INTERCROPPING OF CORN (Zea mays L.) WITH GROUNDNUT (Arachis hypogea L.) AND BAMBARA NUT (Vigna subterranea L.) TO INCREASE PROTEIN CONTENT OF COMBINED FORAGE

DAUDA MUSTAPHA BELEL

FP 2016 42
INTERCROPPING OF CORN (Zea mays L.) WITH GROUNDNUT (Arachis hypogea L.) AND BAMBARA NUT (Vigna subterranea L.) TO INCREASE PROTEIN CONTENT OF COMBINED FORAGE

By

DAUDA MUSTAPHA BELEL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2016
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is a copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
DEDICATION

My children
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

INTERCROPPING OF CORN (*Zea mays* L.) WITH GROUNDNUT (*Arachis hypogea* L.) AND BAMBARA NUT (*Vigna subterranea* L.) TO INCREASE PROTEIN CONTENT OF COMBINED FORAGE

By

DAUDA MUSTAPHA BELEL

September 2016

Chairman : Associate Professor Mohd Ridzwan Abd. Halim, PhD
Faculty : Agriculture

Forage corn has been used as a feed resource for ruminant but it is low in crude protein content such that animals have to be supplemented with protein sources. In order to increase the protein in corn forages, three corn intercropping experiments were conducted with two grain legumes: bambara nut (*Vigna subterranea* L. Verdc) and groundnut (*Arachis hypogea* L.) to evaluate their potential to increase forage quality.

In the first experiment, six introduced bambara nut landraces from Nigeria (Bambwus, Kurvu, KwadaZwalang, Tanyanyi, IndaraAyaghayagha and Karamagdanda) and one from Thailand (Songkla 1) were evaluated. The Songkla 1 variety has been grown in Malaysia over the last 15 years while the Nigerian landraces are newly introduced. The objective was to evaluate whether the Nigerian landraces could perform as well or better than the Songkla 1 variety in the Malaysian environment. There were significant differences (p<0.05) among the introduced African landraces and the adapted Songkla 1 variety. Kurvu recorded a higher forage dry matter (2,343 kg ha\(^{-1}\)) and pod yield (1,349 kg ha\(^{-1}\)). Harvest index was higher at 46.8% for Bambwus. In general, the introduced African landraces showed a better performance than the adapted Songkla1 variety and hence some of these landraces could be selected for planting in the tropical humid climate of Malaysia. Bambwus was superior to other varieties and was ranked first and was selected for inclusion in the subsequent corn/legume intercropping experiments.

In the second experiment, corn was intercropped with bambara nut and groundnut at a 1:1 ratio to determine the contribution of each legume towards the yield and quality of the combined forage. The experiment involved six treatments (sole corn with nitrogen, sole corn without nitrogen, sole groundnut, sole bambara nut, corn/bambara nut intercrop and corn/groundnut intercrop) replicated three times in a randomized complete block design. Nitrogen fertilizer was not applied to all treatments except for the first treatment. Intercropping significantly (p≤ 0.05) increased the growth of corn crop and suppressed both bambara nut and groundnut.
A higher yield was obtained from nitrogen-fertilized corn. However, intercropping showed its advantage through 36% and 59% better land equivalent ratio (LER) in intercrop than in monocrop for corn/bambara nut and corn/groundnut respectively. The relationship between corn and the legumes was synergistic in nature as shown by relative yield total which was 1.36 for corn-bambara nut and 1.59 for corn-groundnut. Digestibility was higher in the corn/legume forage (57.5%) compared to sole corn (51.8%). Similarly, corn intercropped with bambara nut and groundnut had higher protein content (10.8 and 12.9%) compared to sole corn (8.21%). Groundnut was a better legume for intercropping with corn than bambara nut in terms of yield but bambara nut was selected for the next study in order to further understand its performance in humid tropical environment.

In the third experiment, corn was intercropped with bambara nut landrace Bambwus in a randomized complete block design using different planting patterns based on the ratio of corn/bambara nut as follows (C=Corn, B=Bambara, N=Nitrogen): C4:B0, C4:B0+N, C3:B1, C2:B2, C1:B3, C0:B4. The crop growth rate, leaf chlorophyll and total leaf area were significantly higher among the intercrops compared to monocrops. Total dry matter yield was similar in all combinations. Sole corn had 73% neutral detergent fiber (NDF) which was higher than in the intercrops except C1:B3. Corn/bambara nut combinations ratios also differed significantly in NDF and acid detergent fiber (ADF). Protein in sole bambara nut was 14.8%. Among the combinations, crude protein was highest in C1:B3 (17.3%). Crude protein in sole corn was 8.52%. Lignin was highest in combinations with more bambara nut with sole bambara nut having 4.92% lignin. The planting patterns all gave a land equivalent ratio (LER) higher than 1.00 which indicated the benefit of intercropping. Aggressivity index indicates that corn was more aggressive than bambara nut in their competition. For improvement of overall forage quality it is recommended that bambara nut be planted as an intercrop with corn at the ratio of 1 corn to 3 bambara nut. The Nigerian landrace Bambwus should be used in place of Songkla 1 because of its relatively superior performance.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENANAMAN SELINGAN ANTARA JAGUNG DENGAN KACANG TANAH DAN KACANG BAMBARA UNTUK MENINGGIKAN KANDUNGAN PROTEIN BAGI FORAJ CAMPURAN

Oleh

DAUDA MUSTAPHA BELEL

September 2016

Pengerusi : Profesor Madya Mohd Ridzwan Abd. Halim, PhD
Fakulti : Pertanian

Eksperimen pertama membuat penilaian terhadap enam jenis kacang bambara dari Nigeria (Bambwus, Kurvu, KwadaZwalang, Tanyanyi, IndaraAyaghayagha, and Karamagdanda) dan satu varieti dari Thailand (Songkla 1). Varieti Songkla 1 telah ditanam di Malaysia semenjak 15 tahun dahulu manakala varieti Nigeria baru diperkenalkan. Keputusan menunjukkan perbezaan yang signifikan (p<0.05) antara enam jenis kacang bambara (varieti dari Afrika) berbanding varieti Songkla 1. Kurvu mencatatkan hasil berat kering (2,343 kg ha\(^{-1}\)) dan hasil kantung kacang (1,349 kg ha\(^{-1}\)) yang paling tinggi. Indeks hasil tertinggi dicatatkan oleh Bambwus iaitu sebanyak 46.80%. Secara keseluruhannya, varieti-varieti dari Afrika menunjukkan hasil yang lebih memberansangkan daripada varieti Songkla1 dan sebahagian daripada varieti tersebut boleh dipilih untuk penanaman di iklim tropika lembab yang terdapat di Malaysia. Bambwus dinilai menduduki tempat pertama dan telah dipilih untuk tujuan penanaman selingan dengan tanaman jagung.

Eksperiman kedua, merupakan penanaman selingan antara jagung dengan kacang bambara dan kacang tanah dengan nisbah 1:1 bagi menentukan sumbangan tanaman kekacang terhadap hasil dan kualiti foraj campuran. Eksperiman ini melibatkan enam rawatan (jagung tunggal dengan baja nitrogen, jagung tunggal tanpa baja nitrogen, kacang tanah tunggal, kacang bambara, penanamam selingan jagung/bambara dan penanamam selingan jagung/kacang tanah) dalam tiga replikasi. Baja nitrogen hanya digunakan untuk rawatan yang pertama, rawatan yang lain tidak diletakkan baja nitrogen. Keputusan menunjukkan penanamam selingan telah
meningkatkan pertumbuhan tanaman utama iaitu jagung dan melebihi pertumbuhan tanaman selingan tanaman kekacang sama ada bagi kacang bambara mahupun kacang tanah. Hasil tertinggi diperolehi oleh jagung dengan rawatan baja nitrogen. Walau bagaimanapun, penanaman selingan jagung/bambara dan penanamam selingan jagung/kacang tanah menunjukkan peningkatan nisbah setara tanah (LER) lebih baik daripada penanamam jagung tunggal dengan masing-masing sebanyak 36% dan 59%. Pola persaingan antara tanaman utama dan tanaman gandingan yang diukur oleh jumlah hasil relatif (LER) menunjukkan bahawa perhubungan sinergi berlaku antara jagung dan tanaman kekacang iaitu kacang bambara menunjukkan LER 1.36 dan kacang tanah 1.59. Berlaku juga peningkatan terhadap nilai pencernaan oleh campuran jagung/kekacang berbanding jagung tunggal (57.5% bagi campuran berbanding 51.8% bagi jagung tunggal. Peningkatan kandungan protein dapat dilihat juga dengan penanaman selingan jagung dengan kacang bambara dan kacang tanah kerana kandungan protein lebih tinggi daripada penanaman jagung tunggal (10.8% dan 12.9% dalam penanaman campuran berbanding 8.21% dalam penanaman jagung tunggal). Kacang tanah adalah legum yang lebih baik untuk intercropping dengan jagung dari bambara nut dari segi hasil tetapi bambara nut telah dipilih untuk kajian akan dating untuk memahami lagi prestasinya dalam persekitaran tropika lembap.

ACKNOWLEDGEMENTS

With profound gratitude to Allah (SWT) whom has given me the strength and determination to successfully pursue the course of my study. “Alhamdulillahi rabbil Alamina”.

I specially thank my supervisor, Associate Professor Dr. Mohd Ridzwan A. Halim for his tireless support, throughout my period of study. Sir your contributions in preparing my thesis is enormous and I pray that Allah reward you abundantly, Aameen! I am also indebted to the members of my supervisory committee, Associate Professor Dr. Halimi Mohd Saud, and Professor Dr. Mohd Rafii Yusop for their constructive and positive contributions to my study. Support in forms of technical advice, constructive comments and criticism from the staff of the Crop Science Department and the Faculty of Agriculture, Universiti Putra Malaysia, is gratefully acknowledged.

Also to my extended family, friends, colleagues, I say a big “thank you” for your patience and support. Not forgetting my aged mother, for her love, prayers and patience, may He reward you for everything too numerous to mention!

I also thank the Tertiary Education Trust Fund (TETFUND) of the Federal Government of Nigeria, as well as the Federal Polytechnic Mubi for their financial support during this period.

Finally, I wish to appreciate the patience and support of my wife and children for their continued encouragement, assistance and tolerance through the challenging three years of my study.
I certify that a Thesis Examination Committee has met on 5 September 2016 to conduct the final examination of Dauda Mustapha Belel on his thesis entitled "Intercropping of Corn (Zea mays L.) with Groundnut (Arachis hypogea L.) and Bambara Nut (Vigna subterranea L.) to Increase Protein Content of Combined Forage" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Adam bin Puteh, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Yahya bin Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mohamad bin Osman, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Md. Moshiur Rahman, PhD
Professor
Bangladesh Agricultural University
Bangladesh
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Ridzwan Abd Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Halimi Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Mohd Rafii Yusop, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: _______________________________ Date: ___________________

Name and Matric No.: Dauda Mustapha Belel GS35946
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee: Associate Professor Dr. Mohd Ridzwan Abd Halim

Signature:
Name of Member of Supervisory Committee: Associate Professor Dr. Halimi Mohd Saud

Signature:
Name of Member of Supervisory Committee: Professor Dr. Mohd Rafii Yusop
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Intercropping system

2.2 Benefits of intercropping

2.3 Problems of intercropping

2.4 Effect of intercropping on growth and yield of corn

2.5 Effect of intercropping on growth and yield of legumes

2.6 Effect of intercropping on nutrients uptake

2.7 Effects of bambara nut intercrop on growth and yield of corn

2.8 Effects of groundnuts on growth and yield of corn

2.9 Effect of legumes intercrop and cropping system on soil fertility

2.10 Intercrop productivity

2.10.1 Land equivalent ratio (LER)

2.11 Resource use

2.11.1 Nutrient

2.11.2 Light

2.11.3 Water

2.11.4 Competition

2.12 Compatibility of companion crops

2.13 Crop competition and the De Wit model

2.14 Forage yield and quality

2.15 Analysis of forage quality

2.16 Fertilizer management in intercropping system

2.17 History, morphology and classification of component crops

2.17.1 Corn

2.17.2 Bambara nut

2.17.3 Climate and soil requirements for bambara nut growth

2.17.4 Introduction of bambara nut as a new crop in Malaysia

2.17.5 Groundnut
3 EVALUATION OF GROWTH AND YIELD PERFORMANCE OF SEVEN BAMBARA NUT LANDRACES

3.1 Introduction 23
3.2 Materials and Methods 23
3.2.1 Study area 23
3.2.2 Climate and soil 24
3.2.3 Land preparation 25
3.2.4 Treatment and experimental design 26
3.2.5 Agronomic practices 27
3.2.6 Plant growth 28
3.2.7 Plant physiology measurement 29
3.2.8 Measurement of yield components 29
3.2.9 Measurement of yield 29
3.2.10 Harvest index 29
3.2.11 Description of landraces 30
3.2.12 Cluster analysis 30
3.2.13 Performance index 30
3.2.14 Statistical analysis 31
3.3 Results 31
3.3.1 Crop establishment and morphology of seven bambara nut landraces 31
3.3.2 Plant height 32
3.3.3 Number of leaves 33
3.3.4 Flower and nodule development of seven bambara nut landraces 33
3.3.5 Physiology traits of seven bambara nut landraces 35
3.3.6 Yield components of bambara nuts landraces 36
3.3.7 Yield of seven bambara nut landraces 37
3.3.8 Correlation of growth and physiology traits with dry matter yield 39
3.3.9 Clustering of bambara nut phenotypes 39
3.3.10 Selection of landraces 41
3.4 Discussion 42
3.4.1 Growth of bambara nut landraces 42
3.4.2 Yield of bambara nut landraces 43
3.5 Conclusion and recommendation 45

4 ASSESSMENT OF GROWTH AND YIELD CHARACTERS OF CORN INTERCROPPED WITH BAMBARA NUT AND GROUNDNUT

4.1 Introduction 46
4.2 Materials and methods 46
4.2.1 Study area 46
4.2.2 Climate 47
4.2.3 Agronomic practices 47
4.2.4 Experimental design and treatment 47
4.2.5 Crop growth 49
4.2.6 Root measurement 49
4.2.7 Plant physiology measurement 49
4.2.8 Determination of yield components 49
4.2.9 Determination of yield
4.2.10 Yield advantage
4.2.11 Determination of nutritive quality
4.2.12 In vitro dry matter digestibility
4.2.13 Determination of mineral content of forage
4.2.14 Statistical analysis

4.3 Results
4.3.1 Effects of intercropping corn with bambara nut and groundnut on some establishment and growth characters
4.3.2 Plant height
4.3.3 Canopy width for legumes
4.3.4 Number of leaves of corn
4.3.5 Effect of intercrop and monocrop of corn and legume on flowering and nodulation
4.3.6 Effects of intercropping corn with bambara nut and groundnut on some physiological characters
4.3.7 Effects of intercropping corn with bambara nut and groundnut on yield components
4.3.8 Yield components for corn
4.3.9 Effects of intercropping corn with bambara nut and groundnut on yield
4.3.10 Effect of intercropping on root characteristics of component cereal and legume
4.3.11 Advantage of intercropping corn with bambara nut and groundnut
4.3.12 Effect of intercropping corn with bambara nut and groundnut on forage quality
4.3.13 Digestibility of forage
4.3.14 Mineral content of forage

4.4 Discussion
4.4.1 Effect of intercropping on the yield of corn and legumes
4.4.2 Effect of intercropping on forage quality

4.5 Conclusion and recommendations

5 EVALUATION OF FORAGE YIELD AND QUALITY OF CORN AND BAMBARA NUT IN DIFFERENT PLANTING PATTERNS
5.1 Introduction
5.2 Materials and methods
5.2.1 Study area
5.2.2 Climate
5.2.3 Agronomic practices
5.2.4 Experimental design and treatment
5.2.5 Crop growth
5.2.6 Physiology measurement
5.2.7 Yield measurement
5.2.8 Intercropping advantage
5.2.9 Nutritive quality measurement
5.2.10 Mineral analysis 82
5.2.11 Statistical analysis 83
5.3 Results 83
 5.3.1 Effects of planting patterns on growth of component crops in intercropping 83
 5.3.2 Effects of planting patterns on growth characters of component crops in intercropping 85
 5.3.3 Effect of planting patterns on some flowering and nodulation characteristics of bambara nut in cropping patterns 88
 5.3.4 Effect of planting patterns on the physiology of component crops in intercrop 88
 5.3.5 Effects of planting patterns on the yield of component crops in intercrop 89
 5.3.6 Effects of planting patterns on the forage quality of component crops in sole and mixed proportions 91
 5.3.7 Contrasts of dry matter yield and some forage quality characteristics of corn and bambara nut in different planting patterns 93
 5.3.8 Mineral content 98
 5.3.9 Intercropping advantage as affected by planting patterns 100
5.4 Discussion 102
 5.4.1 Effect of planting pattern on the yield of corn and bambara nut 102
 5.4.2 Effect of planting pattern on the forage quality of different combination ratios 104
5.5 Conclusion and recommendations 105

6 SUMMARY, CONCLUSION, AND RECOMMENDATION 106
 6.1 Summary 106
 6.2 Conclusion 108
 6.3 Recommendations 108

REFERENCES 109
APPENDICES 132
BIODATA OF STUDENT 142
LIST OF PUBLICATIONS 143
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Physical and chemical properties of soil at the experimental site</td>
</tr>
<tr>
<td>3.2</td>
<td>Description of bambara nut landraces</td>
</tr>
<tr>
<td>3.3</td>
<td>Weightage of the different characteristics used in the performance index</td>
</tr>
<tr>
<td>3.4</td>
<td>Establishment and morphology of bambara nut landraces</td>
</tr>
<tr>
<td>3.5</td>
<td>Flowering and nodulation of seven bambara nut landraces</td>
</tr>
<tr>
<td>3.6</td>
<td>Physiology traits of bambara nut landraces</td>
</tr>
<tr>
<td>3.7</td>
<td>Yield components of bambara nut landraces</td>
</tr>
<tr>
<td>3.8</td>
<td>Yield of bambara nut landraces</td>
</tr>
<tr>
<td>3.9</td>
<td>Correlation coefficient of growth and physiological characters</td>
</tr>
<tr>
<td>4.1</td>
<td>Description of groundnut variety Kampala</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of intercropping on establishment and growth of corn and legumes</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of intercropping on flowering and nodulation in bambara nut and groundnut</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of intercropping on leaf chlorophyll, leaf area index, photosynthesis, stomata conductance and transpiration</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of intercropping on yield components for legumes</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of intercropping on yield components for corn</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of intercropping on yield of corn and legumes</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of intercropping on roots of corn and legume</td>
</tr>
<tr>
<td>4.9</td>
<td>Land equivalent ratio of corn intercropped with bambara nut and groundnut</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of intercropping on forage quality</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of intercropping on mineral content of forage</td>
</tr>
<tr>
<td>5.1</td>
<td>Description of intercropping ratios used in planting patterns</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of different planting patterns on growth characters of corn and bambara nut</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of different planting patterns on flower and nodule characteristics of bambara nut</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of different planting patterns on physiology of corn and bambara nut</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of different planting patterns on yield of corn and bambara nut</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of different planting patterns on nutritive value of forage</td>
</tr>
<tr>
<td>5.7</td>
<td>Contrasts of dry matter yield of corn and its forage quality in monocrop and intercrop with bambara nut</td>
</tr>
<tr>
<td>5.8</td>
<td>Contrasts of dry matter yield of bambara nut and its forage quality in monocrop and intercrop with corn</td>
</tr>
<tr>
<td>5.9</td>
<td>Effect of different planting patterns on mineral contents of forage for corn/bambara nut mixtures</td>
</tr>
<tr>
<td>5.10</td>
<td>Land equivalent ratio and actual yield loss of corn and bambara nut in different planting patterns</td>
</tr>
<tr>
<td>5.11</td>
<td>Aggressivity index and competitive ratio of corn and bambara nut in different planting patterns</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>De Wit’s model graph (Adapted from Nathan and Linda, 2014)</td>
</tr>
<tr>
<td>2.2</td>
<td>Global Land use for Bambara nut Production from 1993-2013</td>
</tr>
<tr>
<td>2.3</td>
<td>Global Production for Bambara nut Production from 1993-2013</td>
</tr>
<tr>
<td>2.4</td>
<td>Groundnut production in Malaysia (1961-2013)</td>
</tr>
<tr>
<td>2.5</td>
<td>Groundnut production area in Malaysia (1961-2013)</td>
</tr>
<tr>
<td>3.1</td>
<td>Mean monthly temperature and relative humidity of experimental site</td>
</tr>
<tr>
<td>3.2</td>
<td>Plant height of seven bambara nut landraces</td>
</tr>
<tr>
<td>3.3</td>
<td>Number of leaves of seven bambara nut landraces</td>
</tr>
<tr>
<td>3.4</td>
<td>Pod width and pod length of bambara nut landraces</td>
</tr>
<tr>
<td>3.5</td>
<td>Dendrogram: Cluster analysis of seven bambara nut landraces</td>
</tr>
<tr>
<td>3.6</td>
<td>3D PCA of the seven bambara nut landraces</td>
</tr>
<tr>
<td>3.7</td>
<td>Ranking of landraces based on their weighted average values</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental layout for corn-legume intercropping</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of intercropping on plant height of corn</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of intercropping on plant height of legume</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of intercropping on canopy width for legume</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of intercropping on number of leaves of corn</td>
</tr>
<tr>
<td>4.6</td>
<td>Relative yields of corn intercropped with bambara nut</td>
</tr>
<tr>
<td>4.7</td>
<td>Relative yield of corn intercropped with groundnut</td>
</tr>
<tr>
<td>4.8</td>
<td>Invitro gas production of different forage combination</td>
</tr>
<tr>
<td>4.9</td>
<td>In vitro dry matter digestibility at 48 hours</td>
</tr>
<tr>
<td>5.1</td>
<td>Experimental layout for corn-bambara nut at different ratios</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of different planting patterns on plant height of corn</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of different planting patterns on plant height of bambara nut</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of different planting patterns on canopy width of bambara nut</td>
</tr>
<tr>
<td>5.5</td>
<td>Total dry matter yield of different combination ratios of corn and bambara nut</td>
</tr>
<tr>
<td>5.6</td>
<td>Percentage crude protein content of different corn/ bambara combination ratios</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Acid Detergent Fiber</td>
</tr>
<tr>
<td>ADL</td>
<td>Acid Detergent Lignin</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AYL</td>
<td>Actual Yield Loss</td>
</tr>
<tr>
<td>CB</td>
<td>Corn/ Bambara nut</td>
</tr>
<tr>
<td>CFFRC</td>
<td>Crops for the Future Research Centre</td>
</tr>
<tr>
<td>CG</td>
<td>Corn/Groundnut</td>
</tr>
<tr>
<td>CGR</td>
<td>Crop Growth Rate</td>
</tr>
<tr>
<td>CP</td>
<td>Crude Protein</td>
</tr>
<tr>
<td>CR</td>
<td>Competitive Ratio</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyl trimethylammonium bromide</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>C0:B4</td>
<td>Pure stands of Bambara nut</td>
</tr>
<tr>
<td>C1:B3</td>
<td>Two Row Corn: Six Rows Bambara nut</td>
</tr>
<tr>
<td>C2:B2</td>
<td>Four rows Corn: Four Rows Bambara nut</td>
</tr>
<tr>
<td>C3:B1</td>
<td>Six Rows Corn: Two Row Bambara nut</td>
</tr>
<tr>
<td>C4:B0</td>
<td>Pure stands of corn without nitrogen fertilizer</td>
</tr>
<tr>
<td>C4:B0+N</td>
<td>Pure stands of corn with nitrogen fertilizer</td>
</tr>
<tr>
<td>DF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>DMD</td>
<td>Dry Matter Digestibility</td>
</tr>
<tr>
<td>DMY</td>
<td>Dry Matter Yield</td>
</tr>
<tr>
<td>EDTA</td>
<td>Disodium ethylene diamine tetra acetate</td>
</tr>
<tr>
<td>FAOSTAT</td>
<td>Food and Agriculture Organization Statistics</td>
</tr>
<tr>
<td>HI</td>
<td>Harvest Index</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ICRISAT</td>
<td>International Cereal Research Institute for Semi-Arid Tropics</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LC</td>
<td>Leaf Chlorophyll</td>
</tr>
<tr>
<td>LER</td>
<td>Land Equivalent Ratio</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>MOP</td>
<td>Muriate of Potash</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral Detergent Fiber</td>
</tr>
<tr>
<td>ns</td>
<td>Not Significant</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>RSR</td>
<td>Root to Shoot Ratio</td>
</tr>
<tr>
<td>RYT</td>
<td>Relative Yield Totals</td>
</tr>
<tr>
<td>SB</td>
<td>Sole bambara nut</td>
</tr>
<tr>
<td>SG</td>
<td>Sole groundnut</td>
</tr>
<tr>
<td>TLA</td>
<td>Total Leaf Area</td>
</tr>
<tr>
<td>TSP</td>
<td>Triple Super Phosphate</td>
</tr>
<tr>
<td>WAS</td>
<td>Weeks After Sowing</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pictures of seeds of different landraces</td>
<td>132</td>
</tr>
<tr>
<td>B</td>
<td>2D PCA of the seven bambara nut landraces using 19 phenotypic characters</td>
<td>133</td>
</tr>
<tr>
<td>C</td>
<td>ANOVA tables for bambara nut evaluation experiment</td>
<td>134</td>
</tr>
<tr>
<td>C-1</td>
<td>Mean squares of ANOVA for establishment characters and morphology of seven bambara nut landraces</td>
<td>134</td>
</tr>
<tr>
<td>C-2</td>
<td>Mean squares of ANOVA for plant height of seven bambara nut landraces</td>
<td>134</td>
</tr>
<tr>
<td>C-3</td>
<td>Mean squares of ANOVA for number of leaves of seven bambara nut landraces</td>
<td>134</td>
</tr>
<tr>
<td>C-4</td>
<td>Mean squares of ANOVA for flowering and nodulation characteristic of seven bambara nut landraces</td>
<td>135</td>
</tr>
<tr>
<td>C-5</td>
<td>Mean squares of ANOVA for some physiology of seven bambara nut landraces</td>
<td>135</td>
</tr>
<tr>
<td>C-6</td>
<td>Mean squares of ANOVA for some yield components of seven bambara nut landraces</td>
<td>135</td>
</tr>
<tr>
<td>C-7</td>
<td>Mean squares of ANOVA for yield of seven bambara nut landraces</td>
<td>135</td>
</tr>
<tr>
<td>D</td>
<td>ANOVA tables for corn/legume intercropping experiment</td>
<td>136</td>
</tr>
<tr>
<td>D-1</td>
<td>Mean squares of ANOVA for canopy width of legume</td>
<td>136</td>
</tr>
<tr>
<td>D-2</td>
<td>Mean squares of ANOVA for number of leaf for corn</td>
<td>136</td>
</tr>
<tr>
<td>D-3</td>
<td>Table of ANOVA for flowering and nodulation in bambara nut and groundnut for corn</td>
<td>136</td>
</tr>
<tr>
<td>D-4</td>
<td>Mean squares of ANOVA for yield components of legume</td>
<td>136</td>
</tr>
<tr>
<td>D-5</td>
<td>Mean squares of ANOVA for yield components of corn</td>
<td>137</td>
</tr>
<tr>
<td>D-6</td>
<td>Mean squares of ANOVA for forage quality characteristics of monocrop and intercrop of corn with bambara nut and groundnut</td>
<td>137</td>
</tr>
<tr>
<td>D-7</td>
<td>Mean squares of ANOVA for invitro gas production and</td>
<td>137</td>
</tr>
</tbody>
</table>
percentage dry matter digestibility of forage

D-8	Mean squares of ANOVA for mineral content of combined forages of corn with bambara nut and groundnut	137
E	ANOVA tables for planting patterns experiment	138
E-1	Mean squares of ANOVA for plant height of corn in different planting patterns	138
E-2	Mean for plant height of corn in different planting patterns	138
E-3	Mean squares of ANOVA for plant height of bambara nut in different planting patterns	138
E-4	Mean squares of ANOVA for canopy width of bambara nut in different planting patterns	138
E-5	Mean squares of ANOVA for growth characters of corn in different planting patterns	139
E-6	Mean squares of ANOVA for growth characters of bambara nut in different planting patterns	139
E-7	Mean squares of ANOVA for flower and nodules characteristics of bambara nut in different planting patterns	139
E-8	Mean squares of ANOVA for physiology of corn in different planting patterns	139
E-9	Mean squares of ANOVA for physiology of bambara nut in different planting patterns	140
E-10	Mean squares of ANOVA for yield of corn in different planting patterns	140
E-11	Mean squares of ANOVA for yield of bambara nut in different planting patterns	140
E-12	Mean squares of ANOVA for nutritive value of corn and bambara nut in different planting patterns	140
E-13	Mean squares of ANOVA for mineral content of for from corn/bambara nut mixtures at different ratios	140
E-14	Mean difference for contrast comparison between monocrop and intercrop corn	141
E-15	Mean difference for contrast comparison between monocrop and intercrop bambara nut	141
CHAPTER 1

INTRODUCTION

The cultivation of cereal and legumes in a compatible combination is popular among subsistence farmers in the tropics. This is with the ultimate aim of producing food grains for immediate family consumption, leaving out the remaining vegetative leaf litter and straw as residue for livestock grazing on the farm. Intercropping of legumes and cereals at a given proportion is aimed at improving the quality and yield of forage (legumes and cereals) in order to provide better livestock feed.

The expected increase in demand for animal products makes it critical to develop forage with higher protein content. Legumes fix nitrogen in the soil which help to improve fertility of such soil and thus increase the nitrogen and protein levels in crops. Nowadays, attention is focused on providing a quality grazing pasture of high protein content for livestock in order to boost both quality meat and milk production. Protein is a major constituent in cell multiplication and bodybuilding in animals and the quality forage required for the growing nutritional needs of the livestock has to be sourced through corn-legume intercropping. Intercropping of cereal and legume gives a balanced and high forage protein due to substrate transfer during this interaction.

Many countries of the world have now achieved productivity in crops through intercropping (Francis, 1986). The system has shown to be more effective than monocropping as it helps to produce surplus food from a less expanse of land with minimal impact on the environment.

Most studies on intercropping have concentrated on the useful and sustainable system, i.e. on the legume-cereal intercropping (Fusuo and Li, 2003). Intercropping plays a dynamic role in subsistence food production in both advanced and emerging countries (Adeoye et al., 2005). Several researches have been reported on intercropping (Mandal et al., 1990; Brintha and Seran, 2009; Ijoyah, 2012), mostly focusing on cereal-legume intercrops (Ofori and Stern, 1987; Hugar and Palled, 2008) and all proved successful.

Intercropping of cereal and legume is a good combination which gives high energy and protein which could provide good source of feed for livestock. Certain legumes such as bambara nut has not been grown in the humid tropics under different intercropping patterns with corn. Bambara nut is a legume that was recently introduced to Asia (and Malaysia) and it presents a great potential for improved food production on tropical marginal soils (CFFRC, 2012). In Malaysia, the Crops for the Future Research Center (CFFRC) located in the University of Nottingham adopted it as its mandate crop in the underutilized crops program. The crop has several natural agronomic advantages including: high nutritional value, drought resistance, resilience to high temperatures and is fit for marginal soils where other leguminous crops cannot grow. Hence, there is a need to evaluate the performance of different landraces to
identify a suitable choice for intercropping with corn for the improvement of forage production in the humid tropics. The world’s need for an improved supply of quality food and feed demands that crops be grown outside their usual growing environment, especially hardy crops that can adapt to a wide range of ecological conditions.

The majority of ruminant livestock in tropical countries are raised on natural pastures which decline rapidly in quality due to ageing in the dry seasons. In order to reduce the nitrogen fertilizer requirement as well as to improve quality through the increase of protein in the feed, planting corn with grain legumes may be a solution. The understanding of these critical needs, especially from different grain legume crops in a suitable combination with corn for high protein forage should be explored. Under-utilized grain legume forages are potential sources of supplement in ruminant livestock diet.

Different planting patterns for cereal-legume intercropping have been practiced by many researchers and farmers and the yield advantage of intercropping has not been so marked in several situations possibly due to the use of supra-optimal plant population proportions and in some cases, to the use of sub-optimal population proportions for component crops. The use of different combination ratio between corn and the legume to ascertain the optimal yield and forage value of the mixture becomes eminent. Different planting patterns and crop composition need to be optimized to obtain the best yield and forage quality in a corn-legume intercrop. The cropping system of the humid tropical environment could be enriched by including the bambara nut legume in intercropping through different planting patterns.

The main objective of this research is to intercrop corn with groundnut and bambara nut to increase the protein content of combined forage. The following are the specific objectives of the study:

i) To evaluate the performance of different landraces of bambara nut and to select the best landrace for incorporation into a corn-legume intercropping.

ii) To evaluate the performance of two different legumes (bambara nut and groundnut) in intercropping and select the better legume for incorporation into the corn-legume intercropping system.

iii) To assess the yield and forage quality of corn and legume in different intercrop ratios.
REFERENCES

CFFRC (2012). Crops for the Future Research Centre. Beyond food security University Nottingham, Malaysia campus Semenyih, Selangor, Malaysia. www.cffresearch.org

Kumar, A. and Kumar, S. (2008). Crop growth rate and development characteristics of indian mustard var vardan to varying levels of nitrogen and sulphur. Indian Journal of Agricultural Research, 42(2):112-115

Remison, S. U. (1978). Neighbour effects between maize and cowpea at various levels of N and P. *Experimental Agriculture*, 14:205-212.

Smart, J. (2012). The groundnut crop: A scientific basis for improvement. Springer science + Business Media publisher,

