
2.5	Ballasted Track Model for Typical Dynamic Track Behavior	23
2.6	Test Arrangement for Clamping Force Measurement	24
2.7	Loading Procedure for Clamping Force Measurement	25
2.8	Test Arrangement to Measure the Longitudinal Force	26
2.9	Characteristic of Longitudinal Load / Displacement	26
2.10	Measurement of Vertical Stiffness	26
2.11	Test Arrangement for Cyclic Repeated Loading Test	27
2.12	Test Procedure for Cyclic Loading Testing	28
2.13	Mechanic Model of Railway Track	29
2.14	Finite Element Model	30
2.15	Impulse-Shape Load Type 1	31
2.16	Impulse-Shape Load Type 2	32
2.17	Impulse-Shape Load Type 3	33
3.1	Linear Continuum Mechanics	37
3.2	Six-Nodded Isoparametric Finite Element	41

3.3	Eight-Nodded Isoparametric Finite Element	42
3.4	Five-Nodded Infinite Element	43
3.5	Parabolic Interface Element	45
3.6	Thin-Layer Interface Element	49
3.7	Mohr Circle Representation of the Morh-Coulomb Yield Criterion	60
3.8	Flow Chart of Finite Element Program Procedures for	
	Elasto-Plastic Static Problems	78
3.9	Flow Chart of Finite Element Program Procedures for	
	Dynamic Problems	79
3.10	Cantilever Beam Mesh	81
3.11	Deflection along Beam Length with Various Analyses	83
3.12	Deflection along Beam Length with Various Poisson Ratio	83
3.13	Deflection along Beam Length with Various Thickness of	
	Thin-Layer Element	84
3.14a	Displacement without Thin-Layer Element	84
3.14b	Displacement with Six-Nodded Thin-Layer Element	84
3.14c	Displacement with Eight-Nodded Thin-Layer Element	85
3.15	Column and Beam	87
3.16	Deflection along Section A-A with Various Analyses	88
3.17	Deflection along Section A-A with Various Thickness of	
	Thin-Layer Element	89
3.18a	Overall Deflection without Thin-Layer Element	90
3.18b	Overall Deflection with Six-Nodded Thin-Layer Element	90
3.18c	Overall Deflection with Eight-Nodded Thin-Layer Element	90
3.19	Finite Element Modeling of Foundation Soil-Interaction	94

3.20	Distribution of Displacement with Various Analyses 95	
3.21	Distribution of Displacement with Various Stiffness	
	(Normal or Shear)	96
3.22	Distribution of Displacement with Various Thickness of	
	Thin-Layer Element	96
3.23a	Overall Distribution of Displacement (without Thin-Layer)	97
3.23b	Overall Distribution of Displacement	
	(with Six-Nodded Thin-Layer)	97
3.23c	Overall Deformation of Structures	
	(with Eight-Nodded Thin-Layer)	98
3.24	Thin-Layer Element	100
3.25	Spherical Shell and Finite Element Mesh	101
3.26a	Impulse-Shape Load Type 1	103
3.26b	Impulse-Shape Load Type 2	103
3.26c	Impulse-Shape Load Type 3	104
3.27	Horizontal Displacement Behaviour with Impulse Load Type 1	105
3.28	Vertical Displacement Behaviour with Impulse Load Type 1	105
3.29	Horizontal Displacement Behaviour with Impulse Load Type 2	106
3.30	Vertical Displacement Behaviour with Impulse Load Type 2	107
3.31	Horizontal Displacement Behaviour with Impulse Load Type 3	108
3.32	Vertical Displacement Behaviour with Impulse Load Type 3	108
4.1	Typical Geometry for Railway Track	113
<i>4</i> ?	KTMR I oading Diagram	115
4.3	Typical Transverse Section	117
4.4	Distribution of Vertical Displacement along Depth of Structure	119

4.5	Distribution of Horizontal Displacement along Depth of Structure	120
4.6	Distribution of Horizontal Stress (σ_x) along Width of Structure	121
4.7	Distribution of Contact Pressure (σ_y) along Width of Structure	122
4.8	Variation of Maximum Principle Stress (σ_1) at different section	123
4.9	Variation of Minimum Principle Stress (σ_3) at Different Section	124
4.10	Spread of Plastic-Yielding with Various Load Factor	125
4.11	Relationship between No. Gaussian Point Yielded with	
	Load Factor	126
4.12	Normal Stresses at Section F – F	126
4.13	Maximum Principle Stress at Section F – F	127
4.14	Vertical Displacement at Section F – F	127
4.15	Impulse-Shape Load Type 3	129
4.16	Time History of Acceleration when Time Step = 100, 200 and 300	130
4.17	Contour of the Peak Horizontal Displacement	132
4.18	Contour of the Peak Vertical Displacement	132
4.19	Contour of the Peak Horizontal Acceleration	133
4.20	Contour of the Peak Vertical Acceleration	133
4.21	Distribution of Horizontal Stress at ISTEP = 200	135
4.22	Distribution of Vertical Stress at ISTEP = 200	135
4.23	Distribution of Shear Stress at ISTEP = 200	136
4.24	Distribution of Maximum Principle Stress at ISTEP = 200	137
4.25	Distribution of Minimum Principle Stress at ISTEP = 200	137
4.26	Variation of Horizontal Displacement	138
4.27	Variation of Vertical Displacement	139
4.28	Distribution of Maximum Principle Stresses (σ_1) at Various Plane	140

4.29	Distribution of Minimum Principle Stresses (σ_3) at Various Plane 1	
4.30	Load Factor = 5	141
4.31	Load Factor = 10	141
4.32	Load Factor = 25	142
4.33	Spread of Plastic-Yielding with Various of Load Factor	142
4.34	Impact Load Duration Time = 0.15 sec	143
4.35	Impact Load Duration Time = 0.20 sec	143
4.36	Impact Load Duration Time = 0.50 sec	144
4.37	Spread of Plastic-Yielding with Various Duration of Time	145
4.38	Relationship between No. of Gaussian Point Yielded with	
	Load Factor	145

LIST OF NOTATIONS/GLOSSARY OF TERMS

[<i>a</i>] =	Flow vector
$[a_1, a_2, a_3] =$	Co-efficient used in material modal parameters
[<i>α</i>] =	Factor of end of elasticity
[B] =	Strain-displacement transformation matrix
[<i>β</i>] =	A parameter
[<i>C</i>] =	Constitutive matrix in global coordinate
$[\overline{C}^{e}] =$	Elastic constitutive matrix in local coordinates
$[\overline{C}^{ep}] =$	Elasto-plastic constitutive matrix in local coordinates
$[C_i] =$	Constant parameter
[<i>c</i>]=	Co-efficient value material
[<i>D</i>] =	Elasticity matrix in global coordinates
$[\Delta] =$	Displacement in global coordinates
$[\Delta t] =$	Incremental of time
$[\delta] =$	Displacement in local coordinates
$[\partial \delta] =$	Virtual displacement vector
$[\phi] =$	Friction angle
[E] =	Young's modulus / Modulus of Elasticity
=[3]	Strains
$[\mathcal{E}_0] =$	Initial Strains
$[\mathcal{E}_{x},\mathcal{E}_{y},\mathcal{E}_{z}] =$	Nodal strains in global coordinates

$\left[\overline{\mathcal{E}}_{x},\overline{\mathcal{E}}_{y},\overline{\mathcal{E}}_{z}\right] =$	Nodal strains in local coordinates
$[\xi,\eta]$ =	Local coordinates of gauss point
$[\zeta] =$	Mass / unit volume
$[F_x, F_Y, F_Z] =$	Concentrate load
$[F_x, F_Y, F_Z]_b =$	Body force
$[F_x, F_Y, F_Z]_s =$	Traction force / pressure
$[F(\sigma_{ij})/f/g] =$	Failure function
$[f_{n+1}] =$	Internal force vector
[<i>G</i>] =	Modulus rigidity
$[\gamma] =$	A parameter
$[J_2, J_3] =$	Second and third invariant of deviatoric stress tensor
[<i>J</i> ₂ [']]=	Second invariant of deviatoric strain tensor
[<i>ψ</i>]=	Interface dilatancy angle
[K]=	Stiffness matrix
$[K_{nn}] =$	Normal stiffness matrix
$[K_{ss}] =$	Shear stiffness matrix
[<i>k</i>] =	Hardening parameter
[M]=	Mass matrix
[N]=	Shape functions matrix
$[\mathbf{N}_i] =$	Nodal shape function
$[\sigma]$ =	Stress
$[\sigma_0] =$	Initial Stress

$[\sigma_1] =$	Maximum Principle Stress
[σ_{3}]=	Minimum Principle Stress
$[\sigma_x,\sigma_y,\sigma_z] =$	Nodal stress in global coordinates
$[\overline{\sigma}_x,\overline{\sigma}_y,\overline{\sigma}_z] =$	Nodal stress in local coordinates
$[\mathbf{P}_{nel}] =$	Acceleration vector
[Q(k)] =	Yield stress / plastic potential
[T] =	Transformation matrix from local to global coordinate
[<i>t</i>] =	Thickness of thin layer element
$[\tau_{xy}, \tau_{yz}, \tau_{zx}] =$	Nodal shear in global coordinates
$[\overline{\tau}_{xy},\overline{\tau}_{yz},\overline{\tau}_{zx}] =$	Nodal shear in local coordinates
[u, v, w] =	Nodal displacements in global coordinates
$[\overline{u},\overline{v},\overline{w}] =$	Nodal displacements in local coordinates
[<i>u</i> , <i>u</i>]; <i>u</i>]=	Displacement, velocity and acceleration
[<i>μ</i>] =	Damping co-efficient
[<i>v</i>] =	Poisson's ration
[<i>x</i> , <i>y</i>] =	Global coordinates of a point