

UNIVERSITI PUTRA MALAYSIA

TRANSACTION MANAGEMENT MODEL FOR MOBILE DATABASES

ZIYAD TARIQ ABDUL-MEHDI AL-KHINALIE.

FSKTM 2006 16

TRANSACTION MANAGEMENT MODEL FOR MOBILE DATABASES

By

ZIYAD TARIQ ABDUL-MEHDI AL-KHINALIE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

November 2006

DEDICATION

To the memory of my Grandmother, To my parents: Dr. Tariq Al-Khinalie and Dr. Nabiha Al-Sammerai

To my Wife: Amna and my Daughter: Nudie

To my sister: Nada

Ziyad

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

TRANSACTION MANAGEMENT MODEL FOR MOBILE DATABASES

By

ZIYAD TARIQ ABDUL-MEHDI AL-KHINALIE

November 2006

Chairman: Associate Professor Dr. Ali Mamat, PhD

Faculty: Computer Science and Information Technology

Transaction support is crucial in mobile data management. Specific characteristics of mobile environments (e.g. variable bandwidth, disconnections, and limited resources on mobile hosts) make traditional transaction management techniques no longer appropriate. This is due the fact that the Atomicity, Consistency, Isolation and Durability (ACID) properties of transactions are not simply followed, in particular the consistency property. Thus, transaction management models adopting weaker form of consistency are needed and these models can now tolerate a limited amount of consistency. As a result, several transaction management models for mobile databases have been proposed, each of which has attempted to overcome some issues pertaining to transaction processing in mobile environment. However, issues such as

- (a) only one mobile host (MH) is allowed to update the data item
- (b) large number of rejected transactions

(c) commit time execution of transactions at mobile host (MH) is large are not well handled.

The proposed the model with the aims at solving the stated issues. The main idea underlying the model is that transaction execution can be done at the base station (BS) and mobile host (MHs). Transactions at a MH can update data locally and then precommit. When the MH connects to the BS, these pre-committed transactions are sent to the BS and re-executed as base transactions (BT) to maintain data consistency at the BS. BTs are serialized on the master data stored at the BS. This will results in data consistency.

The availability of data item at MHs makes the execution of transaction at MHs possible. Each MH is allocated some value δ_i of data item, and the rest of it is kept at the base server. By having the own this resource, a transaction at a MH is allowed to update the data item within the limit of δ_i . The model has been implemented and the result has shown that the model works correctly as expected.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGURUSAN TRANSAKSI UNTUK PANGALAN DATA BERGERAK

Oleh

ZIYAD TARIQ ABDUL-MEHDI ALKHINALIE

November 2006

Pengerusi: Profesor Madya. Ali Mamat, PhD

Fakulti: Fakulti Sains Komputer dan Teknologi Maklumat

Sokongan transaksi adalah penting dalam pengurusan data bergerak (mobile). Ciri-ciri khusus bagi persekitaran bergerak (contohnya lebarjalur berubah, pemutusan, dan kekurangan sumber pada hos bergerak) menjadikan teknik pengurusan transaksi tradisional tidak lagi sesuai. Ini adalah disebabkan sifat-sifat Atomicity, Consistency, Isolation and Durability ACID bagi transaksi tidak mudah diikuti, khususnya sifat konsisten. Oleh yang demikian, model pengurusan transaksi yang mengambil bentuk lemah konsisten diperlukan dan model-model ini boleh bertoleransi dengan konsisten dalam nilai yang terhad. Justeru itu, beberapa model-model pengurusan transaksi untuk pangkalan data bergerak telah dicadangkan, setiap satunya mempunyai percubaan untuk mengatasi beberapa isu berkenaan pemprosesan transaksi dalam persekitaran bergerak. Bagaimana pun, isu-isu seperti

- a. hanya satu hos bergerak (MH) dibenarkan untuk mengemaskini objek data
- b. bilangan transaksi yang ditolak adalah besar
- c. masa akur (commit) bagi transaksi di hos bergerak adalah besar

tidak ditangani dengan begitu baik.

Kami telah mencadangkan model dengan tujuan mengatasi isu-isu yang dinyatakan. Idea utama yang mendasari model ini adalah pelaksanaan transaksi boleh dilakukan pada stesyen asas (BS) dan hos mobil (MH). Transaksi pada MH boleh mengemaskini data setempat dan kemudian pre-commit. Bila MH dihubungkan dengan BS, transaksi pre-commit dihantar ke BS dan dilaksanakan sekali lagi sebagai transaksi asas (BT). BT disirikan (untuk dilaksanakan) ke atas data induk yang disimpan di BS. Ini akan menyebabkan data konsisten. Kewujudan data item di MHs membuatkan perlaksanaan transaksi di MH terjadi. Setiap MH diperuntukkan suatu nilai δ_i bagi item data, dan nilai selebihnya akan disimpan di stesyen asas. Dengan adanya sumber ini, transaksi pada MH dibenarkan untuk mengemas kini item data dalam had δ_i . Model ini telah dilaksanakan dan keputusan telah menunjukkan bahawa model ini berfungsi dengan betul seperti yang dijangkakan.

ACKNOWLEDGEMENTS

I would like to express my highest gratefulness to my supervisor Assoc. Prof. Dr. Ali Bin Mamat who put in great effort and endeavor in revising the thesis and introducing many amendments to it. Whatever I have accomplished is due to his untiring patience in reading the manuscript again and again and clarifying my ideas. I owe a spatial gratitude to Prof. Dr. Mustafa Mat Deris and Assoc. Prof. Dr Hamidah Ibrahim my thesis committee who both were helpful in their comments and ideas to complete this work.

To a personal note, I would like to thank my beautiful wife Amna Al-Meshhedany for her greatest support and patience to complete my study even with her PHD study.

I am also very grateful to parents (Dr.Tariq Al-Khinalie and Assoc. Prof. Dr Nabiha Al-Sammerai) who encouraged and supported me from the first day of my study to complete my MS.C and my PHD. And finally many thanks to whole my family my sister (Nada) and her family, my father and mother in law, who ask and pry to finish my study at the best method as I wish to be.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	x
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xvii

CHAPTER

1	INTI	RODUCTION	
	1.1	Background	1
	1.2	Data Replication	2
	1.3	Problem Statement	5
	1.4	Research Objectives	10
	1.5	Research Scope	10
	1.6	Organization of the Thesis	10
2	FUN	DAMENTAL CONCEPTS OF TRANSACTION	
	MAN	NAGEMENT AND MOBILE COMPUTING	
	2.1	Introduction	11
	2.2	Mobile Computing Architecture	12
	2.3	Characteristics of Mobile Computing	14
		2.3.1 Communication	14
		2.3.2 Mobility	15
		2.3.3 Portability	15
		2.3.4 Heterogeneity	16
	2.4	Mobile Transaction	17
	2.5		20
		2.5.1 Architectural Context	20
		2.5.2 Execution models	22
	2.6	Limitations of traditional transaction models in	25
		mobile context	
		2.6.1 Commit protocols	26
		2.6.2 Concurrency control mechanisms	27
		2.6.3 Logging	27
		2.6.4 Replication	28

REVIEW OF TRANSACTION MANAGEMENT IN MOBILE DATABASES

3

4

5

6

3.1	Mobile Transaction Models	35
	3.1.1 Kangaroo	36
	3.1.2 Clustering	37
	3.1.3 Two-tier replication	39
	3.1.4 HiCoMo	40
	3.1.5 Pro-motion	41
	3.1.6 Prewrite	43
	3.1.7 IOT	44
	3.1.8 Planned Disconnection modes	46
3.2	Ensuring Isolation and Consistency properties for	52
	mobile transaction models	
	3.2.1 Ensuring Consistency Property	52
	3.2.2 Ensuring Isolation Property	57
	3.2.3 Ensuring Atomicity Property	63
	3.2.4 Ensuring Durability Property	68
MET	THODOLOGY	
4.1	Introduction	70
4.2	The Data Allocation Function	71
4.3	Requirements for Implementing the Proposed	72
	Model	
	4.3.1 System Requirement	72
	4.3.2 Base Station Software Requirements	74
	4.3.3 Mobile Host Software Requirements	75
	4.3.4 Socket Software Requirements	76
THE	C PROPOSED MODEL	
5.1	The System Model	77
5.2	Data Allocation	79
5.3	Transaction Execution at Base Station	81
5.4	Transaction Execution at Mobile Host	82
5.5	Examples Using the Proposed Model	83
5.6	Examples for Generalizing the Proposed Model	91
5.7	Proof of Correctness	104
5.8	Comparison of Proposed Model with Others	106
11.17	LEMENTATION	
6.1	Initial Connection	119
0.1		117

- 6.2 Data Distribution and Disconnected 120
- 6.3 Distribution of One Data Item to One Mobile 121 Host

	6.4	Reconnection of one Mobile Host to Base Station	122
	6.5	Monitoring MHs Transaction Activity	131
	6.6	Distribution of Multi Data Items to One Mobile	132
		Host	
	6.7	Reconnection of One Mobile Host with Multi	135
		Data Item to Base Station	
	6.8	Distribution of Multi Data Items to Two Mobile	145
		Hosts	
	6.9	Reconnection of Multi Mobile Hosts and Multi	147
		Data Items to Base Station	
7	CON	CLUSION AND FURTHER WORKS	
	7.1	Conclusion	150
	7.2	Contribution of Research	151
	7.3	Further Work	152
DEFENSI			154
REFERENC			154
			161
LIST OF PU	JBLIC	CATIONS	162

C

LIST OF TABLES

Table		Page
1.1	Weakness of Transaction Model	8
2.1	Characteristics of Mobile Environment and their Effect on Database Issues	17
3.1	Main features of mobile transaction models	48
3.2	Summary of Consistency Aspects	56
3.3	Summary of Replication Issues	63
3.4	Summary of Atomicity Property	67
3.5	Summary of Durability Property	69
5.1	Comparison of the Proposed Model with Others	114
5.2	Main Features of Mobile Transaction Models Including the Proposed Model	116

LIST OF TABLES

Table		Page
1.1	Weakness of Transaction Model	8
2.1	Characteristics of Mobile Environment and their Effect on Database Issues	17
3.1	Main features of mobile transaction models	48
3.2	Summary of Consistency Aspects	56
3.3	Summary of Replication Issues	63
3.4	Summary of Atomicity Property	67
3.5	Summary of Durability Property	69
5.1	Comparison of the Proposed Model with Others	114
5.2	Main Features of Mobile Transaction Models Including the Proposed Model	116

LIST OF FIGURES

Figure		Page
2.1	Mobile Database Environment	13
4.1	System Requirement	73
4.2	Connection through socket on the BS	74
4.3	Mobile hosts connect to the base station at port 211	76
5.1	A simple architecture for mobile databases	77
5.2	MH ₁ and MH ₂ disconnect from BS	84
5.3	MH_3 wish to disconnect after MH_1 and MH_2 disconnected	85
5.4	Transaction processing at MHs	86
5.5	Execution of t_2 and t_3	87
5.6	Execution of transaction in order of t_3, t_1, t_2	88
5.7	pre-commit and request transaction processing at BS	89
5.8 (a)	BS takes back the value of data item from MH_3	90
5.8 (b)	Execution of request transaction after time out is expired	90
5.9	Aborting transactions	91
5.10	MH_1 and MH_2 wish to disconnect from BS for multi data item	92
5.11	Disconnection of MH_3 after MH_1 and MH_2 disconnected from the	94
5.12	BS Transaction processing at MHs for multi data item	96 [.]
5.13	Execution of t_1 , t_2 , t_3 , t_4 , t_5 and t_6	98
5.14	Execution of transaction in order of t_5 , t_4 , t_6 , t_1 , t_2 and t_3	100

5.15	Pre-commit and request transaction processing at BS	102
5.16 (a)	BS gain back the value of data item from MH_3	103
5.16 (b)	Execution of request transaction after time out is expired	103
6.1	IP Address	119
6.2	Error interface	119
6.3	Data Distribution using the formula	120
6.4	Perform disconnect task	121
6.5	Reconnection of MH	123
6.6	Interface before make pre-commit transaction	123
6.7	Transaction log	124
6.8	Pre-commit transaction	124
6.9	Confirm of pre-commit transaction	125
6.10	Pre-commit action	125
6.11	Requesting for pre-commit and resources not enough	125
6.12	Not accept the pre-commit and blocked as request transaction	125
6.13	MH reconnects to BS to send request transaction	126
6.14	Gaining New Resources	127
6.15	Reconnection Action	128
6.16	Transaction logs	128
6.17	New data allocation	128
6.18	New data allocation show in base station	129
6.19	Confirmation for pre-commit transaction	129

6.20	No enough resources at mobile host	130
6.21	Base station show aborting transaction because no enough resources	130
6.22	Time out expired	130
6.23	Monitoring Mobile hosts Transaction Activity	131
6.24	MH check-out multi data item x, y and z	132
6.25	Distribution x , y and z using the function	133
6.26	Reconnection of MH for multi data item	135
6.27	Interface before making a pre-commit transaction for multi data item	136
6.28	Transaction log for multi data item	136
6.29	Pre-commit transaction for multi data item	137
6.30	Confirmation of pre-commit transaction for multi data item	138
6.31	Pre commit Action for multi data items	138
6.32	Requesting for pre-commit when resource not enough	139
6.33	The pre-commit transaction will be blocked if we don't reconnect	139
6.34	MH reconnects to BS to inform and request transaction	139
6.35	Gaining new resources	140
6.36	Reconnection Action for multi data items	141
6.37	Transaction log for multi data items	141
6.38	Transaction log 2 nd for multi data items	141
6.39	New data allocation for multi data items	142
6.40	Confirmation for pre-commit transaction for multi data items	142
6.41	Not enough resources at MH for data item z	143
6.42	BS showing aborting transaction because of not enough resources	143

6.43	Time out expired	144
6.44	the latest list of data at BS as well as MH	144
6.45	Interface for both MH1 and MH2 before making a pre-commit transaction	147
6.46	Transaction log (MH1 and MH2)	148
6.47	Confirmation of pre-commit transaction at MH ₁	148
6.48	Pre commit Action of multi MH and multi data items	149

C

LIST OF ABBREVIATIONS

1SR	One-copy Serializability
BT	Base transactions
BS	Base station
DBMS	Database Management System
FS	Fixed host
MH	Mobile host
MT	Mobile transaction
ACID	Atomicity, Consistency, Isolation and Durability

CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, several research articles regarding distributed databases were published. Among them were those by (Padmanabhan *et al*, 2006; Bottcher *et al*, 2006; Deris *et al*, 2004; Agrawal & El-Abbadi, 1996, 1990; Holliday *et al*, 2002; Berstein *et al*, 1987). The articles revealed that data replication management is one of the current issues in distributed database that has yet to be solved. It was on this basis that this study was initiated.

A mobile database system is one of the major recent developments in the database area, where it moves from centralization, which resulted in monolithic database towards more decentralization and autonomy of processing (Elmasri and Navathe, 2000). Many of commercial database systems such as Oracle8 and IBM DB2 propagator provide the required support for data distribution and inter-database communication (Ozsu and Valduriez, 1999). As new communication technologies are emerging, wireless and mobile computing concepts become reality and allow for even higher degrees of "distributed ness" and flexibility in mobile databases.

CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, several research articles regarding distributed databases were published. Among them were those by (Padmanabhan *et al*, 2006; Bottcher *et al*, 2006; Deris *et al*, 2004; Agrawal & El-Abbadi, 1996, 1990; Holliday *et al*, 2002; Berstein *et al*, 1987). The articles revealed that data replication management is one of the current issues in distributed database that has yet to be solved. It was on this basis that this study was initiated.

A mobile database system is one of the major recent developments in the database area, where it moves from centralization, which resulted in monolithic database towards more decentralization and autonomy of processing (Elmasri and Navathe, 2000). Many of commercial database systems such as Oracle8 and IBM DB2 propagator provide the required support for data distribution and inter-database communication (Ozsu and Valduriez, 1999). As new communication technologies are emerging, wireless and mobile computing concepts become reality and allow for even higher degrees of "distributed ness" and flexibility in mobile databases.

A mobile database system is a special multidatabase system on a mobile computing environment. It allows mobile hosts to access and manage data stored on several autonomous and heterogeneous local database systems located on different parts of the wired or wireless network. Transactions in a mobile database system may access data from several local databases at different nodes. Management of these transactions requires different approaches in mobile databases than in multidatabase. This is mainly due to the fact that a mobile host is not suitable to manage a global transaction by itself due to the nature of the mobile computing environment to be described. Usually this management is done by the mobile host's base station or by coordination of them.

Due to the nature of the mobile computing environments, transaction management has to be reevaluated for mobile databases. The transactions in mobile computing environments are usually long-living transactions, possibly covering one or more disconnected durations. Supporting disconnected operation (i.e. allowing a mobile host to update autonomously during disconnection) raises issues in consistency. Providing disconnected operation also requires some pre-caching of data that will be required for the necessary operations to be performed during disconnection.

In general, transactions in mobile databases require relaxed Atomicity, Consistency, Isolation and Durability (ACID) properties. There are several works on mobile transactions, each addressing some of the issues in mobile transaction management. We will explain some of them in chapter three.

With advances in mobile processing and distributed computing that occurred in the operating system arena, the database research community did considerable work to address the issues of data distribution, distributed transactions management, distributed query processing, and etc. (Connolly and Begg, 1999). One of the major issues in data distribution is replicated data management at mobile host (MH). Replication can improve data availability but a proper approach is needed to maintain data consistency.

1.2 Data Replication

Although data replication is not necessarily in mobile transaction management issue, it is at the heart of several works on mobile transactions models (Turker and Zini, 2003). The reason is that common approaches to increase MH autonomy are based on data replication or data caching.

Replication is the act or result of reproducing- in short, a copy. As such, any type of data processing object can be replicated. Note that the definition describes replication as the act of reproducing. Therefore replication is much more than simply the copying of any object; it must also address the management of the complete copying process (Buretta, 1997). Thus, data replication is much more than simply copying data between data stores. It encompasses the administration and monitoring of a service that guarantees data consistency across multiple disconnection hosts in a mobile environment.

In this evolving world of distributed databases, data replication plays an increasingly important role. It is a useful technique for distributed database system where an object

