UNIVERSITI PUTRA MALAYSIA

CLASSIFICATION AND ASSESSMENT OF EFFECTIVE DORMANCY BREAKING METHODS FOR OIL PALM (Elaeis guineensis Jacq.) SEEDS

MOHD NORSAZWAN BIN GHAZALI

FP 2016 41
CLASSIFICATION AND ASSESSMENT OF EFFECTIVE DORMANCY BREAKING METHODS FOR OIL PALM (Elaeis guineensis Jacq.) SEEDS

By

MOHD NORSAZWAN BIN GHAZALI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2016
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement of the degree of Master of Science

CLASSIFICATION AND ASSESSMENT OF EFFECTIVE DORMANCY BREAKING METHODS FOR OIL PALM (*Elaeis guineensis* Jacq.) SEEDS

By

MOHD NORSAZWAN BIN GHAZALI

August 2016

Chairman: Associate Professor Adam bin Puteh, PhD

Faculty : Agriculture

Oil palm seeds require more than six months to germinate under natural condition. Commercial seed producers have adopted heat treatment to break oil palm seed dormancy. However, no particular studies have been conducted to systematically determine and classify oil palm seed dormancy type.

In the first experiment, different method to evaluate dormancy type were conducted on T × T (*tenera × tenera*) and D × P (*dura × pisifera*) seeds. This includes physical, morphological and physiological dormancy tests. Physical dormancy tests included imbibition of intact (control), chemical (soaking with 98% sulphuric acid for two minutes) and mechanically scarified (fibre plug removal and puncturing testa layer by using steel probe), as well as heat treated (40°C treatment for 50 days) seeds to determine percentage of mass increase over time. Morphological dormancy characteristics were evaluated by storing the seeds at room temperature for 32 weeks to monitor embryo growth (length and width) as well as the resulting germination percentage. The effects of heat treatments were also studied by incorporating 30 days heat treatment, 50 days heat treatment or control (no heat treatment) before measuring the embryo growth and germination percentage. Physiological dormancy was evaluated by pre-soaking the seeds in 150 mg L⁻¹ GA₃ (gibberellic acid) and monitoring germination at room temperature or 30°C condition. Results indicated that the seeds were unable to imbibe water, regardless of scarification treatments. This suggests that oil palm seeds exhibit physical dormancy characteristics. Morphological tests on seeds at room temperature indicated that an embryo length of 3.64 or 3.03 mm was required to initiate germination in T × T and D × P seeds, respectively. The applications of heat treatments (40°C) were able to accelerate embryo growth, regardless of treatment duration. On the other hand, application of exogenous GA₃ did not significantly increase germination during physiological dormancy test. The results indicate that oil palm seed exhibits combination of physical, morphological and physiological dormancy type.

In the second experiment, alternative methods to break oil palm seed dormancy of T × T, D × P EBOR and D × P ELMINA were evaluated based on dormancy type
determined from the first experiment. This include adoption of higher temperature treatment (50°C), alternating temperature regimes of high (40°C) and low (7°C) for different duration; as well as combining alternating temperature regimes of high (40°C) and low (7°C) temperatures with growth hormone GA₃ during germination period. The seeds were then allowed to germinate for 60 days. Parameters evaluated include percentage of normal pre-germinated seeds, percentage abnormalities, percentage of diseased seeds and Coefficient Velocity of Germination. The results indicated that adoption of alternating temperature along with exogenous GA₃ application during germination were able to result in similar percentage of normal pre-germinated seeds as the commercially practiced method, with acceptable percentage abnormalities and diseases occurrence level. It was found also that the germination temperature should be less than 50°C due to higher abnormalities of germinated seeds as seen in the developing radicle and plumule. Cycles of alternating temperature was found to accelerate embryo growth prior to germination as it potentially alters the overall hormonal balance particularly leading to reduction of ABA (abscisic acid) and higher production of GA hormone during germination. This study suggests that there are alternative methods that can be adopted to break oil palm seed dormancy based on prior understanding of the exact dormancy type underlying the seeds.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGELASAN DAN PENILAIAN KAEDAH EFEKTIK PEMECAHAN DORMANSI BAGI BIJI BENIH KELAPA SAWIT (*Elaeis guineensis* Jacq.)

Oleh

Mohd Norsazwan bin Ghazali

Ogos 2016

Pengerusi: Professor Madya Adam bin Puteh, PhD

Fakulti: Pertanian

Biji benih kelapa sawit memerlukan lebih dari enam bulan untuk bercambah dalam keadaan semulajadi. Produser biji benih komersil telah menggunakan kaedah rawatan haba bagi tujuan memecahkan dormansi biji benih kelapa sawit. Walau bagaimanapun, tiada kajian tertentu telah dilakukan sebelum ini untuk menentukan dan mengelaskan jenis dormansi bagi biji benih kelapa sawit.

Dalam eksperimen pertama, kaedah pemecahan dormansi berbeza telah dilakukan ke atas biji benih T × T (*tenera × tenera*) dan D × P (*dura × pisifera*). Ini termasuk ujian dormansi fizikal, morfologikal dan fisiologikal. Ujian dormansi fizikal merangkumi rendaman air ke atas biji benih yang masih sempurna (kawalan), kimia (rendaman dengan asid sulfurik 98% selama dua minit) dan dicalarkan secara mekanikal (membuang fibre plug dan memembocorkan lapisan testa dengan menggunakan jarum besi), di samping rawatan haba (40°C selama 50 hari) terhadap biji benih untuk menentukan peratusan kenaikan berat terhadap masa. Ujian morfologikal dormansi telah dinilai dengan menyimpan biji benih pada suhu bilik selama 32 minggu untuk memerhatikan pertumbuhan embrio (panjang dan lebar) dan juga peratusan percambahan yang terhasil. Kesan rawatan haba turut dikaji dengan memeriksa rawatan selama 30 hari, 50 hari dan juga tanpa sebarang rawatan sebelum mengukur pertumbuhan embrio dan juga peratusan percambahan. Dormansi fisiologikal telah dinilai dengan merendam biji benih di dalam 150 mg L⁻¹ GA₃ (asid gibberelik) dan memerhatikan percambahan pada suhu bilik atau 30°C. Keputusan menunjukkan bahawa biji benih tidak boleh menyerap air, walaupun telah dicalarkan. Ini menunjukkan bahawa biji benih kelapa sawit mempunyai karakteristik dormansi fizikal. Ujian morfologikal ke atas biji benih pada suhu bilik menunjukkan bahawa panjang embrio 3.64 dan 3.03 mm adalah diperlukan untuk memulakan percambahan bagi biji benih T × T dan D × P. Penggunaan rawatan haba (40°C) mampu mempercepatkan pertumbuhan embrio, tanpa mengira durasi rawatan tersebut. Akan tetapi, penggunaan GA₃ tidak berjaya untuk meningkatkan peratusan percambahan semasa ujian dormansi fisiologikal. Keputusan menunjukkan bahawa biji benih kelapa sawit mempunyai kombinasi jenis dormansi fizikal, morfologikal dan juga fisiologikal.
Dalam eksperimen kedua, kaedah alternatif untuk memecahkan dormansi bagi biji benih kelapa sawit telah dinilai berdasarkan jenis dormansi yang telah ditentukan dalam eksperimen pertama. Ini merangkumi penggunaan suhu yang lebih tinggi (50°C), suhu berbeza iaitu suhu tinggi (40°C) dan rendah (7°C) berdurasi berbeza; dan juga menggabungkan suhu tinggi (40°C) dan rendah (7°C) bersama penggunaan hormon penggalak (asid giberelik), semasa tempoh percambahan. Biji benih kemudiannya diberikan bercambah selama 60 hari. Parameter yang dinilai termasuk peratusan percambahan normal, peratusan tidak normal, peratusan biji benih berpenyakit, dan Coefficient Velocity of Germination. Keputusan menunjukkan bahawa penggunaan suhu berbeza bersama GA₃ semasa percambahan mampu menghasilkan peratusan percambahan normal yang sama seperti kaedah yang digunakan secara komersil, dengan peratusan tidak normal dan penyakit di tahap yang masih terkawal. Selain itu, suhu percambahan mesti kurang dari 50°C oleh kerana peratusan tidak normal yang tinggi semasa percambahan seperti yang boleh dilihat pada radikel dan plumul yang berkembang. Kitaran suhu berbeza digunakan mampu mempercepatkan perkembangan embrio sebelum percambahan kerana ia berkemungkinan mengubah kesesimbangan hormone keseluruhan terutamanya yang menurun kearah pengurangan ABA (asid absisik) dan penghasilan GA yang lebih tinggi semasa percambahan. Kajian ini jelas menunjukkan bahawa terdapat kaedah alternatif yang boleh digunakan bagi tujuan pemecahan dormansi untuk biji benih kelapa sawit berdasarkan pengetahuan terdahulu mengenai jenis dormansi biji benih yang tepat.
ACKNOWLEDGEMENTS

I would like to express deepest gratitude to the chairman of supervisory committee, Assoc. Prof. Dr Adam bin Puteh for his full support, guidance, and advice throughout my graduate study and research. I would also like to convey my sincere appreciation to my other committee member, Prof. Dr. Mohd Rafii Yusop for his valuable suggestions and comments that has helped me tremendously in completing my thesis.

My gratitude goes to all the officers and staffs at Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, as well as at Seed Production Unit, FELCRA Plantation Services Berhad, Kluang Johor for their valuable assistance and cooperation in this project.

Last but not least, I would like to thank my wife, parent, brother, sisters and fellow friends for their unconditional love and support. I would not have been able to complete this thesis without their continuous love and encouragement.

Thank you.
I certify that a Thesis Examination Committee has met on 30th August 2016 to conduct the final examination of Mohd Norsazwan bin Ghazali on his thesis entitled "Classification and assessment of effective dormancy breaking methods for oil palm (\textit{Elaeis guineensis} Jacq.) seeds" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

\textbf{Mohamad bin Osman, PhD}

Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

\textbf{Uma Rani Sinniah, PhD}
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Shane Turner, PhD}
Biodiversity Conservation Centre
Kings Park and Botanic Garden
6005 Western Australia
Australia
(External Examiner)

\textbf{ZULKARNAIN ZAINAL, PhD}
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Adam bin Puteh, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Rafii bin Yusop, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
Declaration by graduate student

I hereby confirm that:

☐ this thesis is my original work;
☐ quotations, illustrations and citations have been duly referenced;
☐ this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
☐ intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
☐ written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

☐ there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature : ___________________________ Date: __________________

Name and Matric No.: Mohd Norsazwan bin Ghazali (GS38899)
Declaration by Members of Supervisory Committee

This is to confirm that:

☐ the research conducted and the writing of this thesis was under our supervision;
☐ supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _____________________________________
Name of Chairman of Supervisory Committee: ________________________________

Signature: _____________________________________
Name of Member of Supervisory Committee: ________________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 3

2.1 Oil palm fruit and seed development 3

2.1.1 The oil palm 3

2.1.2 Fruit forms and characteristics 3

2.1.3 Controlled pollination of D × P seeds 4

2.1.4 Oil palm seed development 4

2.2 Oil palm seed dormancy 5

2.2.1 Dormancy type 5

2.2.2 Seed dormancy and dormancy breaking methods 6

2.2.2.1 Primary dormancy 6

2.2.2.2 Secondary dormancy 8

2.2.3 Current methods to break oil palm seed dormancy 8

2.3 Oil palm seed germination 9

2.3.1 Definition of seed germination 9

2.3.2 Factors affecting germination 10

2.3.2.1 Seed maturity 10

2.3.2.2 Water availability 10

2.3.2.3 Temperature 10

2.3.2.4 Air (oxygen and carbon dioxide) 11

3 GENERAL METHODOLOGY 12

3.1 Seed source 12

3.2 Seed processing techniques 12

3.3 Statistical analysis 16

4 OIL PALM SEED CHARACTERISTICS, GERMINATION PATTERN AND TYPE OF DORMANCY 17

4.1 Introduction 17

4.2 Methodology 18

4.2.1 Seed collection 18

4.2.2 Seed characteristics 18

4.2.3 Seed moisture content 18

4.2.4 Physical dormancy tests 19

4.2.5 Morphological dormancy tests 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.6 Physiological dormancy test</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>21</td>
</tr>
<tr>
<td>4.3.1 Seed characteristics</td>
<td>21</td>
</tr>
<tr>
<td>4.3.2 Changes in moisture content</td>
<td>21</td>
</tr>
<tr>
<td>4.3.3 Physical dormancy tests</td>
<td>23</td>
</tr>
<tr>
<td>4.3.4 Morphological dormancy tests</td>
<td>27</td>
</tr>
<tr>
<td>4.3.5 Physiological dormancy test</td>
<td>30</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>32</td>
</tr>
<tr>
<td>4.4.1 Dormancy type in oil palm seed</td>
<td>32</td>
</tr>
<tr>
<td>4.4.2 Regulation of dormancy in oil palm seed</td>
<td>33</td>
</tr>
<tr>
<td>4.4.3 Oil palm seed germination pattern</td>
<td>34</td>
</tr>
<tr>
<td>4.5 Conclusion</td>
<td>34</td>
</tr>
<tr>
<td>5 ALTERNATIVE DORMANCY BREAKING METHOD FOR OIL PALM SEED</td>
<td>35</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>35</td>
</tr>
<tr>
<td>5.2 Experiment I: Preliminary assessment</td>
<td>36</td>
</tr>
<tr>
<td>5.2.1 Methodology</td>
<td>36</td>
</tr>
<tr>
<td>5.2.2 Results</td>
<td>39</td>
</tr>
<tr>
<td>5.2.3 Summary</td>
<td>41</td>
</tr>
<tr>
<td>5.3 Experiment II: Evaluation of alternative dormancy breaking treatments on germination of oil palm seeds</td>
<td>42</td>
</tr>
<tr>
<td>5.3.1 Methodology</td>
<td>42</td>
</tr>
<tr>
<td>5.3.2 Results</td>
<td>42</td>
</tr>
<tr>
<td>5.4 Discussion</td>
<td>48</td>
</tr>
<tr>
<td>5.4.1 Temperature control on dormancy breaking and seed germination process</td>
<td>48</td>
</tr>
<tr>
<td>5.4.2 Disease occurrence</td>
<td>50</td>
</tr>
<tr>
<td>5.4.3 Germination speed and pattern</td>
<td>50</td>
</tr>
<tr>
<td>5.5 Conclusion</td>
<td>50</td>
</tr>
<tr>
<td>6 CONCLUSION AND RECOMMENDATION</td>
<td>51</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>52</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>56</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>62</td>
</tr>
<tr>
<td>PUBLICATION</td>
<td>63</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General characteristic of dura, pisifera and tenera seeds</td>
<td>4</td>
</tr>
<tr>
<td>2. Physical characteristics of T × T and D × P seeds</td>
<td>22</td>
</tr>
<tr>
<td>3. Moisture content for T × T and D × P oil palm seeds at different stages.</td>
<td>23</td>
</tr>
<tr>
<td>4. Fibre strength for freshly harvested T × T and D × P oil palm seeds treated with water, concentrated acid and heat-treated measured using an INSTRON.</td>
<td>27</td>
</tr>
<tr>
<td>5. Description of different treatments for T × T seeds at different temperatures and duration</td>
<td>36</td>
</tr>
<tr>
<td>6. Description of different treatments for T × T, D × P EBOR and D × P ELMINA seeds with respective total treatment duration; d= days</td>
<td>42</td>
</tr>
</tbody>
</table>
References
12. Pre-germinated T × T oil palm seed evaluation criteria for normal (A), abnormal (B) and diseased (C) seeds

13. Percentage of normal, abnormal, diseased and CVG of T × T seeds subjected to different dormancy breaking treatments. Different letters indicate significant differences based on LSD test at 5% probability.

14. Percentage of normal pre-germinated T × T, D × P EBOR and D × P ELMINA seeds subjected to different dormancy breaking treatments. Different letters indicate significant differences based on LSD test at 5% probability.

15. Percentage of abnormal pre-germinated T × T, D × P EBOR and D × P ELMINA seeds subjected to different dormancy breaking treatments. Different letters indicate significant differences based on LSD test at 5% probability.

16. Percentage of diseased pre-germinated T × T, D × P EBOR and D × P ELMINA seeds subjected to different dormancy breaking treatments. Different letters indicate significant differences based on LSD test at 5% probability.

17. Coefficient Velocity of Germination (CVG) for T × T, D × P EBOR and D × P ELMINA seeds subjected to different dormancy breaking treatments. Different letters indicate significant differences based on LSD test at 5% probability.

xiv

LIST OF ABBREVIATIONS
% Percentage
°C degree Celsius
µl micro liter
ABA abscisic acid
ANOVA Analysis of variance
cm centimeter
df degree of freedom
FELCRA Federal Land Consolidation and Rehabilitation Authority
g gram
GA$_3$ gibberellic acid
LSD Least Significant Differences
Min minute
mL milliliter
mm millimeter
mm3 cubic millimeter
MPOB Malaysian Palm Oil Board
n.s non-significant
per mL per milliliter
P-value probability value
SAS Statistical Analysis Software
S.V source of variation
UPM Universiti Putra Malaysia
CHAPTER I

INTRODUCTION

Oil palm (Elaeis guineensis Jacq.) is known as the highest yielding oilseed in the world. On average, 4.0 metric tonnes of oil is produced per hectare of land every year, far exceeding the yield of other sources of oilseed such as soybean, sunflower and also rapeseeds (Malaysian Palm Oil Council, 2013). In Malaysia, the oil palm industry was first commercialized in 1917 at Tennamaran Estate, Kuala Selangor. Throughout these years, advancement has been made in terms of development of high yielding variety of tenera × tenera (T × T), produced by dura × pisifera (D × P) hybrid planting material. T × T seeds are also used as planting material for breeding purpose through straight crossing in order to produce segregating population 1:2:1 ratio of dura, tenera and pisifera, respectively (Mandal and Mathur, 2015). This is particularly important in pisifera palm production as P × P fruitlets are generally self-sterile. Records have shown that T × T fruitlets generally contain 20% average oil extraction rate from both mesocarp and the kernel (Corley and Tinker, 2003).

The supply of D × P pre-germinated seeds are continuously needed in the oil palm nurseries and estates. In recent years, oil palm replanting programs are extensively conducted, particularly for fields that have exceeded the economic period of planting oil palm; 25 years. Besides that, supply of D × P seedlings are also required to ensure a full stand of palm trees all year round, at approximately 148 palms per hectare. It was reported that the Malaysian D × P seed production had increased from 50 million in 1995, to 88 millions seed in 2008 in order to meet the increasing demand (Kushairi et al., 2010).

Currently, the production of D × P pre-germinated seeds are based on a standard guideline as described in Malaysian Standard MS 157: 2005 Oil Palm Seeds for Commercial Planting- Specification (Department of Standards Malaysia, 2005). Based on this guidelines, all licensed seed producers are required to subject all D × P seeds to 40 – 60 days of 40 ± 2°C to break to seed dormancy, before allowing the seeds to germinate at 30 ± 2°C in the germination room. Overall, approximately 130 days is needed to achieve 75% successful germination of normal pre-germinated D × P seeds. However, the seeds indicated poor uniformity during germination. The remaining 25% are usually discarded, including seeds that are either abnormally developed (radicle or plumule), infested with disease such as pathogenic brown germs, or seeds that are not germinating at all. Seed Production Unit of FELCRA Plantation Services Berhad reported that the D × P seeds requires nearly 60 days to achieve 75% germination (Samsudin, personal communication, May 12, 2014) despite the heat treatment that was applied beforehand to break the seed dormancy. Theoretically, if the dormancy-breaking method was successful, uniform germination should be observed under wide range of physical condition including temperature and humidity. This suggests that the current heat treatment method is not efficient in breaking the oil palm seed dormancy completely.

Understanding the exact dormancy type in oil palm seeds is crucial to ensure adoption of an accurate method in breaking the seed dormancy. Generally, five types of seed dormancy has been reported previously; physical, morphological, physiological,
morpho-physiological and combinational dormancy. Each different dormancy type will require a specific dormancy-breaking method. For instance, Rodrigues-Junior et al. (2013) reported that tegument removal treatment in physically dormant macaw palm (Acrocomia aculeate) was able to increase germination percentage with faster germination speed. Similarly, alternating temperature regimes along with physical scarification treatments that were applied on Diploeltis huegelii (Australian shrub) had successfully alleviate both physical and physiological dormancy characteristics (Turner et al., 2006). Currently, no specific research has been conducted to systematically evaluate and classify the oil palm seed dormancy.

Therefore, the objectives of this study are:

1. To established the type of dormancy present in oil palm seeds
2. To evaluate the influence of alternative dormancy breaking treatments on germination of oil palm seeds
REFERENCES

Bewley J.D. (1997). Seed germination and dormancy. The Plant Cell, 9, 1055-1066

Neto, A. R., Silva, F. G. Sales, J. F.

