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ABSTRACT

In today’s society, statistical techniques are being used widely in 
education, medicine, social sciences, and applied sciences. They 
are crucial in interpreting data and making decisions.  When one 
makes a statistical inference, it is very crucial to be aware of 
the assumptions under which the statistical testing procedures 
can be applied.  The assumptions that are common to almost all 
statistical tests are that the observations are random, independent 
and identically distributed, come from a normal distribution and 
they are equally reliable and should have equal role in determining 
the results.  The last assumption implicitly states that there is no 
outlier in a data set.  Outliers are observations which are markedly 
different or far from the majority of observations.  
	 In most statistical models, the assumptions of normality 
of errors, no multicollinearity, homoscedasticity and non-
autocorrelated errors are often violated. Another assumption that 
has received much attention from statisticians in recent years is 
that the regression analysis must be free from the effect of outliers. 
Even though the Ordinary Least Squares (OLS) estimates retain 
unbiasedness in the presence of heteroscedasticity, multicollinearity 
and autocorrelation, their estimates become inefficient.  As such, 
proper diagnostic checking should first be considered before further 
data analysis is carried out. The problem gets more complicated, 
when the violation of homoscedasticity, no multicollinearity, 
and no autocorrelation, each comes together with the existence 
of outliers. Methods that are designed to rectify these problems, 
cannot handle both problems simultaneously. In this regard, proper 
remedial measures should be taken into consideration to remedy 
these problems.  Hence, some robust methods which are developed 
to simultaneously remedy these two problems will be illustrated in 
this inaugural lecture. Robust method is a relatively new method 
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whereby it is not easily affected by outliers because their effects 
are reduced. This presentation also focuses on our research, in 
developing robust diagnostic methods for detecting whether or not 
outliers, multicollinearity, heteroscedasticity and autocorrelated 
errors are present in a data. 
	 This presentation also will illustrate some of our developed 
diagnostic methods to identify high leverage points and also to 
indicate whether multicollinearity is caused by correlated predictors 
or high leverage points. This presentation will also illustrates the 
effects of outliers and high leverage points on panel data model, 
response surface model and variable selection methods. Outliers 
are known to have an adverse effect on computed values of various 
estimates. The immediate consequences of outlier are that they 
may cause apparent non-normality and the entire classical methods 
breakdown. Classical methods heavily depend on assumptions. 
However, in practice those assumptions are difficult to be met. 
Violations of at least one of the assumptions may produce sub-
optimal or even invalid inferential statements and inaccurate 
predictions. 
	 Since outliers give bad consequences, the need for robust 
methods become essential to avoid misleading conclusion. Hence, 
we developed several robust methods pertaining to these issues. Due 
to space limitations, only some selected developed robust methods 
will be presented in this inaugural lecture and their mathematical 
derivations are not shown.
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INTRODUCTION

In all aspects of our lives, an amazing diversity of data is available 
for inspection and analysis.  Business managers, government 
officials, policy makers and professionals require solid facts based 
on data to justify a decision.  They need statistical techniques to 
support their decisions since statistical analysis of data can provide 
investigators with powerful tools to interpret data relevant to their 
decision- making.  However, the conclusion drawn from a study is 
to be trusted only when correct statistical techniques are employed. 
Furthermore, it is usually unwise to rely on the results of test 
procedures unless the validity of all underlying assumptions has 
been checked, and met for a valid inferential statement. We may use 
diagnostic checking to confirm the validity of these assumptions. 
When the basic assumptions are not satisfied, proper remedial 
measures should be taken into consideration. 
	 In today’s society, it is very unfortunate that with the easy 
availability of statistical packages such as SAS and SPSS has 
driven more statistics practitioners to use the packages blindly 
in analysing their data.  Unfortunately, they often are not aware 
of the fact that statistical packages just follow the instruction 
given to them and produce results accordingly.  They do not know 
whether researchers have chosen the correct statistical techniques 
for their studies. Box (1953) stated that “now it’s really too easy, 

you can go to the computer and with practically no knowledge of 

what you are doing, you can produce sense or nonsense at a truly 

astonishing rate”. With little knowledge in statistics they rely too 
much on statistical packages to analyse their data. Unfortunately, 
they are also not aware of the effect of outliers on various estimates 
and not aware of the immediate consequences of the presence of 
outliers. Even one single outlier can have arbitrarily large effect 
on the estimates. In statistical data analysis, there is only one type 
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of outlier, but in a regression problem, extra care should be taken 
because in this situation, there are several versions of outliers exist 
such as residual outliers, vertical outliers and high leverage points. 
Any observation that has large residual is referred to as a residual 
outlier. Vertical outliers (VO) or y-outliers are those observations 
which are extreme or outlying in y-coordinate. 
	 On the other hand, high leverage points (HLPs) are those 
observations which are extreme or outlying in X-coordinate.
The assumption of normality, that is, the data are a random sample 
from a normal distribution is the most important assumption for 
many statistical procedures.  Non-normality may occur because 
of their inherent random structure or because of the presence 
of outliers. Most of the standard results of a study are based 
on normality and other assumptions and the whole inferential 
procedure may be subjected to error if there is a departure from 
these assumptions.  The violation of these assumptions may lead 
to the use of suboptimal estimators, invalid inferential statements 
and inaccurate predictions and for these reasons we developed test 
for normality and  heteroscedasticity.
	 Belsley et al. (1980) stated that influential observations were 
those observations either alone or together with several other 
observations have the largest impact on the computed values of 
various estimates. It is often very essential in regression analysis to 
find out whether HLPs have much impact on the fitting of a model. 
HLPs not only fall far from the majority of predictor variables, but 
also are deviated from a regression line (Hocking and Pendelton, 
1983; Rousseeuw and Leroy, 1987). Habshah et al. (2015) pointed 
out that HLPs can cause multicollinearity.  These leverage points 
may increase (enhancing observation) or decrease (reducing 
observation) multicollinearity problem (Bagheri et al., 2012b). 



5 ❘❘❚ 

Habshah Midi

	 This inaugural lecture presents part of my research works being 
performed with my students and colleagues in the field of robust 
statistics.  Robust statistics is a technique that is less affected by 
the presence of outliers because their effects have been reduced.
	 Our research was mainly focused on the robust diagnostic 
methods and robust parameter estimation in linear, nonlinear, 
logistic, generalised linear and response surface models.  Research 
on robust variable selection procedure, robust statistical process 
control and robust methods on panel data has also being performed 
over a decade.  This presentation will cover the concept of outlier 
and influential observations, diagnostic methods, robust graphical 
display, robust parameter estimations, robust response surface 
methodology and robust variable selection technique.  Diagnostics 
are designed to find problems with the assumptions of any statistical 
procedures. Most of the classical statistical procedures heavily 
depend on normality assumption of observations.  A robust 
rescaled moment (RRM) test which is fairly robust and possesses 
higher power of rejection of normality in the presence of outliers 
is developed in this regard.  The Diagnostic Robust Generalised 
Potential (DRGP) has been developed for the identification of high 
leverage points because it is responsible for misleading conclusion 
about the fitting of linear regression, causing multicollinearity 
and swamping and masking outliers in linear regression.  The 
Robust Modification of the Goldfeld Quant (MGQ) and Robust 
Modified  Breusch Godfrey (MBG) tests are developed to detect 
heteroscedasticity and  autocorrelation problems, respectively. 
Robust Variance Inflation factor (RVIF) and High leverage 
Collinearity Influential Observations Methods are established to 
indicate whether multicollinearity problems exist in a data. The 
new robust diagnostics methods need to be developed because the 
non-robust methods fail to detect the existence of those problems 
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in the presence of outliers.  When these problems have been 
correctly identified, appropriate remedial measures are taken into 
consideration that provides efficient estimates. 

THE NEED FOR ROBUST STATISTICS

The word “Robust” literally means something “very strong”. 
Therefore robust statistics are those statistics which do not 
breakdown easily. The analogous term used in the literature is 
Resistant Statistics. It is less affected by outliers by keeping its effect 
small.  In classical setup, the assumptions that are common to almost 
all statistical test are that the observations are  random, independent 
and identically distributed, come from a normal distribution and 
equally reliable (there is no outlier in a data). The classical methods 
heavily depend on assumptions and the most important assumption 
is that data are normally distributed. Hampel et al. (1986) claimed 
that a routine data set typically contains about 1-10% outliers, 
and even the highest quality data set cannot be guaranteed free of 
outliers.  The immediate consequence of outlier is that it may cause 
apparent non-normality and the entire classical methods might 
breakdown. This is the reason why we need to turn to robust statistics 
where it does not rely heavily on the underlying assumptions.  It is 
usually unwise to rely on the results of test procedures unless the 
validity of all underlying assumptions have been checked and met. 
Violations of these basic assumptions may produce sub-optimal 
or even invalid inferential statements and inaccurate predictions.
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ROBUST DIAGNOSTIC METHODS

A Robust Rescaled Moment Test for Normality in 
Regression

Most of the statistical procedures heavily depend on the normality 
assumption of observations. But in practice we often deal with 
data sets which are not normal in nature. Nevertheless, evidence 
is available that such departure can have unfortunate effects in a 
variety of situations. When the errors are not normally distributed, 
the estimated regression coefficients and estimated error variance 
are no longer normal and consequently the t and F tests are 
generally not valid in finite samples. Most of the standard results 
of statistical tests are based on the normality assumption and the 
whole inferential procedures may be subjected to error if there is 
a departure from this and for this reason, test for normality has 
become an essential part of data analysis.

There are a considerable amount of written papers relating 
to the performance of various tests for normality in regression 
(Gel and Gastwirth, 2008). Among them, the Jarque–Bera (JB) 
test for normality (also known in statistics the Bowman–Shenton 
test) has become very popular with the statisticians. The JB test 
statistic is a sum of the sample coefficients of skewness and 
kurtosis and asymptotically follows a χ2 distribution with two 
degrees of freedom. But the main shortcoming of the JB test is 
that it possesses very poor power when the sample size is small or 
moderate (Montgomery et al., 2001). To overcome this problem, 
rescaled moment (RM) and  robust Jarque–Bera (RJB) tests are 
developed.  Since the RJB is designed as a general statistical test 
for normality, we suspect that it may not perform well in regression 
analysis. Hence we propose a robust rescaled moment test (RRM) 
for normality designed for regression models extending the idea 
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of Imon (2003) and Gel and Gastwirth (2008). Rana et al. (2009) 
developed the robust rescaled moment (RRM) test statistic as:

is the average absolute deviation from the sample median, and  A 
= . The robust sample estimates of skewness and kurtosis 
are 3

3ˆ / nm J  and 4
4ˆ / nm J ,where 3m̂ and 4m̂ are the 3rd and 4th order 

of the estimated sample moments respectively. Under the null 
hypothesis of normality, the RRM test statistic asymptotically 
follows a chi-square distribution with 2 degrees of freedom. 1B
and 2B  are computed similar to the RJB test statistic as suggested 
by Gel and Gastwirth (2008). 

To assess the performance of our proposed test, we consider 
the shelf-stocking data given by Montgomery et al. (2001). These 
data present the time required for a merchandiser to stock a 
grocery store shelf with a soft drink product as well as the number 
of cases of product stocked. We deliberately change one data point 
to create an outlier.  For the original data, all the methods showed 
that the residuals for these data are normally distributed (Table 1). 
The standard theory tells us that the normality should break down 
in the presence of outliers. But it is interesting to observe that 
both the Jarque-Bera and the RM test fail to detect non-normality 
here. The RJB test also fails to detect non-normality at the 5% 
level of significance. But the performance of our RRM test is quite 
satisfactory in this occasion. It can detect the problem of non-
normality even at 1.6% level of significance.
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Table 1 Power of normality tests for original and modified shelf-
stocking data

Original data Modified data

Tests Value of 
Statistic

p-value Value of 
Statistic

p-value

JB 1.2643 0.5314 2.1820 0.3359

RM 1.9700 0.3735 3.4524 0.1779

RJB 1.4632 0.4811 5.0890 0.0785

RRM 2.2477 0.3250 8.2475 0.0161

A Robust Modification of the Goldfeld–Quandt Test 
for the Detection of Heteroscdasticity in the Presence 
of Outliers 

It is a common practice over the years to use the ordinary 
least squares (OLS) as the inferential technique in regression. 
Under the usual assumptions, the OLS possesses some nice 
and attractive properties. Among them, homogeneity of error 
variances (homoscedasticity) is an important assumption for 
which the OLS estimators enjoy the minimum variance property. 
It is now evident that the heteroscedastic problems (when 
assumption of homoscedastic error variance is not met) affects 
both the estimation and test procedure of regression analysis, so 
it is really important to be able to detect this problem for possible 
remedy. If this problem is not eliminated, the OLS estimators will 
still be unbiased, but the parameter estimates will have larger 
standard errors than necessary. The Goldfeld –Quandt (GQ) and 
Breusch-Pagan test (Goldfeld and Quandt 1965) are quite popular 
and commonly used in econometrics. But, there is evidence that 
all these tests suffer huge set back when outliers are present in 
the data.  We have modified the GQ test (Rana et al., 2008) by 
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integrating robust methods in the formulation of the Modified 
Goldfeld-Quandt (MGQ) test and is summarised as follows. 

MGQ = 
1

2

MSDR
MSDR

where 1MSDR  and 2MSDR  are the median of the squared 
deletion residuals for the smaller and the larger group variances, 
respectively. Under normality, the MGQ statistic follows an F 
distribution with numerator and denominator degrees of freedom 
each of (n – c – 2k)/2. 

To show the merit of our developed test, we consider restaurant 
food sales data given by Montgomery et al.(2001).  In this data set 
there is a relation of income with advertising expense. Again we 
deliberately put three outliers into the data set by replacing the 
income of the cases indexed by 1, 27 and 30 with large values. It 
is very obvious from the plot in Figure 1, that the original data has 
heterocedastic errors.

 
Figure1  Residuals vs. fitted plot for original restaurants food sales 

data
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Table 2  Heteroscedasticity diagnostics for restaurants food sales data

Test
Without Outliers With Outliers

Value of 
Statistic p-value Value of 

Statistic p -value

Goldfeld-
Quandt 4.03671 0.0190 1.074 0.4563

Breusch-
Pagan 3.1787 0.0746 0.3799 0.5376

White 4.3575 0.0368 0.0963 0.7562

MGQ 4.9917 0.0090 10.4566 0.0005

Test results as presented in Table 2 show that the three conventional 
tests perform well in detection of heteroscedasticity but their 
performances are poor when outliers are present in the data. The 
MGQ test performs best. Irrespective of the presence of outliers it 
can successfully detect the heteroscedastic error variance in the data.  

Diagnostic-Robust Generalised Potentials for the 
Identification of Multiple High Leverage Points in 
Linear Regression

Detection of high leverage values is crucial due to their 
responsibility for misleading conclusion about the fitting of a 
regression model, causing multicollinearity problems, masking 
and/or swamping of outliers etc. It is now evident that most of 
the commonly used variable selection techniques for model 
building are affected in the presence of high leverage points and 
often could produce very misleading conclusions. That is why 
the identification of high leverage points is essential in linear 
regression before making any kind of inference.
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Much work has been done on the identification of high 
leverage points (Hoaglin and Welsch, 1978; Huber, 1981; Vellman 
and Welsch, 1981). However, most of the existing methods fail to 
identify them because they suffer from masking (false negative) 
and swamping (false positive) effects. As such, Habshah et al. 
(2009) has formulated a new measure for the identification of HLPs 
that are called DRGP where the suspected high leverage points are 
identified by Robust Mahalanobis Distance based on Minimum 
Volume Ellipsoid (MVE) and then the low leverage points (if any) 
are put back into the estimation data set after diagnostic checking 
using generalised potentials to confirm our suspicions.

The generalised potentials for all members in a data set are 
defined as

where , D and R are 
any arbitrary deleted set and remaining sets of points, respectively. 

*
iip  is considered to be large if

*
iip   >  Median ( *

iip ) + c MAD ( *
iip )

where c equals 2 or 3. 
We report a Monte Carlo simulation experiment which is 
designed to investigate how our newly proposed diagnostic robust 
generalised potentials perform in the identification of multiple 
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high leverage points and to compare its performance with other 
commonly used methods. 

Table 3  Identification of multiple high leverage cases (average) based 
on 10000 simulations

Per-
centage Sample No. of Identification Methods

Size HLPs Twice Thrice Huber Potentials DRGP

      mean mean      

  n = 20 1 0 0 6 2 2

n = 40 2 2 2 2 3 3

5% n = 60 3 3 3 3 4 4

n = 100 5 6 6 2 6 6

n = 200 10 9 9 0 9 12

n = 20 2 2 2 7 2 3

  n = 40 4 3 3 3 3 5

10% n = 60 6 5 5 2 4 7

n = 100 10 7 7 0 6 11

n = 200 20 13 13 0 11 21

n = 20 3 1 1 9 2 3

  n = 40 6 3 3 3 2 6

15% n = 60 9 4 4 0 3 9

n = 100 15 8 8 0 6 15

n = 200 30 14 14 0 11 30

n = 20 4 0 0 9 1 4

  n = 40 8 2 2 2 2 8

20% n = 60 12 5 5 0 3 12

n = 100 20 7 7 0 4 20

n = 200 40 15 15 0 9 40

n = 20 5 0 0 8 1 5

  n = 40 10 2 2 2 1 10
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	 Table 3 clearly shows the merit of our proposed DRGP method. 
The number of HLPs detected by DRGP exactly or close to the 
number of HLPs generated in this experiment. All the commonly 
used methods failed to identify the high leverage points while the 
method based on DRGP was successful in identifying high leverage 
points.

Robust Modification of Breush-Godfrey Test in the 
Presence of High Leverage Points

The OLS estimates will have optimum properties when all the 
underlying model assumptions are met. However, practitioners will 
hardly check the fulfillment of the underlying model assumptions 
especially the assumptions of random and uncorrelated errors. 
Most of the time, the assumption of random and uncorrelated 
errors is taken for granted despite the errors may be correlated 
with the previous errors. When the error terms are correlated with 
the previous errors such that E(μi , μj ) ≠ 0, for i ≠ j, the errors are 
said to be autocorrelated. This problem mostly happens in time 
series data.

Autocorrelated errors cause serious problems in linear 
model. It violates the important properties of the OLS (White and 
Brisbon, 1980). The parameters estimates obtained are no longer 
the Best Linear Unbiased Estimators (BLUE) in the sense that 
their standard errors, , are most likely to be underestimated. 
As the results, the less efficient estimates are obtained because 
of ignoring the erroneous assumption. The usual t and F tests 
of significance are no longer convincing. These tests tend to be 
statistically significant when in fact it is not. The coefficient of 
determination, 2R  becomes inflated. As such, the estimators 
would look more accurate as compared to its actual value. All these 
problems contribute to the failure of the hypothesis testing. Hence, 
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the autocorrelated errors will most probably provide misleading 
conclusions about the statistical significance of the estimated 
regression coefficients (Gujarati and Porter,2009). Therefore, it is 
very important to detect the presence of autocorrelated errors. 

There are quite a number of written articles related to 
autocorrelation testing procedures (Breusch, 1978; Godfrey, 1978; 
Durbin and Watson, 1951). Among them, the Breusch-Godfrey 
(BG) test is the most widely used test to detect the presence of 
autocorrelated errors. This test is suspected to be affected by high 
leverage point since it is based on the OLS which is known to be 
easily affected by outlying observations. Hence robust BG test 
which is not much affected by high leverage points is proposed for 
the detection of autocorrelated errors in multiple linear regression 
(Lim and Midi, 2012; Lim and Midi, 2014).  The proposed test 
incorporates the bounded influence, high efficient and high 
breakdown MM-estimator (Yohai, 1987) in the Breusch-Godfrey 
procedure and is called Modified Breusch-Godfrey (MBG) test. 
Lim and Midi (2012) proposed  MBG test as follows:

SSRSSE
SSR2

+
=MR

where SSR is the sum of squares regression and SSE is the sum of 
squares 	errors of the auxiliary regression using MM estimator.  
They showed that the distribution of the Lagrange Multiplier 
statistic of MBG, that is  is approximately Chi-Squares 
with p degrees of freedom. 

The performance of our developed test is shown by real data 
and simulation study. 

For each sample size n = 20, 40, 60, 80, 100 and 200, the n 
‘good’ data are generated according to the following relation:

uy +++= 21 X3X21
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where all the values of 
1X  and 

2X  are generated from Uniform 
Distribution, U(0,10). The Uniform Distribution is chosen to 
ensure that the generated data are free from outliers. This will 
minimise the chance of generating the outlier observations in the 
simulation run.    The error terms tu  are generated by the first-
order autoregressive scheme as follows:

Ut = 0.9ut-1 +  εi

with an initial value of 
1u generated from Normal Distribution, 

N(0,4) in order to ensure there is a strong autocorrelation problem 
in the dataset when the White noise, ε  is generated from Normal 
Distribution, N(0,1). The performance of BG and MBG tests with 
5% and 10% high leverage points in 

1X , 
2X  and both 

1X  and 
2X  

directions are examined. 
The average p-values of both BG and MBG tests based on 

10,000 simulation runs are presented in Table 4. From the table 
it is clearly seen that, the BG test has more significance p-value 
than MBG test for detecting autocorrelated errors in the clean 
datasets. However, the BG test performs miserably in the presence 
of high leverage points. It is very disappointed to see that BG test 
can only detect autocorrelated errors in the clean data but fails to 
diagnose the autocorrelated errors in all levels and all kinds of 
contamination. Unlike BG test, the MBG test did a credible job.  
This finding has shown that the MBG test is a robust diagnostic 
method for autocorrelation. MBG test is not only working 
well in detecting autocorrelated errors in clean datasets, but it 
also performs superbly good in identifying autocorrelation in 
contaminated datasets as compared to classical BG test.
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General Road Accident Data in Malaysia

These time series data considered the general road accident data 
in Malaysia. These data show how the number of road deaths 
in Malaysia (y) associates with the road length (

1X ) and the 
number of road accidents cases in Malaysia (

2X ) from year 1974 
to 1999. The data can be obtained from the research paper by 
Mustafa (2005). Similar to the previous time series data, a normal 
observation in 

1X , 
2X and both 

1X  and 
2X  directions is arbitrary 

replaced by a high leverage point in order to get a modified high 
leverage data in 

1X , 
2X and both 

1X  and 
2X  directions. Figure 

2 shows the index plot of residuals for the original data based 
on OLS estimation. It can be seen very clearly that the residuals 
are not randomly distributed but followed a cyclical pattern. This 
provides us a strong evidence to claim that the residuals are not 
randomly distributed but they are correlated with the previous 
errors.

Figure 2  Index Plot of Residuals for General 
Road Accident Data in Malaysia
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The performance of BG and MBG tests in identifying the 
autocorrelated errors in the original and modified general road 
accident data in Malaysia are exhibited in Table 5. The BG test is 
found to have slightly better autocorrelation detection power than 
MBG test in the original data. However, it is very disappointed to 
see that the BG test gives misleading findings of no autocorrelated 
errors in every respect of the contamination made in the original 
data. The autocorrelation detection power of BG test dropped 
drastically in the contaminated datasets. It is exciting to note that 
the MBG test never fails to diagnose the presence of autocorrelated 
errors in the original as well as in high leverage datasets. 

Table 5  Autocorrelation Diagnostics for 
General Road Accident Data in Malaysia

Tests
BG 

(p-values)
MBG 

(p-values)

No High Leverage Point 6.420e-03 8.191e-03

One High Leverage Point in  1X 7.131e-02 2.968e-03

One High Leverage Point in 2X 6.841e-01 2.443e-02

One  High Leverage Point in 1X  and 2X 7.177e-01 1.991e-02

Robust Variance Inflation Factor to Diagnose 
Multicollinearity

Multicollinearity occurs in a data set when explanatory variables 
are correlated to each other.  Although the OLS estimates are 
still unbiased in the presence of multicollinearity, its estimates 
become inefficient (Montgomery et al., 2001; Kutner et al., 2005; 
Chatterjee and Hadi, 2006). One of the most important destructive 
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effects of multicollinearity on regression analysis is non-significant 
results of individual t-tests for some of the important regression 
coefficients when overall F-test confirms the existence of linear 
relationship between explanatory variables and response variable. 
Hence, it is imperative to diagnose whether multicollinearity 
exists in a data.

Variance Inflation Factor (VIF) is one of the most popular 
multicollinearity diagnostic tools which measures how much the 
variance of the estimated regression coefficients are inflated as 
compared to when the predictor variables are not linearly related 
(Marquardt, 1970). If  R2 is the coefficient determination of each of the 
explanatory variables when regressed on the other explanatory variable 
model by OLS method, VIF is given by

																				      
 										  

 			   Moderate or severe collinearity exists in the data set when VIF is 
between 5 and 10 or exceeds 10, respectively. To prevent misleading 
conclusions that may be obtained from the classical VIF in the presence 
of high leverage points, a robust multicollinearity diagnostic method 
based on robust coefficient determination,should be employed.  In 
this regard, Bagheri and Habshah (2011) proposed two RVIFs, 
namely the RVIF(MM) and the RVIF(GM(DRGP)).

The proposed  RVIF(GM(DRGP)) is defined as follows:

          
                   

  j=1,…,k
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where robust coefficient determination  is defined as follows

where

te  and w(GM(DRCP)) are the residual and weight, respectively after the 
algorithm converged. 

In this section, the effect of high leverage points on a collinear 
data set which is taken from Kutner et al. (2005) is investigated. 
Body Fat data set contains 20 observations with three explanatory 
variables of triceps skinfold thickness (X1), thigh circumference (X2) 
and midarm circumference (X3). This data set has multicolinearity 
problem (Kutner et al., 2005).  In order to modify this data set 
to have high leverage collinearity- reducing observation, the first 
observation of the first explanatory variable is replaced with a 
large value of high leverage point (equal to 300). The results also 
indicate that only a large value of high leverage point in X1 ruin the 
collinearity pattern of the data. 

Table 6 exhibits the Classical and Robust VIFs for the original 
and modified Body Fat data set. It can be observed that for the 
original data set, the classical VIF and RVIF (GM (DRGP)) indicate 
the  presence of severe multicollinearity in the data set while RVIF 
(MM) diagnose moderate collinearity in this data set. Thus, RVIF 
(MM) failed to detect the correct degree of collinearity. However, 
by modifying the data set through adding a high leverage point, 
the classical VIF failed to detect collinearity whereas RVIF (GM 
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(DRGP))) and RVIF (MM) can detect collinearity in this data set. 
It is interesting to note that the proposed RVIF (GM (DRGP)) 
can diagnose the degree of multicollinearity correctly (severe 
multicollinearity) while the RVIF (MM) can only identified 
moderate collinearity. Hence our new proposed RVIF (GM 
(DRGP)) is not affected by the added high leverage point and still 
show the existence of collinearity in this data set.

Table 6  Classical and robust VIF for original and modified Body Fat 
data set

 
Variables 

Original data set Modified data set

CVIF
RVIF
(MM)

RVIF
(GM(DRGP))

CVIF
RVIF
(MM)

RVIF
(GM(DRGP))

X
1

708.8429 5.2997 785.3549 1.1266 5.7297 7.8225

X
2

564.3434 5.4690 656.7576 1.1141 5.4722 628.7662

X
3

104.6060 5.0593 115.0129 1.0363 5.0560 123.6363

Collinearity Influential Observation Diagnostic 
Measure based on a Group Deletion Approach

High leverage points can induce or disrupt multicollinearity 
patterns in a data. Observations responsible for this problem 
are generally known as collinearity-influential observations.  
Development of collinearity-influential observation diagnostic 
measures has not been reported extensively in the literature 
(Hadi, 1988; Sengupta and Behimasankaram, 1997; Bagheri 
and Habshah, 2012a; Bagheri et al., 2012b). There is strong 
evidence that existing measures that are designed to detect a 
single observation as collinearity-influential may not be effective 
in the presence of multiple high leverage collinearity-influential 
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observations. In this presentation, a novel diagnostic measure for 
the identification of multiple high leverage collinearity-influential 
observations is shown (Bagheri et al., 2012b). 

The proposed high leverage collinearity-influential measures 
based on DRGP (HLCIM (DRGP)), which is denoted as δi

(D) is 
defined and summarised as follows: 

where D is the group of multiple high leverage points diagnosed 
by DRGP(MVE) ( *

iip ) and n(D) is the size of the D group. )(Dk  
and k( )iD-  indicate the condition number of the X matrix without 
the entire group of D high leverage points and without the entire 
D group minus the ith high leverage points where i belongs to the 
D group, respectively. Furthermore, )( iDk +  refers to the condition 
number of the X matrix without the entire group of D high leverage 
points plus the ith additional observation of the remaining group. 

The well-known Hawkins, Bradu, and Kass (1984) data is used to 
show the merit of our proposed method. This artificial three-predictor 
data set contains 75 observations with 14 high leverage points (cases 
1-14).   The results in Table 7 show that the existing measures δi

 

and il  can identify the first 13 high leverage points as collinearity-
enhancing observations while our proposed δi

(D) measure can 
successfully identify the first 14 observations as high leverage 
collinearity-enhancing observations. 
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Table 7  Collinearity-influential measures for Hawkins-Bradu-Kass 
data

Index k(i) δi li δi
(D)

(-.008) (-.004) (-.019)
(-0.048) (-0.021) (-.022)

1 13.221 -0.027 -0.012 -0.228
2 13.183 -0.03 -0.013 -0.241
3 13.289 -0.022 -0.01 -0.234
4 13.18 -0.03 -0.013 -0.254
5 13.188 -0.029 -0.013 -0.248
6 13.185 -0.03 -0.013 -0.24
7 13.166 -0.031 -0.014 -0.248
8 13.237 -0.026 -0.011 -0.227
9 13.235 -0.026 -0.011 -0.242
10 13.327 -0.019 -0.008 -0.226
11 13.06 -0.039 -0.017 -0.29
12 13.424 -0.012 -0.005 -0.272
13 13.035 -0.041 -0.018 -0.319
14 17.125 0.26 0.101 -0.391
15 13.67 0.006 0.003 -0.005
16 13.752 0.012 0.005 0.01
. . . . .
. . . . .
. . . . .

74 13.611 0.002 0.001 -0.002
75 13.651 0.005 0.002 0.009
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To investigate the effect of collinearity-influential observations 
on the collinearity structure of the data, we computed collinearity 
diagnostics including pair-wise Pearson correlation coefficients, 
variance inflation factors, and condition indices. These results 
are presented in Table 8. The results in the table shows that the 
multicollinearity problem of these data is reflected in the VIF 
and Condition Number (CN) values. We can see from the table 
that in the presence of 14 HLPs (original data), the data have 
multicollinearity but in their absence, there is no multicollinearity. 
This is referred as High Leverage Collinearity Enhancing 
Observations. 

Table 8  Collinearity diagnostics for Hawkins-Bradu-Kass data

Diagnostics Status 1 2 3

Pearson 
correlation 
coefficient

Original data r12= 0.946 r13= 0.962 r23= 0.979

Without observa-
tions 1 –14

r12= 0.044 r13= 0.107 r23= 0.127

VIF > 5

Original data 13.432 23.853 33.432

Without observa-
tions 1 – 14

1.012 1.017 1.027

Condition 
index of  X 
matrix > 10 

Original data 13.586 7.839 1.00

Without observa-
tions 1 – 14

3.275 2.946 1.00
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A New Robust Diagnostic Plot for Classifying Good 
and Bad High Leverage Points in a Multiple Linear 
Regression 

It is not easy to capture the existence of several versions of 
outliers in multiple regression analysis by using a graphical 
method (Rousseeuw and Leroy, 1987). If only one independent 
variable is being considered, the four types of outliers can easily 
be observed from a scatter plot of y against the x variables. 
However, for more than one predictor variable, it is difficult to 
detect these outliers from a scatter plot. Not much work has been 
focused on classifying HLP’s into good leverage point (GLP) and 
bad leverage point (BLP). 

Rousseeuw and Zomeren (1990) proposed a robust diagnostic 
plot which is more effective than the non-robust plot for classifying 
observations into regular observations, vertical outliers, GLPs and 
BLPs. Rousseeuw and Zomeren plot draws the standardised least 
median of square residual (LMS) against the robust Mahalanobis 
distance  (RMD) based on minimum volume ellipsoid (MVE), 
whereby this plot is denoted by LMS-RMD. The non-robust plot 
draws the Studentised OLS residuals (ti) against the Mahalanobis 
distance (MD), we called this plot as OLS-MD plot. We suspect 
that the robust LMS-RMD diagnostic plot is not very effective 
in classifying the observations into respective categories since 
it is based on the robust Mahalanobis distance, which suffers 
from swamping effects (Bagheri and Habshah, 2015). Moreover, 
this plot uses Studentised residual which is not very successful 
in identifying multiple outliers.  Habshah et al. (2009) showed 
that the DRGP was very successful in detecting multiple HLPs. 
In addition, we anticipate that the newly proposed Modified 
Generalised t (MGti ) is able to detect multiple outliers. As such 
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we proposed to improve the classification method of Rousseeuw 
and Zomeren (1990) by plotting the MGti versus DRGP. Our 
proposed diagnostic plot is called MGt-DRGP plot.  The basic 
rules for classification observation by using the new proposed 
method are as follows (Mohamed et al., 2015a).

1.	 	 Regular Observation (RO): An  Observation  is  declared as a 
“RO” if  

2.	 	 Vertical Outlier (VO): An Observation is declared as a “VO” 
if  

3.	 	 GLPs: An Observation is declared as a GLP if 

4.	  BLPs:  An Observation is declared as a BLP if 

The Aircraft dataset, which is taken from Gray (1985) is used 
to illustrate the merit of our proposed plot.   This dataset contains 
23 cases with four predictor variables (Aspect ratio, Lift-to-drag 
ratio, Weight of the plane, and Maximal thrust) and the response 
variable is the Cost. The classification of data into regular data, 
vertical outliers, good and bad leverage points are shown in 
Figures 3, 4 and 5. It can be observed from Figure 3 that the non-
robust plot (OLS-MD) identified one vertical outlier (case 22) and 
one GLP (case 14). The LMS-RMD plot in Figure 4 detected one 
vertical outlier (case 16), BLP (case 22) and 2 GLP (cases 14, 
20), while the MGt-DRGP plot in Figure 5 identified one vertical 
outlier (case 16), two BLPs (cases 19 and 22) and one GLP (case 
21).  

	As shown by Mohamed et al. (2015a), most of time the 
classical OLS-MD plot fails to correctly identifies the BLPs. The 
robust LMS-RMD plot is also not very successful in classifying 
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observations into four categories. Our new developed MGt-DRGP 
plot consistently is very successful in classifying observations 
into regular observations, vertical outliers, good and bad leverage 
points. 

Figure 3  The Studentised OLS res. vs. MD for the Aircraft data

Figure 4  The Standardised LMS res. vs. RMD for the Aircraft data 
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Figure 5  The Mod. Generalised studentised. res. vs. DRGP for the 
Aircraft data  

ROBUST PARAMETER ESTIMATIONS

Robust Jackknife Ridge Regression to Combat 
Multicollinearity and High Leverage Points

Introduction 

Consider the following standard multiple linear regression model:

y =Xβ + u

it is assumed that y is an (n × 1) vector of the dependent 
variable, X  is an (n × p) and full rank matrix of regressor variables, 
β is a (p × 1) vector of an unknown regression parameters and u 
is an (n × 1) vector of the error term with elements are assumed 
to be independently and normally and identically distributed 
random variables, such that 0)( =uE  and the dispersion matrix 

. For the purpose of convenience, it is assumed that 
all variables are standardised so that the design matrix  is in 
correlation form. The OLS estimator, namely
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has optimal properties under Gaussian-Markov assumptions. 
Let be the matrix of eigenvalues for   
and γ  is a (p×p) matrix of its corresponding eigenvectors whose 
column are normalized with  . According to Singh et 
al. (1986), the linear regression model can be written in   canonical 
form as, 

y = Zα + u

where Z = Xγ  and α =γ'β. Since  γ'γ , hence Z'Z = γ'X'Xγ = Ʌ. The 
OLS estimator for α is given by

since  can be written as

The MSE for the OLS estimator is given by

Hoerl and Kennard (1970) showed that a solution to the 
OLS does not always exist and there is no unique solution when 
the matrix  is ill-conditioned (not invertible) due to the 
multicollinearity problem. Multicollinearity is a major problem 
in multiple regression, this issues occurs when two or more 
regressors are highly correlated. In this situation the standard 
errors of the OLS estimates become large and often the results are 
confusing and may give misleading conclusions.

There are many methods to address this problem of 
multicollinearity. The most commonly used methods are Ridge 
Regression (RR), Latent Root Regression and Jackknife Ridge 
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Regression (JRR) (Hoerl and Kenard, 1970; Batah et al., 
2008). However, these estimators are not robust to outliers and 
leverage point.  Unfortunately, neither robust methods nor the RR 
technique alone is sufficient to address the complicated problem 
of multicollinearity and outliers (Habshah and Marina, 2007). To 
circumvent this combined problem, significant works have been 
done by integrating RR with the robust method to get an estimator 
that is much less influenced by multicollinearity and outliers. 
Jadhav and Kashid (2011) suggested using a Jackknife ridge 
M-estimator to overcome multicollinearity and outliers in the Y 
direction. However most of the suggested methods do not focus 
on the combined problem of multicollinearity and high leverage 
points (HLPs). As such, Mohammed et al. (2015b) developed two 
new methods known as Robust Ridge MM (RJMM) and Robust 
Jackknife Ridge GM2 (RJGM2). The RJGM2 is formulated by 
incorporating the Generalised M based on Minimum Volume 
Ellipsoid (GM2) developed by Bagheri and Habshah (2011) and 
the Jackknife Ridge Regression. Mohammed et al. (2015b) have 
shown that the RJGM2 estimate is given by

where, 
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The Performance of RJMM and RJGM2

A simulation study is conducted to assess the performance of 
the proposed methods (RJMM and RJGM2) in the case of the 
simultaneous presence of the multicollinearity problem and HLPs 
in a data set. To generate simulated data with a different degree 
of multicollinearity, we apply a simulation approach given by 
Lawrence and Arthur (1990). We consider the multivariate linear 
regression model as:

y x xi 0 1 i1 3 i3 íb b b f= + + +

where Ɛ  is the error term distributed as  . The explanatory 
variables are generated by,

where 321 ,, iii vvv , and 4iv  are independent standard normal 
pseudo random numbers,  and  p = 3 is the number of explanatory 
variables. The explanatory variables are standardised so that the 
design matrix  is in the canonical form. The character ρ2 

denotes the degree of collinearity between x and xij im  for j ≠ m. 
In addition, three different values of high collinearity are selected 
corresponding to ρ = 0.90, 0.95 and 0.99, and four different sets 
of observations are considered corresponding to n = 20, 30, 50 and 
100. The contamination is done by replacing a clean datum in the 
explanatory variables with HLPs corresponding to various ratios 
of the HLP, namely τ = 0.05, 0.10 and 0.15. Our proposed RJMM 
and RJGM2 estimators are compared with existing methods 
such as Ordinary Least Squares (OLS), Ridge Regression (RR), 
Jackknife Ridge Regression (JRR), Robust Ridge Regression 
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based on M-estimator (RRM) and Robust Jackknife Ridge 
Regression based on M-estimator (RJRM).

		Due to space limitations, only one result is shown. However 
their performances are consistent. It can be observed from Table 
8 that when the data have multicollinearity and HLPs,the values 
of RMSE and Loss for OLS, RR, and JRR are larger than the 
other robust estimator methods for all possible combinations of n, 
p and τ. The values of RMSE and Loss for RRM and RJRM are 
smaller than those for the classical estimator (OLS, RR and RR) 
but they are less efficient than RJMM and RJGM2 because RRM 
and RJRM depend on the M-estimator, which is known to be less 
efficient with HLPs, while the MM-estimator and the MGM2-
estimator can do well with HLPs. RJMM and RJGM2 are the best 
methods in the presence of multicollinearity and HLPs. However, 
the performance of RJGM2 is better than that of RJMM in all 
possible cases except in the case of a small sample size, not very 
strong multicollinearity, and low and moderate HLP ratios (n = 20, 
ρ = .90 and τ = 0.05 and 0.10). So, we can say that our proposed 
methods are the best methods for solving multicollinearity in the 
presence of HLPs and for producing estimates with lower RMSE 
and less bias.
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THE MODIFIED GM-ESTIMATOR BASED ON 
MGDFF FOR DATA HAVING MULTICOLLINEARITY 
DUE TO HIGH LEVERAGE POINTS

Introduction

Multicollinearity is a situation of multiple regression model when 
the independent variables are correlated with each other. However, 
it is now evident that high leverage points (HLPs) can cause 
multicollinearity problems (Imon, 2003; Bagheri and Habshah, 
2012a). With their presence, VIF value becomes large and VIF 
value becomes small in their absence. Bagheri and Habshah 
(2012a) and Bagheri et al. (2012b) refer to these situation as High 
leverage collinearity enhancing observations and High Leverage 
Collinearity Reducing Observations, respectively.  In the previous 
section, we have illustrated the second situation whereby for 
multicollinearity which is caused by correlated predictors, in the 
presence of HLPs, the VIF measure indicate no multicollinearity.  
We have shown that in such a situation, Robust Jackknife Ridge 
based on GM2 (RJGM2) is the best solution to remedy the 
multicollinearity problem. However, this method and any other 
methods that attempt to remedy multicollinearity problem are 
not appropriate when multicollinearity is due to HLPs. As such, 
Habshah et al. (2015) proposed a new estimation technique called 
modified GM-estimator (denoted by MGM) based on modified 
generalised DFFITS to overcome the multicollinearity problem. 
The MGM estimates are obtained by solving 
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where ψ = ρ', is a derivative of redescending function and 
τ  is a weight function aims to downweight high leverage points. 
Assuming that β0 is the initial coefficient of the S-estimator, 
Habshah et al. (2015) derived the MGM-estimator from one-step 
Newton Raphson as

where W  is an n x n diagonal matrix with   wi   , i=1,2,…,n ,

where ψ' is a derivative of Huber’s function ψ, the residuals ei of 
S-estimator and scale of the residuals,  
and 
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The Performance of MGM 

Two examples and Monte Carlo simulation study were used to 
investigate the performances of our proposed methods. In this 
section, we report A Monte Carlo simulation study to assess the 
performances of our new proposed method (MGM). We consider 
the following multivariate linear regression model, 

where ε is the error term distributed as )1,0(N . In the simulation 
study, we generate an uncorrelated dataset distributed as )1,0(N  
with three explanatory variables (p = 3), various size of samples 
(n=30, 50, 100, 200) and various percentage of contaminations 
(α = 0.05, 0.10). We also considered various explanatory 
variables (p = 4, 5, 10). The experiment of simulation was 
repeated 5000 times for consistency. In order to create good and 
bad leverage points, certain clean observations are replaced by 
contamination data. To create bad leverage points, the first 100 

 percent observations for both x and y variables are replaced by 
contaminated observations distributed as N(1,10). And, to create 

good leverage points, the last 100  percent observations of x’s 

variable are replaced by contaminated observations distributed as 
N(1,10). The performance of MGM-estimator is compared with 
some existing methods such as OLS, ridge regression, MM and 
GM6. The assessments of the estimators are based on the standard 
deviation of the estimates and ratio of MSE of the estimator’s 
compared with the OLS estimator for the uncontaminated data 
(Habshah, 1999; Riazoshams and Habshah, 2010). The MSE and 
the ratio of MSE are given by;
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where, m is the replications of simulation experiment. A good 
estimator is the one that has the smallest value of standard 
deviation and ratio closest to 100%. Tables 10 and 11 exhibit the 
VIF, SE and ratio values of the estimates. Due to space constraint 
the results for (p=4, 5 10 and n=20,100) are not shown. However, 
the results are consistent. It is interesting to observe the results of 
Tables 10 and 11. For uncontaminated data, the VIF’s values are 
small which suggests that there is no multicollinearity problem 
in the data. Table 10 also indicates that the performances of all 
methods are equally good for clean data. The presence of high 
leverage points changes the situation dramatically. It can be seen 
from Table 11 that when a certain percentage of HLP’s are added 
to the data, the VIF values become large which indicate that HLP 
have induced multicollinearity to the data. The high leverage 
points have changed the data from non-collinearity to collinearity 
evidenced by high values of VIF’s. The performance of the OLS 
immediately becomes very poor. The ratio of the OLS estimator is 
much lower than the other estimators and it has the largest values 
of standard deviations of the estimates. It is interesting to observe 
from Table 11 that the ridge regression estimator also does not 
give good results. Although the results of the MM and GM6 
estimators are fairly closed, the values of the SE and ratio for the 
MM estimator is consistently slightly smaller and slightly higher 
than the GM6, respectively, for all samples sizes. However, it is 
evident from the results that the MGM estimator consistently has 
the smallest SE and highest ratio, followed by the MM and GM6 
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estimators for all possible combinations of n and α. The MGM-
estimator consistently provides the most efficient results when 
multicollinearity is due to HLP.

Table 10  The SE and Ratio of the estimated Ridge, GM6, MM and 
MGM for clean generated data set

n Coef. VIF
Ridge GM6 MM MGM

S.E Ratio S.E Ratio S.E Ratio S.E Ratio

20

β1 1.14 0.7662 94.96 0.7472 97.38 0.7352 98.97 0.7355 98.93

β2 1.11 0.6953 94.61 0.6784 96.96 0.6656 98.83 0.6655 98.84

β3 1.12 0.6812 94.47 0.6649 96.78 0.6504 98.94 0.6522 98.67

40

β1 1.05 0.4432 95.17 0.4363 96.68 0.4275 98.67 0.4279 98.57

β2 1.06 0.4012 95.29 0.3916 97.63 0.3883 98.45 0.3877 98.61

β3 1.05 0.4911 96.95 0.4905 97.06 0.4835 98.47 0.4851 98.14

100

β1 1.03 0.3072 94.56 0.2985 97.32 0.2932 99.08 0.2921 99.45

β2 1.02 0.2979 95.37 0.2936 96.76 0.2883 98.54 0.285 99.68

β3 1.02 0.2494 94.23 0.2407 97.63 0.2367 99.28 0.2351 99.96

200

β1 1.01 0.2165 95.94 0.2133 97.37 0.2088 99.47 0.208 99.86

β2 1.01 0.2127 96.90 0.2087 98.75 0.2066 99.76 0.2069 99.61

β3 1.01 0.2145 96.69 0.2138 97.01 0.2083 99.57 0.2078 99.81
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TWO-STEPS ROBUST ESTIMATOR IN 
HETEROSCEDASTIC REGRESSION MODEL IN 
THE PRESENCE OF OUTLIERS

Introduction

A commonly used assumption in linear regression is the constancy 
of error variances or homoscedasticity, mainly because of which 
the OLS estimators retain the minimum variance property. 
In a real life situation it is really hard to believe that the error 
variances will remain constant and that is why the violation of this 
assumption which causes the heterogeneity of error variances or 
heteroscedasticity is more prevalent in nature. The main problem 
with the violation of homoscedasticity assumption is that the 
usual covariance matrix estimator of the OLS becomes biased and 
inconsistent.

	A large body of literature is now available ( Habshah, 
2000; Kutner et al., 2005;  Habshah et al., 2009a; Habshah et 
al., 2009b; Rana et al., 2012; Siraj-ud-doulah et al., 2012)  for 
correcting the problem of heteroscedasticity. The correction for 
heteroscedasticity is very simple by means of the weighted least 
squares (WLS) if the form and magnitude of heteroscedasticity 
are known. The WLS is equivalent to perform the OLS on the 
transformed variables. Unfortunately, in practice, the form of 
heteroscedasticity is unknown, which makes the weighting 
approach impractical. When heteroscedasticity is caused by an 
incorrect functional form, it can be corrected by making variance-
stabilising transformations of the dependent variables or by 
transforming both sides (Carroll and Ruppert, 1988).  However, 
the transformation procedure might be complicated when dealing 
with more than one explanatory variable. Montgomery et al. 
(2001), Kutner et al. (2004), and others have tried to find the 
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appropriate weight to solve the heteroscedastic problem when the 
form of heteroscedasticity is unknown. White (1980) proposed the 
heteroscedasticity-consistent covariance matrix (HCCM) estimators 
in this regard.  Different forms of HCCM estimators such as the 
HC0, HC1, HC2, HC3 and HC4 have been proposed ( MacKinnon 
and White, 1985; Davidson and MacKinnon, 1993; and Cribari-
Neto, 2004). However, there is no general agreement among 
statisticians about which of the five estimators of the HCCM 
(HC0, HC1, HC2, HC3, HC4) should be used (MacKinnon and 
White, 1985). Chatterjee and Hadi (2006) proposed an estimator 
which is weight based, but these weights depend on the known 
structure of the heteroscedastic data. Kutner et al. (2005) proposed 
estimators which do not depend on the known structure of the 
heteroscedastic data. But the main limitation of the Montgomery 
et al. (2001) estimator is that it cannot be applied to more than 
one regressor situation. The estimator proposed by Kutner et al. 
(2005) can be applied to more than one variable and it does not 
depend on the known form of heteroscedasticity, but we suspect 
this estimator is not outlier resistant. 

	The weighted least squares also suffer the same problem in 
the presence of outliers (Maronna et al., 2006). We also believe 
that the HCCM estimators should suffer from the same problem, 
as they are based on the OLS residuals. Generally speaking, none 
of the estimation techniques work well unless the effect of outliers 
in a heteroscedastic regression model is eliminated or reduced 
by robustifying the WLS or HCCM. Unfortunately, there is not 
much work in the literature that deals with the estimation of the 
regression parameters in the presence of both heteroscedasticity 
and outliers when the structure of heteroscedasticity is unknown. 
Although Habshah et al. (2009a) has proposed this type of robust 
estimation procedure, but their procedure can be applied to only 
one regressor. 
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	In this presentation, Habshah et al. (2014) proposed a two-
step robust weighted least squares (TSRWLS) estimator which 
can be applied for more than one regressor when the form of 
the heteroscedasticity is not known.  Firstly, for solving the 
heteroscedastic problem, we estimate the robust initial weights 
following the idea of Kutner et al. (2005) and secondly, we estimate 
the parameters of the model based on Huber (1981) weighting 
function in order to reduce the effect of outliers.  Habshah et al. 
(2014) summarised the TSRWLS algorithm in the following two 
steps. In step 1 we form the initial weight and in step 2 we obtain 
the final weight.

Step1: 

i.	   Find the fitted values yit  and the residuals ift from the regression 
model by using the least trimmed of squares (LTS) method.

ii.	 Regress the absolute residuals, denoted as sit   where si if=
t , 

on yit   also by using the LTS method.

iii.		 Find the fitted values sit  from step 1(ii).

iv.		 The square of the inverse fitted values would form the initial 
robust weights, i.e., we obtain 2

1 ˆ1 ( )i iw s= .

Step2: 

The robust weighting function such as the Huber function (Huber, 
1981), the Bisquare function (Tukey, 1977) and the Hampel 
function  (Hampel, 1974) can be used to obtain the final weight. 
However, in this study, we will use the Huber’s weights function 
which is defined as
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	 The constant 1.345 is called the tuning constant and ie  is the 
ith standardised residuals of the LTS obtained from step 1 (i). 
We multiply the weight 1iw  with the weight 2iw  to get the final 
weight iw . Finally we perform a WLS regression using the final 
weights iw . The regression coefficients obtained from this WLS 
are the desired estimate of the heteroscedastic multiple regression 
model in the presence of outliers. 

The Performance of the TSRWLS 

In this section, we consider a real data to evaluate the performance 
of the proposed TSRWLS method and compared with the OLS 
and Kutner et al. (2005) method that we call KNN.

Education Expenditure Data 

These data are taken from Chatterjee and Hadi (2006) which 
consider the per capita income on education projected for 1975 as 
the response variable (Y) while the three explanatory variables are 

1X , the per capita income in 1973; 2X , the number of residents 
per thousand under 18 years of age in 1974, and 3X , the number 
of residents per thousand living in urban areas in 1970 for all 
30 states in USA. According to geographical regions based on 
the pre-assumption, the states are grouped in a sense that there 
exists a regional homogeneity. The four geographic regions (i) 
Northeast, (ii) North centre, (iii) South, and (iv) West. The LTS 
estimator detected that the observation 49 [Alaska (AK)] is an 
outlier. The residuals vs. fitted values of OLS (Standardised), 
KNN and TSRWLS are plotted with and without Alaska. The OLS 
plot without Alaska clearly indicates a violation of the constant 
variance assumption.  However, the KNN and TSRWLS plot do 
not show any symmetrical shape like the OLS fit. It shows that for 
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this ‘clean’ data (without AK) the non-constancy of error variances 
is not reflected in KNN and TSRWLS. To see the effect of outliers, 
we include the observation Alaska and the resulting residuals and 
fitted values are plotted. We see that OLS residuals are affected 
in the presence of outliers, but the effect of AK observation is not 
substantial on KNN and TSRWLS estimators. 

Modified Education Expenditure Data 

In reality we often have to deal with multiple outliers. For this 
reason, we deliberately change four data points to generate big 
outliers. Our changed data points are cases 46, 47, 48 and 50  by 
taking the value from outside the well known  3- v  sigma normal 
distance in Y direction. In fact, we replace the data points of Y for 
observations 46, 47, 48 and 50 by .| |conty  where .conty  are generated 
as 9 yy s± , with  y  and ys  as the respective mean and standard 
deviation of Y. In this situation, it is more likely that these points 
would become big outliers. With this modified data, now we have 
five outliers (since these data already contained one outlier, i.e., 
Alaska). When the LTS is employed to the data, all 5 outliers are 
identified. 

The plots of the residuals against the fitted values of the 
OLS, KNN and TSRWLS for the modified data are illustrated in 
Figure 6(a) - 6(f). It is observed from Figure 6(a) and 6(b) that in 
the presence of outliers the patterns of residuals are completely 
destroyed. That is, the OLS and KNN are greatly affected by 
outliers and so they are not good estimators for the remedy of the 
heteroscedastic problem when outliers are present. It is interesting 
to note that in Figure 10(c), the TSRWLS shows the scatter plot of 
the residuals except the data points which are outliers. The residual-
fitted plots without the 10% outliers for the OLS, KNN and the 
TSRWLS are shown in Figure 6(d) - 6(f). Figure 6(d) signifies 
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that the OLS cannot remedy the problem of heteroscedasticity but 
the KNN and proposed TSRWLS are successful as it is expected. 
It re-emphasises our concern that the KNN might be good in the 
absence of outliers whereas our proposed TSRWLS might be 
good in the presence or absence of outliers since it is keeping the 
scatter plot in both situations. 

Figure 6  The OLS, KNN and TSRWLS fitted values vs. residuals plots 
with 10% outliers, (a)-(c) ; without 10% outliers, (d)-(f). 

	We know that graphical displays are always very subjective 
and that is why we would like to present some numerical 
summaries of the examples considered above. Here, we compare 
the performance of the proposed TSRWLS estimator with the 
existing estimators, such as the OLS, KNN and five versions of the 
HCCM estimators. Table 12 displays the summary statistics such 
as estimates of the parameters and their standard errors. It also 
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considers three different situations: when there are no outliers, 
with only one outlier (AK), and with 5 outliers. In the absence 
of outliers, all estimators perform equally in terms of parameter 
estimates and their standard errors and the resulting values are 
relatively close. But things change dramatically when outliers are 
present in the data. All estimators except the TSRWLS are strongly 
affected by outlier(s). We observe that the OLS and the KNN 
estimators not only have more bias in comparison to the TSRWLS, 
but also the sign of  OLS3bt  and KNN3bt   have been changed in some 
occasions. By looking at the results of standard errors it is clear 
that both the OLS and the KNN estimators together with the five 
versions of HCCM (not shown) break down easily even in the 
presence of a single outlier. They produce much higher standard 
errors as compared with the TSRWLS estimator and things 
deteriorate when multiple outliers are present in the data.   It can 
be concluded from Table 12 that the proposed TSRWLS is the best 
overall estimator as it possesses less bias and standard errors as 
compared to other estimators in the presence of heteroscedasticity 
and outliers. We have examined the performance of the proposed 
TSRWLS estimator and compare its performance with other 
existing estimators. Although the KNN, HCCMs and TSRWLS 
estimators are reasonably close to one another in the presence of 
heteroscedasticity with clean data, but the TSRWLS is the most 
reliable estimator as it possesses the least bias and standard errors. 
However, the performance of KNN and HCCMs are much inferior 
to the TSRWLS when contamination occurred in the data.
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Table 12  Regression estimates of the Education Expenditure 
Data

   
0bt 2b 3b

Without outliers

OLS -277.577 0.0483 0.8869 0.0668
KNN -334.422 0.055 0.9809 0.0599

TSRWLS -283.24 0.0508 0.8827 0.0573

With AK outlier

OLS -556.568 0.0724 1.5521 -0.0043

KNN -423.721 0.062 1.1782 0.0519

TSRWLS -365.479 0.0543 1.0779 0.0633
With multiple 
outliers OLS -452.07 0.0821 0.82 0.1936

KNN -536.69 0.1219 1.0639 -0.0983

TSRWLS -391.536 0.0605 1.0815 0.0626

Standard Errors of Estimators

Without outliers

OLS 132.4229 0.0121 0.3311 0.0493

KNN 108.2248 0.0111 0.2642 0.0419

TSRWLS 105.9811 0.0106 0.2732 0.0422

With AK outlier

OLS 123.1953 0.0116 0.3147 0.0514

KNN 96.883 0.0107 0.2313 0.0405

TSRWLS 102.6924 0.0105 0.2486 0.0402

With multiple 
outliers

OLS 464.4632 0.0437 1.1864 0.1938

KNN 182.047 0.0204 0.4591 0.0397

TSRWLS 161.8082 0.017 0.3932 0.063

The empirical study reveals that the proposed estimator is 
outlier(s) resistant. Larger bias in estimates and standard errors, 
and smaller values of robustness measures clearly prove that 
the OLS, KNN and the five versions of HCCM are easily get 

1bt
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affected by outliers. To the contrary, both graphical and numerical 
evidences signify that the TSRWLS is capable of rectifying the 
problems of heteroscedasticity and outliers at the same time. Thus, 
the TSRWLS estimates emerge to be conspicuously more efficient 
and more reliable in comparison with other estimators considered 
in this inaugural lecture. 

ROBUST PARAMETER ESTIMATION FOR LINEAR 
MODEL WITH AUTOCORRELATED ERRORS

Introduction

The Ordinary Least Squares (OLS) method is the most favorite 
technique for estimating the parameters of the multiple linear 
regression model because it is easy to understand and ease to 
apply. In many occasions, the assumptions of the Classical Linear 
Regression Model (CLRM) are taken for granted by statistics 
practitioners without any rigorous check. One of the importance 
assumptions that always being violated is the random and 
uncorrelated errors in the dataset.  Autocorrelated errors cause 
the OLS estimators to lose their Best Linear Unbiased Estimators 
(BLUE) properties ( White and Brisbon,1980). When the residuals 
are correlated with the previous errors which means ( , )E u u 0i j !       
for  i j!  , the variance 2vt  is likely to be underestimated by the 
true 2v .  Consequently, less efficient estimates are obtained in 
the sense that the usual t and F tests of significance are no longer 
valid. These tests may show statistically significant when in fact 
it is not. The coefficient of determination, 2R  becomes inflated 
which wrongly indicates that the data fits the model well but in 
fact it is not.  Hence, autocorrelated errors may provide misleading 
conclusions about the statistical significance of the regression 
coefficients (Gujarati and Porter, 2009). Therefore, appropriate 
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remedial measure must be taken after detecting the presence of 
autocorrelation problems. 

In order to correct for autocorrelation and to obtain the 
parameters estimate, one often uses Generalized Least Square 
(GLS) procedures such as Cohrane Orcutt iterative method and 
Cochrane-Orcutt Prais-Wisten two-step or iterative procedures 
(Gujarati and Porter, 2009). Among these procedures the 
Cochrane-Orcutt Prais-Winsten (COPW) iterative method (Prais 
and Winsten, 1954) is the most popular measure in econometrics 
to obtain estimators with the optimum BLUE properties. 
Nonetheless, this procedure is based on the OLS estimates, which 
is not robust and therefore easily affected by high leverage points. 
Many statistics practitioners are unaware of the fact that high 
leverage points have an unduly effects on the OLS estimates. 
(Habshah et al., 2009; Riazosham et al., 2010)  

Therefore Habshah et al.  (2013) proposed a robust method 
for estimating the parameters of linear model with autocorrelated 
errors in the presence of high leverage points. The proposed robust 
method is formulated by incorporating the bounded influence, high 
asymptotic efficiency and high breakdown MM-estimator into 
the Cochrane-Orcutt Prais-Winsten (RCOPW) iterative method. 
This new procedure is named as Robust Cochrane-Orcutt Prais- 
Winsten (RCOPW) iterative method and the algorithm consists 
of six steps. 

The parameters estimate of *bt  in RCOPW iterative method 
can be expressed in the following matrix form:

(X WX) X Wy* * ' 1 * *' "=b -t

        
where W is the weights matrix of Iteratively Reweighted 
Least Squares (IRLS) in the MM estimator procedure. Lim 



51 ❘❘❚ 

Habshah Midi

(2014) showed how the parameter estimate of 0bt  and jbt   for 
kj ,..,3,2,1=  can be obtained. 

The Performance of RCOPW

The robustness of RCOPW iterative method is examined by the 
Monte Carlo simulation study (not shown) and numerical example. 

Time Series Data
We consider the Poverty data given by Murray (2006). The 
dataset contains 24 observations that gives U.S. Poverty Rates 
(y), Unemployment Rates ( 1X ) and GDP Growth Rates ( 2X ) 
from year 1980 to year 2003. Here the performance of COPW 
and RCOPW iterative methods are examined in the original data 
and in the presence of high leverage points. Three types of high 
leverage points are studied. The first type of the high leverage point 
is the high leverage in 1X  direction. A good observation in 1X  is 
simply replaced by a high leverage point. The second type of high 
leverage point is the high leverage point in 2X  direction. A good 
observation in 2X  is randomly replaced by a high leverage point. 
The third type of high leverage point is the high leverage point in 
both the 1X  and 2X  directions. For this case, a pair coordinates 
observation in 1X  and 2X  directions are randomly replaced by a 
high leverage point. There are many definitions of high leverage 
point. In this study, the high leverage point is taken as value which 
is beyond 3 deviation scope from its mean. The DRGP is applied 
to ensure that the contaminated data points are the high leverage 
points in the data. 

Figure 7 shows the scatter plot of the current residuals (Res1) 
versus lagged residuals (Res(-1)) for the original data based on 
OLS estimation for dataset from 1980 to 2002. It can be seen very 
clearly from the residuals plot that the data has a strong positive 
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autocorrelation as many of the residuals are clustered in the first 
and the third quadrants of the plot. The OLS, COPW and RCOPW 
iterative methods are applied to estimate the regression coefficients 
for dataset from 1980 to 2002. The data in 2003 is used to compare 
the one step ahead forecast for the regression model based on these 
three estimations. The comparison of the parameters estimates 
obtained by COPW and RCOPW iterative methods are exhibited 
in Table 13.  It is interesting to see that COPW and RCOPW are 
equally good when there is no contamination in the dataset. The 
estimated values and the standard errors for 1bt  and 2bt  obtained 
by COPW and RCOPW in the original data are almost the same.

Figure 7  Current Residuals (Res1) Versus Lagged Residuals (Res(-1))   

From the p-values of the MBG test, it can be seen that the 
autocorrelation problems are effectively corrected by RCOPW 
iterative procedure when there is a high leverage point contaminated 
in the data in all directions. The p-values become non significance 
after the RCOPW iterative procedure. But the COPW iterative 
method fails to correct the autocorrelation problems when there 
is a high leverage point in 2X . The p-value of MBG after COPW 
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iterative process becomes even smaller than before the iterative 
process takes place. 

The estimators obtained by COPW estimation in contamination 
datasets can be completely different from that one obtained in the 
original dataset. The estimated value of 1bt  obtained by COPW 
estimation in the original data is 0.626.  However, the COPW  
estimated value has changed drastically to 0.050 when there is a 
high leverage point in both 1X and 2X  directions. Similarly, the 
estimated value of 2bt  obtained by COPW estimation in the original 
data is 0.067. Disappointedly, the estimations provided by COPW 
estimation when there is a high leverage point in 1X  and in both 1X
and 2X  directions have turned to negative values. The estimated 
values are -0.038 and -0.057 respectively. 

Unlike COPW estimation, the parameters estimate obtained 
by RCOPW in high leverage datasets are very close to the 
parameters estimate obtained by RCOPW in the original datasets. 
The estimated value of 1bt in the original data is 0.644 and the 
estimated values provided by RCOPW in the contaminated datasets 
are in the range (0.598 to 0.662). The estimated value of 2bt  
obtained by RCOPW in the original data is 0.071 and the estimated 
values provided by RCOPW in the contaminated datasets are in the 
range (0.052 to 0.065). In addition, the standard errors of RCOPW 
parameters estimate are very much smaller than the one obtained 
by COPW estimation especially when there is a high leverage 
point in 1X  and also in 1X  and 2X  directions. This shows 
that RCOPW estimation provides a more consistent parameters 
estimate than COPW estimation. The regression model based on 
RCOPW estimation gives a very close one step ahead forecast to 
the actual value of y (12.50). The difference between the forecast 
values based on RCOPW regression model and the actual value 
of y is only around 0.10 unit. However, the difference is at least 
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0.14 unit if the regression model is based on COPW estimate. 
It is worth to mention that the OLS regression model which 
does not account for the nature of the autocorrelation gives a 
very far different step ahead forecast to the actual value of y, the 
difference is more than 0.80 unit. The results from this example 
show that the RCOPW estimation is the best method for correcting 
both autocorrelation and high leverage point’s problems.
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ROBUST TWO STAGE ESTIMATOR IN NONLINEAR 
REGRESSION WITH AUTOCORRELATED ERROR

Introduction

The Nonlinear model is commonly used by statistics practitioners 
in many applied sciences such as econometrics, engineering, 
biology and physical sciences to model a response variable to a set 
of independent variables (see Bates and Watt, 1988; Ratskowky, 
1987;Seber and Wild, 2003).

Consider the general nonlinear model:

y = f(θ) + ε 
                                                                           			

where T
nyyyy ],...,,[ 21=  is n 1# response vector,  	
		 is n 1#   vector of model function f(xi 

;θ)'s, T
ikiii xxxx ],...,,[ 21=  is predictor (design) vector and 

 is n 1#  vector of errors which are independent 
identical distributed (iid)  with mean zero and unknown variance 
σ2.  The parameters of the model are often estimated by using 
the nonlinear least squares (NLLS) method because of tradition 
and ease of computation.  Under the usual assumption, the NLLS 
estimates possess desirable properties.  A commonly violated 
assumption is known as autocorrelated errors, occurs when the 
errors are correlated with the previous errors.  This problem 
usually occurs in the situation when the data are collected over 
time (see White and Brisbon (1980)). Unfortunately many 
statistics practitioners are not aware that analysing such data 
based on the NLLS method posed many drawbacks.  Seber and 
Wild (2003), proposed two stage estimator (CTS) to rectify this 
problem. Nevertheless, the problem is further complicated when 
the violation of the independent error terms come together with 
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the existence of outliers.   It is now evident that outliers may 
have an unduly effect on the the NLLS estimates (see Habshah 
(1999)).  By ignoring the outliers and erroneously assuming 
that the errors are independent, the NLLS technique is used for 
estimating the parameters. Consequently less efficient estimates 
are obtained as a result of employing an incorrect model on the 
erroneous assumption.  The CTS method alone cannot rectify 
both problems of outliers and autocorrelated errors. This problem 
motivates us to establish a new and more efficient estimator that 
can rectify with these two problems simultaneously.  However, the 
development of such method has not been published extensively 
in the literature. Sinha et al.(2003), proposed Generalized M 
(GM) estimator to estimate the parameters of the model when the 
errors follow autoregressive (AR) error process. Riazoshams et al. 
(2010) developed a new method that they call Robust Two Stage 
Estimator (RTS) to remedy the problem of autocorrelated errors 
which come together with the existence of outliers.  The proposed 
method consists of two steps whereby in the second step, the RTS 
estimate is obtained by  minimising 

where ρ(.) is an influence function.  For correlated errors, let V
be positive definite correlation matrix of εi ’s and the variance 
matrix of errors are denoted as var(ε) = σ2V.  Let UUV T=  be the 
Cholesky decomposition, where U is the upper triangular matrix 
and defined R = (U-T)-1.
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The Performance of RTS Estimator

In this section, the robustness of our newly proposed robust two 
stage estimator is assessed by using real life data set. This data 
set that we refer to as chloride data is taken from Bates and Watts 
(1988) which presents the relationship between the chloride 
concentration (%) and time. (see Sredni, 1970). They considered 
the following model for the data

  
      
where the εi is the error terms which follows the AR(1) process. 
Nevertheless, Lin and Wei (2004) enumerated that the error terms 
follow a SAD(1) (Special Ante Dependence) error process, which 
is close to the AR(1) process. In order to see the effect of outliers, 
we deliberately changed three data points, that is the  2nd, 3rd and 4th 
observations corresponding to y values (17.60,17.90,18.30) with 
higher values (20.60, 20.90, 21.30). The Nonlinear Least Squares 
(NLLS), Classical Two Stage (CTS) and Robust Two Stage (RTS) 
estimators were then applied to the original and the modified data.  
Tables 14 and 15 present the parameter estimates, the residual 
standard errors and the  percentage variances accounted for, which 
are denoted as 2100R = 100[1-(residual mean square/total mean 
square)] for the original and the modified data. 

It can be observed from Table 14 that when there is no outlier 
in the data, the three estimates are reasonably closed to each other. 
Nonetheless, as expected, the CTS estimator performs slightly 
better than the RTS and the NLLS as evidenced by its smallest 
residual errors.  The results of Table 15 signify that the presence 
of outliers changes things dramatically.  The NLLS and the CTS 
estimates immediately are affected by outliers.  It can be seen that 
the residual standard errors of the NLLS and the CTS estimates 
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have increased markedly and their goodness of fit measures have 
decreased. The parameter estimates of the NLLS and the CTS 
have changed drastically.  Nevertheless, the RTS seems to be only 
slightly affected by outliers revealed by the values of the RTS 
estimates, residual standard errors and the value of 2100R , which 
seem to be only slightly changed. It looks like the NLLS estimator 
is easily affected by outliers and autocorrelated errors followed by 
the CTS.

Table 14  The parameter estimates , ,1 2 3i i i {t t t t  of the chloride data 
(original)

Method 1it 2it 3it {t vt R̂100

NLLS 38.8653 0.8290 0.1606 --- 0.2017 99.71078

CTS 38.8443 0.8258 0.1600 0.654 0.1991 98.75913

RTS 39.2077 0.8230 0.1559 0.643 0.2016 99.98373

Table 15 The parameter estimates , ,1 2 3i i i {t t t t  of the chloride data 
(modified)

Method 1it 2it 3it {t vt R̂100

NLLS 65.2632 0.8173 0.0528 --- 0.6477 96.49654

CTS 52.5806 0.7895 0.0771 0.499 0.6391 89.89496

RTS 38.4889 0.8151 0.1611 0.794 0.3085 99.97967 

Monte Carlo Simulation

Here we report a Monte Carlo simulation study that is designed 
to assess the performance of the RTS estimates.  The simulation 
study was carried out as follows.  We considered a logistic growth 
curve model with the following function



61 ❘❘❚ 

Habshah Midi

Where ix  is uniformly distributed on interval [3, 51]. In this 
simulation study, we considered different sample sizes that 
varied from 20, 50, and 100 and different errors processes, that is 
AR(1), AR(2) and AR(3). However, we only show the results for 
AR(1) process.   For AR(1) process, we considered  .0 3z=- , 

50av =  , /( )la
2 2 2v v z= - .  We then generate ( , )N 01

2+f v
~ ( , ), , , ,N i n0 2i a

2 fa v =  and the remaining errors are  
computed from recursion relation.

In order to study the effect of outliers on the NLLS, CTS 
and RTS estimates, the data were contaminated with different 
percentage of outliers, that is 5%, 10%, 15% and 20%.  The 
contaminated data points were generated following Fox (1972) 
algorithm by using Type I outlier, where the replacement outliers 
(RO) technique is applied.  The Bernouli process is used to isolate 
the outliers (see Marona et al.(2006)). 

       Due to time constraint, in each simulation run, there were 
200 replications.  The mean estimated values, the bias, the variance 
and the Root Mean Squared Error (RMSE) of each estimate were 
computed based on 200 runs.  In order to simplify the presentation 
of the results, we only report the percentage robustness measure, 
that is the ratio of the (RMSEs) of the estimators compared with 
the CTS estimator for clean data which have autocorrelated errors.  

For quick interpretation, graphical results for these robustness 
measures are presented in Figure 8.  A good estimator is the one 
which has robustness measure, which is closest to 100%.  It can be 
observed that when there is no outlier in the data, the robustness 
measures of the three methods are fairly closed to each other and 
they are closed to 100%.  However, when contamination occurs 
in the data, the robustness measures for all estimates decreased 
irrespective of the sample sizes, percentage of outliers and type of 
autocorrelation process.
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Figure 8  Robustness Measure (%) of the three estimates, AR(1) 
process

The RTS method outperforms the CTS and the NLLS method 
evident by its highest values of robustness measures for all the 
simulation runs.  It is worth mentioning that the robustness 
measure of all estimates is decreased with an increased in the 
percentage of outliers.  The results seem to be uniform for different 
sample of size n= 20, 50, 100 and 200, and different percentage 
of outliers. These results agree reasonably well with the results of 
real data that the RTS emerges to be the most efficient estimator, 
followed by the CTS and the NLLS when both problems of 
outliers and autocorrelated errors occur together. It seems that the 
performances of the CTS and the RTS estimators are equally good 
in a well behaved data and they are slightly better than the NLLS.  
The CTS is a good technique for correcting autocorrelated errors 
but it is easily affected by outliers. Thus, in this situation, it is 
not reliable. In this paper, we proposed a RTS method where it 
can remedy both problems of outliers and autocorrelated errors at 

c
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the same time. The numerical example and simulation experiment 
indicate that the RTS is more efficient than the NLLS and CTS for 
handling the problems of outliers and autocorrelated errors.

ROBUST CENTERING IN THE FIXED EFFECT 
PANEL DATA

Introduction

Panel data refers to the pooling of observations on a cross-section 
of households, countries, firms, etc. over multiple time series 
(Baltagi, 2005).  For the past decade, there has been an increasing 
trend on the use of panel data in the research of economics and 
finance.  

	The fixed effect linear panel data model can be formulated as 
below: 

																		       yit = αi + x'it β = εit	 																	           (1)	

	

where   i = 1, ..., n are individual units observed at time series 
t =1,..., T.  yit is the dependent variable, αi are the unobservable 
time-invariant individual effects, β Is K 1#   and xit  is the 
i-th observation on K explanatory variables.  The εit  denote the 
error terms which are assumed to be uncorrelated across time 
and individual units. The assumption of strict no endogeneity is 
applied.  

The classical Within Groups estimator is obtained by firstly 
transformed the data within each time series by the mean:

and
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The procedure is known as data centering and became an 
essential part by which the unobserved individual effects are 
eliminated.  It follows from (1) that:

y x uit it itb= +u u

	                                            
where uit is the new error term.  Thus, the classical Within 
Estimator, wbt  can be determined by the OLS method which 
minimises the function:

               

		  As already mentioned, the OLS produces the best linear 
unbiased estimator (BLUE) under the usual assumptions of 
normally distributed, independent and identically distributed 
errors.  However, outliers can immediately alter the normal setting 
of the data and lead to unreliable estimates of the model.  The 
damaging effect of outliers can be more crucial for the Within 
Group estimator. The classical data transformations will introduce 
a lot more outliers into the transformed data due to the non-
robust property of the mean.  Data in the contaminated time series 
will be affected in which the values will be greatly inflated or 
deflated.  Thus, a robust data transformation is required to rectify 
this problem.  Bramati and Croux (2007) and Verardi and Wagner 
(2011) replaced the centering by the mean with the median 
centering:

y y median yit it it= -t " ,     
and

x x median xit it it= -t " ,
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for 1 ≤ i ≤ n and 1 ≤ t ≤ T.  Median is chosen simply because it is 
the simplest robust measure to be derived and also due to its min 
max property.  Median also has the highest breakdown point, in 
which data can be contaminated up to 50% before the estimate 
becomes useless.  Once data has been robustly transformed by the 
median, Bramati and Croux (2007) employed the Robust Within 
Group GM-estimator (RWGM) to estimate the parameters of the 
panel data model.  Generally, the GM-estimators are solutions to 
normal equations:

                            

	In this presentation, Robust Within Group MM-estimator 
(RWMM) and RWGM based on MM centering are proposed.  It 
is important to note that prior to utilising the proposed estimators, 
the data centering procedures need to be employed.  As already 
mentioned, the commonly used mean centering procedure is very 
sensitive to outliers.  As an alternative, the median centering is put 
forward. However, centering by the median produces nonlinearity 
to the resulting data and affects the equivariance properties of the 
robust estimators (Bramati and Croux, 2007). Moreover, in an 
uncontaminated data, median is known to be less efficient than 
the mean (Maronna et al. 2006). This will certainly affect the 
efficiency of robust estimators in the absence of outliers.  Thus, 
different type of robust centering is proposed in order to bring 
back linearity into the transformed data and at the same time 
provide more efficiency. Hence Midi and Bakar (2015) proposed 
centering to be done by MM-estimate of location called MM-
centering.  The proposed centering procedure is incorporated in 
the establishment of the proposed robust Within Group Estimator.  
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The proposed Robust Within Group estimator is summarised in 
two steps as follows;

Step 1 : Employ the proposed MM-centering procedure to the 
data.

Step 2 : Estimate the parameter of the panel data by using the 
RWGM proposed by Bramati and Croux (2007) or using our 
proposed RWMM. 

	
The Performance of RWGM and RWMM

The performances of the MM-centering will be compared to the 
median centering for the two robust estimators by the Monte 
Carlo simulation.  Following Bramati and Croux (2007), the 
dependent variable is set to accord the fixed effect linear panel 
model by generating εit ~N(0,10), α ~U(0,20) and the vector of the 
slope coefficients β set equal to a vector of ones.  The explanatory 
variables are generated from a multivariate standard normal 
distribution  where 1 is a  K 1# vector of ones.  

	Data are contaminated either randomly over all observations 
(random contamination) or concentrating the contamination in a 
few times series (block concentrated contamination).  Both types 
of contaminations are done at two different locations; in y-direction 
and x-direction or leverage.  All together, four different types of 
contamination cases are studied; vertical outliers, leverage, block 
concentrated vertical outliers and block concentrated leverage, 
at 5% and 10% level of contamination.  The non-contaminated 
case is also studied for comparisons.  For the block concentrated 
contamination, a few time series are randomly selected from the 
panel data set and be contaminated only up to 50% as suggested 
by Bramati and Croux (2007).
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	Vertical outliers or outliers in the y-direction are generated 
by inflating the randomly chosen y’s from a few time series with 
~N(20.1). Further, to generate block concentrated x-outliers or 
the leverage points, we inflate x’s of the contaminated ’s with 
data points from K-variate normal distribution ( , ) .N 10 1 1#  
This is done in order to create influential leverage points.  In the 
experiments, we considered panel datasets of T  = 5, 10, 15 and 
20; representing small, medium, and large time series, each with  
n = 25,50,100 and 200  units for small, medium and large samples.  
Univariate regression is considered where  K = 1 with M = 1000  
Monte Carlo replications.  

	Once panel datasets are generated, data are immediately 
transformed by applying the classical mean centering and two 
other types of robust centering procedures - the median centering 
and MM-centering.  The classical β coefficients are estimated by 
the OLS and the robust  coefficients are estimated by the RWGM 
and RWMM estimators.  The average mean square error (MSE) 
for each case is calculated by comparing the robust estimator’s 
parameter estimates to the true parameter values using the formula:

	

 ( ) )(MSE M
1 ( )j

j
M 2
1b b b= -=

t t|

where ( )jbt is the estimated slope in jth-replication.  The root 
mean square error (RMSE) is given by ( )MSE

/1 2

bt7 A .  Following 
Riazoshams et al. (2010) the performance of each technique is 
evaluated based on the percentage of robustness measures using 
the ratio of the RMSEs of the estimators compared with the WG-
mean centering based estimator for the good data.  The robustness 
measures for different types of contaminations are presented. 
High percentage indicates the improved performance of the robust 
estimators.  The robustness measures of the simulated panel data 
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set in the uncontaminated data is not shown.  The overall results 
show that the RWMM provide better estimates than the RWGM 
in the uncontaminated panel data. Hence, RWMM under MM-
centering provides the most efficient and consistent results for the 
uncontaminated data.

	Results for block concentrated contaminations are produced 
in Table 16 for vertical outliers.  It is observed that the classical 
WG estimations are largely affected in both types of outliers; only 
less severe when contaminated vertically. On the other hand, both 
RWGM and RWMM estimators are able to provide improved 
estimations under the two robust centering.  Their performances 
are seen to increase with the increase of number of time series,   T 
but rather low under the median centering.  More stable and greater 
performances are observed for the robust estimations under MM-
centering compared to robust estimations under median centering.  

	Similar results are obtained when blocks or time series are 
contaminated in the x-direction.  Leverage points are known to 
cause severe effects to the classical estimates, resulting in low 
percentage on the robustness measures in all cases.  Under the 
median centering, RWGM and RWMM are able to provide good 
results with increasing trend as T increases.  Once again, the better 
results are found under the MM-centering regardless of the size 
of time series.  It is also observed that RWMM performs more 
superior than RWGM under different types of robust centering 
and contamination levels.  

		The poor performances of robust estimators in the median-
centred data may due to the non-linearity in the median transformed 
data.  Under the robust MM-centering, linearity is brought back 
into the data and provided improved performances for both RWGM 
and RWMM.  In both newly proposed robust centering, data are 
required to be centered close to the value of the mean in the non-
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contaminated data.  This also explains the increased performances 
for the uncontaminated data of both robust estimators, and hence 
the ability to provide efficient estimates under normality.  MM-
centering is found to provide more efficient, stable and consistent 
results to both RWGM and RWMM. 

Simulation study indicates that data transformation under 
MM-centering provides more stable and superior results than 
transformation by the median.  The performances of robust 
estimations under the newly proposed procedures have also 
improved vastly in small data sets, with small number of time 
series.  Overall results showed that the performances of RWMM are 
more superior than RWGM under different types of contamination 
levels, sample size and number of time series.  
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ROBUST ESTIMATOR IN RESPONSE SURFACE 
DESIGN WITH HETEROSCEDASTIC CONDITIONS 

Introduction

Response Surface Methodology (RSM) which was first introduced 
by Box and Wilson in 1951 (Hill and Hunter, 1966) involves 
the use of statistical and mathematical tools for modelling and 
analysing a problem in which a response variable of interest is 
influenced by several variables. The main objective of RSM is to 
optimise the response and to find the combination of conditions 
that provides the highest response. RSM helps industrial world 
to realise how several input variables potentially influence some 
performance measures of a process and product. The relationship 
between a set of independent variables (also known as control, or 
input variables) and a response is determined by a mathematical 
model called regression model. Multiple regression analysis is one 
of the regression models useful for modelling and analysing the 
relationship between a response and control variables required in 
RSM. In general, regression analysis is routinely applied in most 
applied sciences to observe the change in the response variable 
by changing any one of the control variables in the situation 
that the control variables are considered to be fixed. One of the 
predominant regression analysis techniques in RSM is Ordinary 
Least Squares Method (OLS). The popularity of OLS in industrial 
applications is due to its easy computation, universal acceptance, 
and elegant statistical properties. 

In applications, the normality of error distribution assumption 
will be inefficient in the presence of outlying observations in a 
data set resulting in less reliable estimates of the model parameters 
(Montgomery et al., 2001; Kutner et al., 2004; Montgomery, 
2009). The first step in RSM is to construct an approximation 
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model for the response y. This approximation model is usually the 
second-order polynomial model to be fitted between the response 
variable (quality characteristics) and a number of input variables. 
The main aim is to find the best optimal settings of interest for 
the input variables or the best values of design parameters that 
optimise the response variable. Typically the main emphasis 
is on optimising (minimises or maximises) the mean (location) 
value of y where the variance (scale) is assumed to be small 
and constant. These assumptions may not be valid in real-life 
practice. Nonetheless, only constructing a response surface 
model for the mean may not be adequate and optimisation result 
can be misleading. Robust design is one of the most important 
process and quality improvement methods that focus on 
determining the optimum operating conditions with the ultimate 
aim of minimising variations in the quality characteristics while 
keeping a process mean at the customer-identified target value. 
Originally, RSM was designed to address only single response, 
but many real lives industrial applications involve optimisation 
of more than one response variables. Therefore, the dual response 
approach (developed by Myers and Carter, 1973) is used to tackle 
such problem (see Vining and Myers, 1990;  Park and Cho, 
2003; Shaibu and Cho, 2009). Basically in dual response surface 
optimisation, two models are established for the mean and for the 
standard deviation of the response y. Then the two fitted response 
models are optimised simultaneously in a region of interest. The 
experiments are repeated m times to measure the variability of y. 

The OLS method is often used to estimate the parameters of 
the models. It is important to mention that the OLS regression 
estimates which are often used in RSM are also not appropriate 
for real-world industrial problems containing outliers. The 
problems get more complicated when outliers and heteroscedastic 
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errors come together. Goethals and Cho (2011) employed the 
Reweighted Least Squares (RLS) method to estimate the model 
parameters when the assumptions of constant error variances 
are violated. Although the RLS based method can rectify the 
heteroscedastic error, but it is not robust when outliers occur in 
the data. In this situation, the RLS based method cannot handle 
both problems at the same time. We need to improve this method 
that can remedy the problem of heteroscedastic errors and dampen 
the effects of outliers. In this respect, Shafie (2015) proposed to 
incorporate robust MM estimator in the formulation of the Two-
Stage Robust (TSR-MM based) procedure. The TSR-MM based 
method consists of two steps whereby the TSR MMb -

t  estimate is 
obtained by minimising;

 using MM 
estimation technique 

where

		  The weight is defined as the square of the inverse fitted values 

of iŝ , 2ˆ
1

i
i s

w = (obtained from the first step). Subsequently, they 

employed the TSR-MM based method to estimate the parameters 
of the second-order polynomial models for the process mean )(y  
and process standard deviation (s) of the response y. The fitted 
response functions for the process mean and process standard 
deviation are as follows:
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where  

were estimates of the coefficients based on TSR-MM estimator. 
The usual method in replicated responses problem is to firstly 

compute the sample mean and sample standard deviation of y 
and construct the process mean and process standard deviation 
functions. Once the fitted response function for the process 
mean and process variance have been established, the optimum 
operating conditions of control factors are obtained by minimising 
the following 

minimise 

where 0t  is the customer-identified target value for the 
quality characteristics of interest.

The performance of TSR-MM based estimator

In this section, we report a Monte Carlo simulation study that 
is designed to assess the performance of the TSR-MM based 
estimator. In this simulation study, firstly, the responses Y were 
generated randomly from a normal distribution. Following 
Park and Cho (2003), five responses are generated from each 
distribution with µ(xi)  and σ(xi)  at each control factor settings 

1,2,…,27.x (x , x ,x ),ii i1 2 i3l= =   The total number of iterations 
is 500, each having 27 design points, and 135 responses. µ(x) and 
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σ2(x)  are given as follows:  

  

Secondly, to see how the lack of a normal distribution affects 
the estimators, the response Y are also generated from other 
distribution such as double exponential distribution, which has 
heavier tails distribution that is prone to produce a few outliers. 
σ2(x) is generated accordingly to induce heteroscedasticity of the 
error variances. To further investigate the effect of outliers, the 
data were contaminated by generating outliers. Since the OLS 
model is known to be not reliable in the presence of outliers, it 
is not included in the comparison. For each distribution specified 
above, two statistical measures such as bias and mean squared 
error (MSE) using RLS and TSR-MM based methods were 
considered as decision criteria to judge the performance of the 
estimators. The result of Breusch-Pagan test indicates that the error 
variance of this experiment is not constant. Table 17 illustrates the 
estimated bias and MSE of the optimal mean response (x)nt  for 
response surface model with heteroscedastic errors based on RLS 
and TSR-MM based methods. Assuming that the target value for 
this experiment is t0=50. It can be observed that in the presence 
of heteroscedascity and without contaminated data, as expected, 
the RLS based estimate is slightly better than the TSR-MM based. 
However, for non-normal data having heteroscedastic errors, the 
TSR-MM based method is more efficient than the RLS based 
method evidence by having smaller bias and MSE. 
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Table 17  Estimated Bias and MSE of the Estimated Optimal Mean 
Response for Heteroscedascity Data Using RLS based and TSR-MM 

based  Methods

RLS based TSR-MM based

Distribution Bias MSE Bias MSE

Normal 3.83 24.90 3.90 26.12

Normal (contaminated) 9.17 133.48 3.37 19.55

Double Exponential 4.65 40.95 4.15 29.54

Numerical Results

The merit of the newly proposed robust TSR-MM based estimator 
is assessed using numerical example.

 
Printing Process Data

This experiment introduced by Box and Draper (1987), was 
conducted to determine the effect of the three control variables: 

1x (speed), 2x  (pressure), and 3x  (distance) on the characteristic 
of a printing process y, that is on the machine’s index to apply 
colored inks to package labels ),,( 321 yyy . The experiment is a 
33 factorial design with three replicates at each of the 27 design 
points. In order to see the effect of outliers in the heteroscedasticity 
data, we deliberately changed three response points, that is the 8th, 
15th, and 27th observation corresponding to 1y  (259 to 9259), 2y  
(568 to 8656), and 3y  (1161 to 11161). The plot of residual against 
fitted values suggests that there is a moderate heteroscedasticity 
problem. The result of Breusch Pagan test indicates that the 
error variances of this experiment are not constant. The optimum 
response based on least-squares (OLS), Reweighted Least Squares 
(RLS based), and Two-Stage Robust (TSR-MM based) estimations 
were then applied to the data. Table 18 exhibits the estimated 
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optimum settings, mean, variance, and MSE of the estimated 
mean response. The mean squared error is obtained by the MSE 
relation where, )MSE ( with 500(x) (x) t t2

0 0
2= + - =v nt t . It 

can be seen from Table 18 that the estimated mean response based 
on RLS achieves the target i.e. 500 and has the smallest value of 
MSE.     
    
Table 18  The Estimated Optimum Settings, Mean, Variance, and MSE 

of the Estimated Mean Response

Model x* Mean Variance MSE

OLS 
(1.000, 0.060, 

-0.243)
494.657 1988.550 2017.099

RLS
(0.9966, 0.9967, 

-0.7190)
500 8.043e-11 5.161e-10

TSR-MM 
based

(1.000, 1.000, 
-1.000)

497.86 492.29 496.85

The results of Table 19 signify that in the presence of outliers, 
changes things dramatically. The OLS and RLS based immediately 
are affected by outliers. It can be seen that the standard errors of the 
OLS and RLS estimates increased markedly, and their objective 
target have deviated. Nevertheless, as expected, the TSR-MM 
based estimate only slightly affected by outliers revealed by 
smaller values of the standard errors, and MSE and achieve the 
objective target.
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Table 19  The Estimated Optimum Settings, Mean, Variance, and MSE 
of the  Estimated Mean Response for Modified dataset

Model x* Mean Variance MSE

OLS (-0.637, 0.353, 1.000) 342.01 14448.21 39407.22

RLS (0.777, -1.000, 1.000) 444.97 12482.95 15511.21

TSR-MM 
based

(1.000, 0.1278, -0.3421) 497.62 793.13 798.81

It can be concluded that the performances of the optimum 
mean response of the RLS and the TSR-MM based estimators are 
equally good in a heteroscedascity data without outliers. The RLS 
based estimator is a good technique for solving heteroscedascity 
problem but it is easily affected by outliers. Hence, they are 
not reliable. The numerical example and simulation experiment 
indicate that the TSR-MM based method offers a substantial 
improvement over the other existing methods for handling the 
problems of outliers and heteroscedastic errors in response surface 
model. 

ROBUST STABILITY BEST SUBSET SELECTION 
FOR AUTOCORRELATED ERRORS

Introduction

In the last part of this inaugural lecture, the issue on the variable 
selection technique for high dimensional data is discussed.  It is 
now evident that the classical variable selection methods such 
as fitting all the possible subsets and using stepwise selection 
procedures failed to correctly select the important variables in 
the final model. Moreover, those  procedures are not practical 
because they are very time consuming.  The problem becomes 
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more complicated when autocorrelated errors come together with 
the existence of outliers in a data set.  There are many variable 
selection techniques such as Forward Selection and Multi-Split 
procedures, but they do not discuss the issue of the combined 
problems of outliers and correlated errors.  As such Hassan et al. 
(2015) developed a new robust variable selection technique that 
we call Robust Multi-Split –AIC (R.Multi-Split-AIC)  and Robust 
Multi-Split-BIC(R.Multi-Split-BIC). Since the formulation of the 
proposed methods are very long and mathematically complex and 
also because of space limitations, we only describe the algorithm. 
The developed methods consist of three steps whereby in the 
first step, robust Cochrane-Orcutt method of Midi et al. (2013) is 
employed,  followed by using n  Reweighted Fast Consistent 
and High (RFCH) breakdown estimator which is developed by 
Olive and Hawkins, (2010).  Finally, the BIC and AIC procedures 
are applied to the concentrated data (Hassan et al.,2015).  It is very 
important to highlight that a good variable selection technique 
is the one that has the ability to correctly choose the important 
variables to be included in the final model so that it will have high 
predictive power. The merit of our proposed method is illustrated 
by using numerical example and simulation study.  

The Performance of the Proposed Method

A simulation study that was designed to assess the performance 
of our proposed robust variable selection techniques is conducted 
under two different outlier scenarios. However, we only report 
one scenario. In this experiment, we consider  multiple linear 
regression model with the following relation:

Y = 7X1+ 6X3 + 5X4 + 7X6 + 7X9 + 0 [XD ] + e 
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where D = 2,5,7,8,10. A design matrix was generated from a 
multivariate normal distribution with covariance structure  cov 
(Xj  ;XK) = ρ|j-k|  where ρ = 0.5 , j,k =1,2,…..10 and n = 500. The 
random errors ε  were drawn from a standard normal distribution.
	 To create the autocorrelation problem we considered the 
following setting: 

 

where ρ = 0.9 .  As in (Agostinelli and Salibian-Barrera, 2010) 
outliers were generated by replacing 10% of the original values with 
high leverage points and vertical outliers. The vertical outliers were 
generated as asymmetric outliers, where  ε = 0.10 and the errors 
were generated as e~(1–ε)N(0,1) + ε N(20,1).  To create the leverage 
points, each covariate was contaminated with 10%  outlying 
observations generated from N (50,1).   For each case, we generated 
500 independent simulated datasets.  The problem of autocorrelated  
errors first be rectified and then randomly  split each of the dataset  
into training  ntr (70%) and test nts sets (30%). The proposed robust 
stability selections (R.Multi Split-AIC and R.Multi Split-BIC), the 
existing stability selections (Multi Split-AIC and Multi Split-BIC) 
and the Single-split all-subsets-AIC and the single-split all-subsets-
BIC methods were then applied to the training datasets. This process 
was repeated 500 times. The average Root Mean Squares Errors 
(RMSE) of the test sets over 500 simulation runs and the percentage 
chances for each variable of the training sets being selected in the 
final model over 500 simulation runs are presented. The potential 
variables being selected are also exhibited in the tables. The best 
method is the one that has the lowest RMSE and selects the correct 
variables (variables X1, X3, X4, X6, X9) in the final model with no 
noise variable. The results of the study show that when there is no 
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outlier in the data, all the six methods able to choose all the correct 
variables in the final model. The results indicate that our proposed 
method is comparable with other existing methods. Nevertheless, 
the results change dramatically in the presence of outliers in a 
data set. It can be observed from Table 20 that the classical Multi-
Split-AIC and Multi-Split-BIC methods are much affected in the 
presence of high leverage and vertical outliers.  Both methods have 
the highest RMSEs and tend to be underfitting. In this situation, 
both the Single-split-AIC and Single-split-BIC variable selection 
techniques also fail to select the correct variables.
	 Both methods tend to be over-fitting because they also select 
noise variables in the final model. It is interesting to observe that 
our proposed variable selection methods consistently have the least 
RMSE and successfully chosen the correct variables in the final 
models without selecting any noise variable.
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Air Quality Data 

In this study, an hourly air pollution data which are taken from the 
Department of Environment (DoE), Malaysia is used to further 
assess the performance of our method.  

Figure 9  QQ-Plot, histogram of residuals and plot of PM10 vs each 
component of air quality data, Seberang Prai, Pinang

The data consists of the PM10 concentration and ten 
independent variables, of which six are pollutant variables (sulphur 
dioxide (SO2), nitrogen dioxide (NO2), nitrogen monoxide (NO), 
nitrogen oxide (NOx), carbon monoxide (CO) and ozone (O3)) 
and four are meteorological variables (wind speed (WS), wind 
direction (WD), temperature (Temp) and relative humidity (Hum)). 
PM10 is a particulate matter 10 micrometers or less in diameter 
of solid or semi-solid material found in the air.  The value of each 
variable was recorded from the monitoring station at Seberang 
Perai, Penang on an hourly basis every day from January 2005 
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to December 2013. For the purpose of the statistical analysis, 
the hourly data were converted to a daily average, giving 3,287 
readings. Missing values and calibration hours of certain variables 
are replaced by the coordinate medians for these variables. 

Let us first observed the plots in Figure 9. Both the histogram 
(b) and the quantile–quantile (q-q) plot (c) of Figure 10 show 
that the residuals are contaminated with a heavy-tailed mixture 
distribution. Since some points in the qq-plot do not fall on the 
straight line and the histogram is skewed to the right, this indicates 
that this data is not normal. Thus, we suspect that there are outliers 
in this dataset. Figure 9(d) also shows that there are some leverage 
points in each covariate.  Figure 9(a) indicates the existence of 
autocorrelation or serial correlation between the residuals, and it 
seems that there is a high order auto-regression AR(P).

Our proposed robust R.Multi-Split-AIC and R.Multi-Split-
BIC and the existing methods were then applied to the data (3287 
observations) to investigate which important variables influenced 
PM10. The dataset consists of 3287 observations, which include 
the PM10 as the response variable and the ten independent 
variables already mentioned. Since the air quality data are taken in 
time sequence, the Durbin Watson (DW) test is applied to the data 
to check the existence of  autocorrelation problem. The results of 
Durbin Watson statistics for the original air quality data (p<0.01) 
confirmed the existence of autocorrelation and no autocorrelation 
(p>0.05) after treating the autocorrelation problem. After 
correcting the autocorrelation problem, the data is then randomly 
divided into training (70%) and test sets (30%).

This process is repeated 3,000 times. The RFCH is used to 
concentrate the training and test set data. Following Meinshausen 
and Bühlmann (2010),  each training and each  test set are  split 
randomly into two sets of equal size and this process is repeated 
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50 times. The six variable selection methods were then applied to 
the first part of the training data set. The variables that are selected 
in the final model are determined. The best method is the one that 
has the lowest average of RMSE.  
	 The results in Table 21 show that the RMSE of our proposed 
method, based on both AIC and BIC, is the smallest compared to the 
existing methods.  This suggests that our proposed method correctly 
identified the potential variables, namely WD, Temp, Hum, SO2, 
NO2, O3 and CO, to be included in the final model. The Single-
split-AIC method selects eight covariates, while the single-split-BIC 
method selects only six covariates. The classical Multi-Split-AIC 
selects seven covariates and Multi-Split-BIC selects five covariates.
	 It is interesting to observe that our proposed methods select 
all the pollutant variables except NOx and NO and all the 
meteorological variables except WS.  From the results in Table 21, 
we can clearly infer that the R. Multi-Split-AIC and R. Multi-Split-
BIC methods are more efficient than the classical methods, because 
the final model that is selected by these methods is sufficient to 
include all the non-zero covariates and has the smallest RMSE. 
The results of the model validation suggest that WD, Temp, Hum, 
SO2, NO2, O3 and CO should be included in the final model. 
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	 The real air quality data and simulation experiments show 
that our proposed methods successfully and consistently select 
the correct variables in the final model with the smallest RMSE. 
The commonly used methods failed to correctly select the correct 
variables in the final model.  Hence, we can consider our proposed 
methods as a better variable selection method and strongly 
recommend using them especially when outliers and autocorrelated 
errors occur in the data.

CONCLUSION
No statistical technique can be used to eliminate or explain all of 
the uncertainty in the world.  Nonetheless, statistics can be used 
to quantify that uncertainty. That is the reason why statistical 
techniques have been used widely to help policy makers make 
decisions. One cannot just use statistical techniques blindly 
without prior knowledge or sound knowledge in statistics. We have 
illustrated some topics in statistical analysis where researchers 
often are not aware of the bad consequences of using classical 
methods when outliers are present in a data set. To get a valid 
inference, appropriate statistical techniques should be used and 
a proper adequacy checking of the underlying assumptions are 
to be performed. When the basic assumptions are not satisfied, 
proper remedial measures should be taken into considerations.  
The classical methods heavily depend on assumptions.  The most 
important assumption in classical method is that data are normally 
distributed.  All classical procedures are based on this assumption. 
It is very unfortunate that the presence of outliers in a data set may 
caused apparent non-normality and all the classical procedures 
breakdown in their presence.  Thus, in the presence of outliers, we 
recommend robust methods to assist statistics practitioners making 
correct decision. By ignoring the correct statistical techniques and 
adequacy checking will lead to invalid inferences and inaccurate 
predictions. Consequently, policy makers become ignorant of the 
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fact and they are bound to rely on meaningless and misleading 
results to make decisions and that may bring disaster to a community 
or to a country.
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41. Prof. Dr. Malay Raj Mukerjee
	 A Distributed Collaborative 

Environment for Distance Learning 
Applications

	 17 June 1998

42. Prof. Dr. Wong Kai Choo
	 Advancing the Fruit Industry in 

Malaysia: A Need to Shift Research 
Emphasis

	 15 May 1999

43. Prof. Dr. Aini Ideris
	 Avian Respiratory and 

Immunosuppressive Diseases- A Fatal 
Attraction

	 10 July 1999

44. Prof. Dr. Sariah Meon
	 Biological Control of Plant Pathogens: 

Harnessing the Richness of Microbial 
Diversity

	 14 August 1999

45. Prof. Dr. Azizah Hashim
	 The Endomycorrhiza: A Futile 

Investment?
	 23 October 1999

46. Prof. Dr. Noraini Abdul Samad
	 Molecular Plant Virology: The Way 

Forward
	 2 February 2000

47. Prof. Dr. Muhamad Awang
	 Do We Have Enough Clean Air to 

Breathe?
	 7 April 2000

48. Prof. Dr. Lee Chnoong Kheng
	 Green Environment, Clean Power
	 24 June 2000

49. Prof. Dr. Mohd. Ghazali Mohayidin
	 Managing Change in the Agriculture 

Sector: The Need for Innovative 
Educational Initiatives

	 12 January 2002

50. Prof. Dr. Fatimah Mohd. Arshad
	 Analisis Pemasaran Pertanian 

di Malaysia: Keperluan Agenda 
Pembaharuan

	 26 January 2002

51. Prof. Dr. Nik Mustapha R. Abdullah
	 Fisheries Co-Management: An 

Institutional Innovation Towards 
Sustainable Fisheries Industry

	 28 February 2002

52. Prof. Dr. Gulam Rusul Rahmat Ali
	 Food Safety: Perspectives and 

Challenges
	 23 March 2002

53. Prof. Dr. Zaharah A. Rahman
	 Nutrient Management Strategies for 

Sustainable Crop Production in Acid 
Soils: The Role of Research Using 
Isotopes

	 13 April 2002
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54. Prof. Dr. Maisom Abdullah
	 Productivity Driven Growth: Problems 

& Possibilities
	 27 April 2002

55. Prof. Dr. Wan Omar Abdullah
	 Immunodiagnosis and Vaccination for 

Brugian Filariasis: Direct Rewards 
from Research Investments

	 6 June 2002

56. Prof. Dr. Syed Tajuddin Syed Hassan
	 Agro-ento Bioinformation: Towards 

the Edge of Reality
	 22 June 2002

57. Prof. Dr. Dahlan Ismail
	 Sustainability of Tropical Animal-

Agricultural Production Systems: 
Integration of Dynamic Complex 
Systems

	 27 June 2002

58. Prof. Dr. Ahmad Zubaidi 
Baharumshah

	 The Economics of Exchange Rates in 
the East Asian Countries

	 26 October 2002

59. Prof. Dr. Shaik Md. Noor Alam S.M. 
Hussain

	 Contractual Justice in Asean: A 
Comparative View of Coercion

	 31 October 2002

60. Prof. Dr. Wan Md. Zin Wan Yunus
	 Chemical Modification of Polymers: 

Current and Future Routes for 
Synthesizing New Polymeric 
Compounds

	 9 November 2002

61. Prof. Dr. Annuar Md. Nassir
	 Is the KLSE Efficient? Efficient Market 

Hypothesis vs Behavioural Finance
	 23 November 2002

62. Prof. Ir. Dr. Radin Umar Radin Sohadi
	 Road Safety Interventions in Malaysia: 

How Effective Are They?
	 21 February 2003

63. Prof. Dr. Shamsher Mohamad
	 The New Shares Market: Regulatory 

Intervention, Forecast Errors and 
Challenges

	 26 April 2003

64. Prof. Dr. Han Chun Kwong
	 Blueprint for Transformation or 

Business as Usual? A Structurational 
Perspective of the Knowledge-Based 
Economy in Malaysia

	 31 May 2003

65. Prof. Dr. Mawardi Rahmani
	 Chemical Diversity of Malaysian 

Flora: Potential Source of Rich 
Therapeutic Chemicals

	 26 July 2003

66. Prof. Dr. Fatimah Md. Yusoff
	 An Ecological Approach: A Viable 

Option for Aquaculture Industry in 
Malaysia

	 9 August 2003

67. Prof. Dr. Mohamed Ali Rajion
	 The Essential Fatty Acids-Revisited
	 23 August 2003

68. Prof. Dr. Azhar Md. Zain
	 Psychotheraphy for Rural Malays - 

Does it Work?
	 13 September 2003

69. Prof. Dr. Mohd. Zamri Saad
	 Respiratory Tract Infection: 

Establishment and Control
	 27 September 2003

70. Prof. Dr. Jinap Selamat
	 Cocoa-Wonders for Chocolate Lovers
	 14 February 2004
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71. Prof. Dr. Abdul Halim Shaari
	 High Temperature Superconductivity: 

Puzzle & Promises
	 13 March 2004

72. Prof. Dr. Yaakob Che Man
	 Oils and Fats Analysis - Recent 

Advances and Future Prospects
	 27 March 2004

73. Prof. Dr. Kaida Khalid
	 Microwave Aquametry: A Growing 

Technology
	 24 April 2004

74. Prof. Dr. Hasanah Mohd. Ghazali
	 Tapping the Power of Enzymes- 

Greening the Food Industry
	 11 May 2004

75. Prof. Dr. Yusof Ibrahim
	 The Spider Mite Saga: Quest for 

Biorational Management Strategies
	 22 May 2004

76. Prof. Datin Dr. Sharifah Md. Nor
	 The Education of At-Risk Children: 

The Challenges Ahead
	 26 June 2004

77. Prof. Dr. Ir. Wan Ishak Wan Ismail
	 Agricultural Robot: A New Technology 

Development for Agro-Based Industry
	 14 August 2004

78. Prof. Dr. Ahmad Said Sajap
	 Insect Diseases: Resources for 

Biopesticide Development
	 28 August 2004

79. Prof. Dr. Aminah Ahmad
	 The Interface of Work and Family 

Roles: A Quest for Balanced Lives
	 11 March 2005

80. Prof. Dr. Abdul Razak Alimon
	 Challenges in Feeding Livestock: 

From Wastes to Feed
	 23 April 2005

81. Prof. Dr. Haji Azimi Hj. Hamzah
	 Helping Malaysian Youth Move 

Forward: Unleashing the Prime 
Enablers

	 29 April 2005

82. Prof. Dr. Rasedee Abdullah
	 In Search of An Early Indicator of 

Kidney Disease
	 27 May 2005

83. Prof. Dr. Zulkifli Hj. Shamsuddin
	 Smart Partnership: Plant-

Rhizobacteria Associations
	 17 June 2005

84. Prof. Dr. Mohd Khanif Yusop
	 From the Soil to the Table
	 1 July 2005

85. Prof. Dr. Annuar Kassim
	 Materials Science and Technology: 

Past, Present and the Future
	 8 July 2005

86. Prof. Dr. Othman Mohamed
	 Enhancing Career Development 

Counselling and the Beauty of Career 
Games

	 12 August 2005

87. Prof. Ir. Dr. Mohd Amin Mohd Soom
	 Engineering Agricultural Water 

Management Towards Precision 
Framing

	 26 August 2005

88. Prof. Dr. Mohd Arif Syed
	 Bioremediation-A Hope Yet for the 

Environment?
	 9 September 2005

89. Prof.  Dr. Abdul Hamid Abdul Rashid
	 The Wonder of Our Neuromotor 

System and the Technological 
Challenges They Pose

	 23 December 2005
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90. Prof. Dr. Norhani Abdullah
	 Rumen Microbes and Some of Their 

Biotechnological Applications
	 27 January 2006

91. Prof. Dr. Abdul Aziz Saharee
	 Haemorrhagic Septicaemia in Cattle 

and Buffaloes: Are We Ready for 
Freedom?

	 24 February 2006

92. Prof. Dr. Kamariah Abu Bakar
	 Activating Teachers’ Knowledge and 

Lifelong Journey in Their Professional 
Development

	 3 March 2006

93. Prof. Dr. Borhanuddin Mohd. Ali
	 Internet Unwired
	 24 March 2006

94. Prof. Dr. Sundararajan Thilagar
	 Development and Innovation in the 

Fracture Management of Animals
	 31 March 2006

95. Prof. Dr. Zainal Aznam Md. Jelan
	 Strategic Feeding for a Sustainable 

Ruminant Farming
	 19 May 2006

96. Prof. Dr. Mahiran Basri
	 Green Organic Chemistry: Enzyme at 

Work
	 14 July 2006

97. Prof. Dr. Malik Hj. Abu Hassan
	 Towards Large Scale Unconstrained 

Optimization
	 20 April 2007

98.	Prof. Dr. Khalid Abdul Rahim
	 Trade and  Sustainable Development: 

Lessons from Malaysia’s Experience
	 22 June 2007

99.	Prof. Dr. Mad Nasir Shamsudin
	 Econometric Modelling for 

Agricultural Policy Analysis and 
Forecasting:  Between Theory and 
Reality

	 13 July 2007

100.	Prof. Dr. Zainal Abidin Mohamed
	 Managing Change - The Fads 

and The Realities:  A Look at 
Process Reengineering, Knowledge 
Management and Blue Ocean 
Strategy 

	 9 November 2007

101.	Prof. Ir. Dr. Mohamed Daud
	 Expert Systems for Environmental 

Impacts and Ecotourism Assessments 
	 23 November 2007

102.	Prof. Dr. Saleha Abdul Aziz
	 Pathogens and Residues;  How Safe 

is Our Meat?
	 30 November 2007

103.	Prof. Dr. Jayum A. Jawan
	 Hubungan Sesama Manusia
	 7 December 2007

104.	Prof. Dr. Zakariah Abdul Rashid
	 Planning for Equal Income 

Distribution in Malaysia:  A General 
Equilibrium Approach

	 28 December 2007

105.	Prof. Datin Paduka Dr. Khatijah 
Yusoff

	 Newcastle Disease virus: A Journey 
from Poultry to Cancer

	 11 January 2008

106.	Prof. Dr. Dzulkefly Kuang Abdullah
	 Palm Oil: Still the Best Choice
	 1 February 2008

107.	Prof. Dr. Elias Saion
	 Probing the Microscopic Worlds by 

Lonizing Radiation
	 22 February 2008
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108.	Prof. Dr. Mohd Ali Hassan
	 Waste-to-Wealth Through 

Biotechnology: For Profit, People 
and Planet

	 28 March 2008

109.	Prof. Dr. Mohd Maarof H. A. Moksin
	 Metrology at Nanoscale: Thermal 

Wave Probe Made It Simple
	 11 April 2008

110.	Prof. Dr. Dzolkhifli Omar
	 The Future of Pesticides Technology 

in Agriculture: Maximum Target Kill 
with Minimum Collateral Damage

	 25 April 2008 

111.	 Prof. Dr. Mohd. Yazid Abd. Manap
	 Probiotics: Your Friendly Gut 

Bacteria
	 9 May 2008

112.	Prof. Dr. Hamami Sahri
	 Sustainable Supply of  Wood and 

Fibre: Does Malaysia have Enough?
	 23 May 2008

113.	Prof. Dato’ Dr. Makhdzir Mardan
	 Connecting the Bee Dots
	 20 June 2008

114.	Prof. Dr. Maimunah Ismail
	 Gender & Career: Realities and 

Challenges
	 25 July 2008

115.	Prof. Dr. Nor Aripin Shamaan
	 Biochemistry of Xenobiotics: 

Towards a Healthy Lifestyle and Safe 
Environment

	 1 August 2008

116.	Prof. Dr. Mohd Yunus Abdullah
	 Penjagaan Kesihatan Primer di 

Malaysia:  Cabaran Prospek dan 
Implikasi dalam Latihan dan 
Penyelidikan Perubatan serta 
Sains Kesihatan di Universiti Putra 
Malaysia

	 8 August 2008

117.	Prof. Dr. Musa Abu Hassan
	 Memanfaatkan Teknologi Maklumat 

& Komunikasi ICT untuk Semua
	 15 August 2008

118.	 Prof. Dr. Md. Salleh Hj. Hassan
	 Role of Media in Development:  

Strategies, Issues & Challenges
	 22 August 2008

119.	 Prof. Dr. Jariah Masud
	 Gender in Everyday Life
	 10 October 2008

120	 Prof. Dr. Mohd Shahwahid Haji 
Othman

	 Mainstreaming Environment: 
Incorporating Economic Valuation 
and Market-Based Instruments in 
Decision Making

	 24 October 2008

121.	 Prof. Dr. Son Radu
	 Big Questions Small Worlds: 

Following Diverse Vistas
	 31 October 2008

122.	 Prof. Dr. Russly Abdul Rahman
	 Responding to Changing Lifestyles: 

Engineering the Convenience Foods	
28 November 2008

123.	 Prof. Dr. Mustafa Kamal Mohd 
Shariff

	 Aesthetics in the Environment an 
Exploration of Environmental: 
Perception Through Landscape 
Preference

	 9 January 2009

124.	 Prof. Dr. Abu Daud Silong
	 Leadership Theories, Research 

& Practices:  Farming Future 
Leadership Thinking

	 16 January 2009
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125.	 Prof. Dr. Azni Idris
	 Waste Management, What is the 

Choice: Land Disposal or Biofuel?
	 23 January 2009

126.	 Prof. Dr. Jamilah Bakar
	 Freshwater  Fish: The Overlooked 

Alternative
	 30 January 2009

127.	 Prof. Dr. Mohd. Zobir Hussein
	 The Chemistry of Nanomaterial and 

Nanobiomaterial
	 6 February 2009

128.	 Prof. Ir. Dr. Lee Teang Shui
	 Engineering Agricultural: Water 

Resources
	 20 February 2009

129.	 Prof. Dr. Ghizan Saleh
	 Crop Breeding: Exploiting Genes for 

Food and Feed
	 6 March 2009

130.	 Prof. Dr. Muzafar Shah Habibullah
	 Money Demand
	 27 March 2009

131. 	Prof. Dr. Karen Anne Crouse
	 In Search of Small Active Molecules
	 3 April 2009

132.	 Prof. Dr. Turiman Suandi
	 Volunteerism: Expanding the 

Frontiers of Youth Development
	 17 April 2009

133.	 Prof. Dr. Arbakariya Ariff
	 Industrializing Biotechnology: Roles 

of Fermentation and Bioprocess 
Technology

	 8 May 2009

134.	 Prof. Ir. Dr. Desa Ahmad
	 Mechanics of  Tillage Implements
	 12 June 2009

135.	 Prof. Dr. W. Mahmood Mat Yunus
	 Photothermal and Photoacoustic: 

From Basic Research to Industrial 
Applications

	 10 July 2009

136.	 Prof. Dr. Taufiq Yap Yun Hin
	 Catalysis for a Sustainable World
	 7 August 2009

137	 Prof. Dr. Raja Noor Zaliha Raja 
Abd. Rahman

	 Microbial Enzymes: From Earth to 
Space

	 9 October 2009

138	 Prof. Ir. Dr. Barkawi Sahari 
	 Materials, Energy and CNGDI 

Vehicle Engineering
	 6 November 2009

139.	 Prof. Dr. Zulkifli Idrus
	 Poultry Welfare in Modern 

Agriculture: Opportunity or Threat?
	 13 November 2009

140.	 Prof. Dr. Mohamed Hanafi Musa
	 Managing Phosphorus: Under Acid 

Soils Environment
	 8 January 2010

141.	 Prof. Dr. Abdul Manan Mat Jais
	 Haruan Channa striatus a Drug 

Discovery in an Agro-Industry 
Setting

	 12 March 2010

142.	 Prof. Dr. Bujang bin Kim Huat
	 Problematic Soils:  In Search for 

Solution
	 19 March 2010

143.	 Prof. Dr. Samsinar Md Sidin
	 Family Purchase Decision Making:  

Current Issues & Future Challenges
	 16 April 2010
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144.	 Prof. Dr. Mohd Adzir Mahdi
	 Lightspeed:  Catch Me If  You Can
	 4 June 2010

145. Prof. Dr. Raha Hj. Abdul Rahim
	 Designer Genes: Fashioning Mission 

Purposed Microbes
	 18 June 2010

146.	 Prof. Dr. Hj. Hamidon Hj. Basri
	 A Stroke of Hope, A New Beginning
	 2 July 2010

147.	 Prof. Dr. Hj. Kamaruzaman Jusoff
	 Going Hyperspectral: The "Unseen" 

Captured?
	 16 July 2010

148.	 Prof. Dr. Mohd Sapuan Salit
	 Concurrent Engineering for 

Composites
	 30 July 2010

149.	 Prof. Dr. Shattri Mansor
	 Google the Earth: What's Next?
	 15 October 2010

150.	 Prof. Dr. Mohd Basyaruddin Abdul 
Rahman

	 Haute Couture: Molecules & 
Biocatalysts

	 29 October 2010

151.	 Prof. Dr. Mohd. Hair Bejo
	 Poultry Vaccines:  An Innovation for 

Food Safety and Security
	 12 November 2010

152.	 Prof. Dr. Umi Kalsom Yusuf
	 Fern of Malaysian Rain Forest
	 3 December 2010

153.	 Prof. Dr. Ab. Rahim Bakar
	 Preparing Malaysian Youths for The 

World of Work: Roles of Technical 
	 and Vocational Education and 

Training (TVET)
	 14 January 2011

154.	 Prof. Dr. Seow Heng Fong
	 Are there "Magic Bullets" for 

Cancer Therapy?
	 11 February 2011

155.	 Prof. Dr. Mohd Azmi Mohd Lila
		  Biopharmaceuticals: Protection, 	

	 Cure and the Real Winner
		  18 February 2011

156.	 Prof. Dr. Siti Shapor Siraj
	 Genetic Manipulation in Farmed 

Fish: Enhancing Aquaculture 
Production

	 25 March 2011

157.	 Prof. Dr. Ahmad Ismail
	 Coastal Biodiversity and Pollution: 

A Continuous Conflict
	 22 April 2011

158.	 Prof. Ir. Dr. Norman Mariun
	 Energy Crisis 2050? Global 

Scenario and Way Forward for 
Malaysia

	 10 June 2011

159.	 Prof. Dr. Mohd Razi Ismail
	 Managing Plant Under Stress: A 

Challenge for Food Security
	 15 July 2011

160.	 Prof. Dr. Patimah Ismail
	 Does Genetic Polymorphisms Affect 

Health?
	 23 September 2011

161. Prof. Dr. Sidek Ab. Aziz
	 Wonders of Glass: Synthesis, 

Elasticity and Application
	 7 October 2011

162.	 Prof. Dr. Azizah Osman
	 Fruits: Nutritious, Colourful, Yet 

Fragile Gifts of Nature
	 14 October 2011
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163.	 Prof. Dr. Mohd. Fauzi Ramlan
	 Climate Change: Crop Performance 

and Potential
	 11 November 2011

164.	 Prof. Dr. Adem Kiliçman
	 Mathematical Modeling with 

Generalized Function
	 25 November 2011

165.	 Prof. Dr. Fauziah Othman
	 My Small World: In Biomedical 

Research
	 23 December 2011

166.	 Prof. Dr. Japar Sidik Bujang
	 The Marine Angiosperms, Seagrass
	 23 March 2012

167.	 Prof. Dr. Zailina Hashim
	 Air Quality and Children's 

Environmental Health: Is Our 
Future Generation at Risk?

	 30 March 2012

168. Prof. Dr. Zainal Abidin Mohamed
	 Where is the Beef? Vantage Point 

form the Livestock Supply Chain
	 27 April 2012

169. Prof. Dr. Jothi Malar Panandam
	 Genetic Characterisation of Animal 

Genetic Resources for Sustaninable 
Utilisation and Development

	 30 November 2012

170. Prof. Dr. Fatimah Abu Bakar
	 The Good The Bad & Ugly of Food 

Safety: From Molecules to Microbes
	 7 December 2012

171. 	Prof. Dr. Abdul Jalil Nordin
	 My Colourful Sketches from Scratch: 

Molecular Imaging
	 5 April 2013

172.	 Prof. Dr. Norlijah Othman
	 Lower Respiratory Infections in 

Children: New Pathogens, Old 
Pathogens and The Way Forward

	 19 April 2013

173.	 Prof. Dr. Jayakaran Mukundan
	 Steroid-like Prescriptions English 

Language Teaching Can Ill-afford	
26 April 2013

174.	 Prof. Dr. Azmi Zakaria
	 Photothermals Affect Our Lives
	 7 June 2013

175. 	Prof. Dr. Rahinah Ibrahim
	 Design Informatics
	 21 June 2013

176. 	Prof. Dr. Gwendoline Ee Cheng
	 Natural Products from Malaysian 

Rainforests
	 1 November 2013

177. 	Prof. Dr. Noor Akma Ibrahim
	 The Many Facets of Statistical 

Modeling
	 22 November 2013

178. 	Prof. Dr. Paridah Md. Tahir
	 Bonding with Natural Fibres
	 6 December 2013

179.	 Prof. Dr. Abd. Wahid Haron
	 Livestock Breeding: The Past, The 

Present and The Future
	 9 December 2013

180. 	Prof. Dr. Aziz Arshad
	 Exploring Biodiversity & Fisheries 

Biology: A Fundamental Knowledge 
for Sustainabale Fish Production

	 24 January 2014

181. 	Prof. Dr. Mohd Mansor Ismail
	 Competitiveness of Beekeeping 

Industry in Malaysia
	 21 March 2014
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182. Prof. Dato' Dr. Tai Shzee Yew
	 Food and Wealth from the Seas: 

Health Check for the Marine 
Fisheries of Malaysia

	 25 April 2014

183. 	Prof. Datin Dr. Rosenani Abu Bakar
	 Waste to Health: Organic Waste 

Management for Sustainable Soil 
Management and Crop Production

	 9 May 2014

184. 	Prof. Dr. Abdul Rahman Omar
	 Poultry Viruses: From Threat to 

Therapy
	 23 May 2014

185.	 Prof. Dr. Mohamad Pauzi Zakaria
	 Tracing the Untraceable: 

Fingerprinting Pollutants through 
Environmental Forensics

	 13 June 2014

186.	 Prof. Dr. -Ing. Ir. Renuganth 
Varatharajoo

	 Space System Trade-offs: Towards 
Spacecraft Synergisms

	 15 August 2014

187.	 Prof. Dr. Latiffah A. Latiff
	 Tranformasi Kesihatan Wanita ke 

Arah Kesejahteraan Komuniti	
7 November 2014

188.	 Prof. Dr. Tan Chin Ping
	 Fat and Oils for a Healthier Future:
	 Macro, Micro and Nanoscales
	 21 November 2014

189. 	Prof. Dr. Suraini Abd. Aziz
	 Lignocellulosic Biofuel: A Way 

Forward
	 28 November 2014

190. 	Prof. Dr. Robiah Yunus
	 Biobased Lubricants: Harnessing 

the Richness of Agriculture 
Resources

	 30 January 2015

190. 	Prof. Dr. Khozirah Shaari
	 Discovering Future Cures from 

Phytochemistry to Metabolomics
	 13 February 2015

191. Prof. Dr. Tengku Aizan Tengku Abdul 
Hamid

	 Population Ageing in Malaysia: A 
Mosaic of Issues, Challenges and 
Prospects

	 13 March 2015

192. Prof. Datin Dr. Faridah Hanum 
Ibrahim

	 Forest Biodiversity: Importance of 
Species Composition Studies

	 27 March 2015

192. Prof. Dr. Mohd Salleh Kamarudin	
Feeding & Nutritional Requirements 
of Young Fish

	 10 April 2015

193. Prof. Dato' Dr. Mohammad Shatar 
Sabran

	 Money Boy: Masalah Sosial Era 
Generasi Y

	 8 Mei 2015

194. Prof. Dr. Aida Suraya Md. Yunus
	 Developing Students' Mathematical 

Thinking: How Far Have We Come?
	 5 June 2015

195. Prof. Dr. Amin Ismail
	 Malaysian  Cocoa or Chocolates: A 

Story of Antioxidants and More...
	 14 August 2015

196.	 Prof. Dr. Shamsuddin Sulaiman
	 Casting Technology: Sustainable 

Metal Forming Process
	 21 August 2015

197.	 Prof. Dr. Rozita Rosli
	 Journey into Genetic: Taking the 

Twist and Turns of Life
	 23 October 2015
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198.	 Prof. Dr. Nor Aini Ab Shukor	
The (Un)Straight Truth About Trees	
6 November 2015

198.	 Prof. Dr. Maznah Ismail
	 Germinated Brown Rice and 

Bioactive Rich Fractions: On 
Going Journey form R&D to 
Commercialisation

	 29 April 2016
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