UNIVERSITI PUTRA MALAYSIA

YIELD AND NUTRITIVE QUALITY OF FOUR NAPIER (Pennisetum purpureum Schumach.) CULTIVARS HARVESTED AT DIFFERENT AGES AS FRESH AND ENSILED FODDER

MOHAMAD ZAIHAN BIN ZAILAN

FP 2016 38
YIELD AND NUTRITIVE QUALITY OF FOUR NAPIER (Pennisetum purpureum Schumach.) CULTIVARS HARVESTED AT DIFFERENT AGES AS FRESH AND ENSILED FODDER

By

MOHAMAD ZAIHAN BIN ZAILAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2016
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

YIELD AND NUTRITIVE QUALITY OF FOUR NAPIER (Pennisetum purpureum Schumach.) CULTIVARS HARVESTED AT DIFFERENT AGES AS FRESH AND ENSILED FODDER

By

MOHAMAD ZAIHAN BIN ZAILAN

May 2016

Chair: Associate Professor Dr. Halimatun Yaakub, PhD

Faculty: Agriculture

Studies were conducted to evaluate the yield and nutritive quality of four Napier (Pennisetum purpureum) cultivars namely Common, Silver, Red and Dwarf Napier harvested at 4, 6 and 8 weeks age as fresh and ensiled fodder. Common, Silver and Red Napier were classified as tall cultivars while Dwarf Napier is a short cultivar. The harvesting ages selected were within of the range of optimum cutting age for Napier grass.

Study 1 was conducted to determine the dry matter yield and leaf to stem ratio of fresh Napier cultivars at 4, 6 and 8 weeks old. The dry matter yield of Common Napier reached a peak of 6 tonnes ha\(^{-1}\) cut\(^{-1}\) at 6-week old. The dry matter yield of Red Napier gradually increased and peaked 6 tonnes ha\(^{-1}\) cut\(^{-1}\) at 8 weeks old. Silver Napier yielded a similar dry matter production as Dwarf Napier as well as the lowest yield throughout the study. The leaf to stem ratio of Napier cultivars declined significantly from 3.24 at 4 weeks to 1.94 at 6 weeks. Dwarf Napier had the highest leaf to stem ratio (3.93) among the cultivars.

The nutritional composition and digestibility of fresh Napier cultivars at 4, 6 and 8 weeks were evaluated in Study 2. Dwarf Napier had the highest nutritive quality among the cultivars throughout the harvesting ages (12 to 20% CP). Overall, tall cultivars have higher NDF, ADF and ADL content than Dwarf Napier. Interestingly, the crude protein content of Red Napier (11%) remained unchanged throughout the harvesting ages. In terms of digestibility, Dwarf Napier and 6-week old Red Napier were classified as high quality feed (> 70% IVDMD and > 65% IVOMD).
Study 3 was conducted to evaluate and compare the nutritional composition and digestibility of fresh and ensiled cultivars at 6 and 8 weeks harvesting age. The crude protein of Common Napier increased significantly after ensiling process from 8 to 9%. In contrast, a significant loss in crude protein content was observed in ensiled Silver Napier (9% CP) compared to the fresh forage (10% CP). A significant loss in cell wall constituent of Napier grass was observed in ensiled cultivars regardless of the harvesting ages. All cultivars have similar IVDMD, and the IVDMD declined from 68 to 60% after ensilation. Nevertheless the improvement in IVOMD from 52 to 58% in silage might derive from the bacteria population.

In conclusion, Common Napier is recommended to be harvested at 6 weeks age to obtain highest dry matter yield as well as minimizing loss of nutritive value. Red Napier could be harvested at 6 and 8 weeks age since there were no change in crude protein content. Dwarf Napier had superior quality and could be harvested at 6 weeks since the crude protein was able to fulfill the requirement for growing and lactating animals. The dry matter yield of Dwarf Napier could be maximized by harvesting at 8 weeks age. Silver Napier had similar dry matter yield and no advantage in nutritive quality compared to Dwarf Napier. Nevertheless, Silver Napier is suggested to be harvested at 6 weeks since significant loss in nutritive value was observed especially crude protein at 8 weeks.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

HASIL DAN KUALITI NUTRITIF EMPAT NAPIER (Pennisetum purpureum Schumach.) KULTIVAR DITUIA PADA UMUR YANG BERBEZA SEBAGAI FODER SEGAR DAN PERAM

Oleh

MOHAMAD ZAIHAN BIN ZAILAN

Mei 2016

Pengerusi: Profesor Madya Dr. Halimatun Yaakub, PhD

Fakulti: Pertanian

Satu kajian telah dijalankan untuk menilai hasil dan kualiti nutritif empat Napier (Pennisetum purpureum) kultivar dinamakan sebagai Napier Umum, Perak, Merah, Kerdil yang dituai pada minggu ke-4, 6 dan 8 sebagai foder segar dan silaj. Napier Umum, Perak dan Merah diklasifikasikan sebagai kultivar tinggi manakala rumput Kerdil adalah kultivar rendah. Peringkat penuaian telah dipilih dalam lingkungan umur tuaian optima bagi rumput Napier.

Kajian 1 telah dijalankan untuk menentukan hasil berat kering dan nisbah daun kepada batang bagi Napier kultivar pada minggu tuaian ke-4, 6 dan 8. Hasil berat kering bagi Napier Umum mencapai kemuncak, 6 tan ha\(^{-1}\) potong\(^{-1}\) pada minggu ke-6. Hasil berat kering Napier Merah meningkat secara berperingkat dan mencanak naik kepada 6 tan ha\(^{-1}\) potong\(^{-1}\) pada umur minggu ke-8. Napier Perak menghasilkan berat kering yang sama seperti Napier Kerdil sekaligus merupakan hasil yang terendah sepanjang kajian dijalankan. Nisbah daun kepada batang bagi kultivar Napier menurun secara signifikan dari 3.24 pada minggu ke-4 kepada 1.94 pada minggu ke-6. Napier Kerdil mempunyai nisbah daun kepada pada tertinggi (3.93) diantara kultivar.

Komposisi nutrisi dan kecernaan bagi kultivar Napier segar pada minggu ke-4, 6 dan 8 telah dinilai dalam kajian 2. Napier Kerdil mempunyai kualiti nutritif yang tertinggi diantara kultivar sepanjang umur tuaian (12 ke 20% CP). Secara keseluruhan, Napier tinggi menpunyai kandungan NDF, ADF dan ADL yang lebih tinggi berbanding Napier Kerdil. Yang menariknya, protin kasar bagi Napier Merah (11% CP) tidak berubah sepanjang umur tuaian,. Dalam istilah kecernaan, Napier Kerdil dan Napier Merah pada umur 6 minggu diklasifikasikan sebagai makanan kuali tinggi (> 70% IVDMD dan >65% IVOMD).

Kajian 3 dijalankan bagi menilai dan membandingkan komposisi nutrisi dan kecernaan bagi kultivar segar dan peram pada tuaian minggu ke-6 dan 8. Protin kasar bagi Napier Umum meningkat ketara selepas proses pemeraman daripada 8 ke 9%. Sebaliknya, kehilangan signifikan bagi kandungan protin kasar dalam Napier Perak peram (9% CP) berbanding jenis segar (10% CP). Kehilangan ketara bagi kandungan dinding sel dalam rumput Napier diperhatikan dalam kultivar peram tanpa mengira
umur tuaian. Kesemua kultivar mempunyai IVDMD yang sama, dan IVDMD menurun daripada 68% ke 60% selepas diperam. Akan tetapi, peningkatan dalam IVOMD dari 52 ke 58% dalam silaj kemungkinan berasal dari populasi bakteria.

ACKNOWLEDGEMENTS

I am using this opportunity to express my sincere gratitude to Assoc. Prof. Dr. Halimatun Yaakub and Dr. Shokri Jusoh for their patience, motivation and immense knowledge. Grateful thanks are also due for their guidance and support that helped me to overcome many crisis situations during the study.

I would like to express my sincere appreciation to Prof. Dr. Abdul Razak Alimon and Prof. Dr. Jothi Malar Panandam for their aspiring guidance and invaluably constructive criticism with inspiring suggestion.

Thanks are also due to the contribution of staffs of Field 2 especially Mr. Mohd Faizal Yeop Baharudin and Mr. Hidayat Ali Aman Ali. I also wish to convey my thanks to Mr. Saparin Denim, Mr. Khairul Anwar Bahari and Mrs Rohaida Abd Rashid, staffs of the Nutrition Laboratory, Ms. Nurul Syuhada Adnan, staff of the Pasture Laboratory, Department of Animal Science, Faculty of Agriculture for their assistance in conducting the experiment.

Above all, I would like to acknowledge tremendous sacrifices that my father, Zailan Ismail and mother, Saerah Baharom made to ensure that I had excellent education. Thank you both for giving me strength to reach the stars and chase my dreams.

Finally and most importantly, I would like to thank to my wife Ezzah Mahmudah Salim. Her support, encouragement, patience and unwavering love were undeniable.
I certify that a Thesis Examination Committee has met on 3 May 2016 to conduct the final examination of Mohamad Zaihan Bin Zailan on his thesis entitled "Yield and nutritive quality of four Napier (Pennisetum purpureum Schumach.) cultivars harvested at different ages as fresh and ensiled fodder" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Dahlan Bin Ismail, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Ridzwan Bin Abd Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Wan Zahari Mohamed, PhD
Professor
Faculty of Veterinary Medicine
Universiti Malaysia Kelantan
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master Science. The members of the Supervisory Committee were as follows:

Halimatun Yaakub, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Shokri Jusoh, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Mohamad Zaihan Bin Zailan (GS 39200)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee:

Signature: __
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
 1.1 Problem Statement
 1.2 Objectives

2 **LITERATURE REVIEW**
 2.1 Ruminant
 2.1.1 Ruminant forestomach
 2.1.2 Fermentation product
 2.2 Nutrient requirement in ruminant
 2.2.1 Fiber content
 2.2.2 Carbohydrate content
 2.2.3 Protein content
 2.2.4 Energy content
 2.3 Forages
 2.3.1 Photosynthetic pathways
 2.3.2 Plant family
 2.3.3 Napier grass (*Pennisetum Purpureum*)
 2.3.4 Napier cultivars
 2.3.5 Fertilizer application
 2.3.6 Stage of harvesting
 2.3.7 Cutting height
 2.3.8 Plant densities
 2.3.9 Silages
 2.4 Digestibility of forages
 2.4.1 *In vitro* gas production technique
 2.4.2 Applicability of *in vitro* gas techniques

3 **METHODOLOGY**
 3.1 Location of experiment
 3.2 Experimental plot lay-out
 3.2.1 Land preparation and establishment of experimental plot
 3.2.2 Sample management
 3.3 Study 1: The dry matter yield and proportion of leaf to stem fractions of Napier cultivars harvested at 4, 6 and 8 weeks old
 3.3.1 Estimation of grass yield and leaf to stem ratio
 3.4 Study 2: Nutritional composition and *in vitro* digestibility of
Napier cultivars harvested at 4, 6 and 8 weeks old
3.4.1 Chemical analysis of fresh Napier grass 26
3.4.2 *In vitro* gas production technique 29
3.4.3 Determination of *in vitro* dry matter and organic matter digestibility 30
3.4.4 Determination of *in vitro* gas production and degradability characteristics 30
3.4.5 VFA Determination 31
3.4.6 Determination of gross energy and metabolisable energy content 31

3.5 Study 3: Nutritional composition and *in vitro* digestibility of fresh and ensiled Napier cultivars harvested at 6 and 8 weeks old
3.5.1 Silage making process 32
3.5.2 Sampling of fresh and ensiled Napier cultivars 32
3.5.3 Determination of silage quality 32
3.5.4 Chemical analysis of fresh and ensiled Napier cultivars 32
3.5.5 *In vitro* gas production technique 33
3.5.6 Determination of *in vitro* dry matter and organic matter digestibility 33
3.5.7 Determination of *in vitro* gas production and degradability characteristics 33
3.5.8 Determination of gross energy and metabolisable energy content 33

3.6 Statistical analysis 33

4 RESULT AND DISCUSSION 34
4.1 Study 1: Determination of the dry matter yield and proportion of leaf to stem fractions of different Napier cultivars harvested at 4, 6 and 8 weeks old
4.1.1 Dry matter yield 34
4.1.2 Leaf-to-stem ratio 35

4.2 Study 2: Evaluation of nutritional composition and digestibility of different Napier cultivars harvested at 4, 6 and 8 weeks old
4.2.1 Chemical composition 37
4.2.2 *In vitro* digestibility 44
4.2.3 *In vitro* gas production and degradability characteristics 46
4.2.4 Volatile fatty acid content 54
4.2.5 Energy content 60

4.3 Study 3: Chemical composition and *in vitro* digestibility of fresh and ensiled Napier cultivars harvested at 6 and 8 weeks old
4.3.1 Aerobic stability test 62
4.3.2 Chemical composition 64
4.3.3 *In vitro* digestibility 71
4.3.4 *In vitro* gas production and degradability characteristics 73
4.3.5 Energy content 81

4.4 General discussion 84

5 CONCLUSION AND RECOMMENDATION FOR FUTURE STUDIES 85
5.1 Conclusion 85
5.2 Recommendation for future studies 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>87</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>99</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>123</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>124</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>74</td>
</tr>
<tr>
<td>A-1</td>
<td>99</td>
</tr>
<tr>
<td>A-2</td>
<td>100</td>
</tr>
<tr>
<td>A-3</td>
<td>101</td>
</tr>
<tr>
<td>A-4</td>
<td>101</td>
</tr>
<tr>
<td>A-5</td>
<td>102</td>
</tr>
<tr>
<td>A-6</td>
<td>103</td>
</tr>
<tr>
<td>A-7</td>
<td>104</td>
</tr>
<tr>
<td>A-8</td>
<td>105</td>
</tr>
<tr>
<td>B-1</td>
<td>106</td>
</tr>
<tr>
<td>B-2</td>
<td>107</td>
</tr>
<tr>
<td>B-3</td>
<td>108</td>
</tr>
<tr>
<td>B-4</td>
<td>109</td>
</tr>
<tr>
<td>B-5</td>
<td>110</td>
</tr>
<tr>
<td>B-6</td>
<td>111</td>
</tr>
<tr>
<td>B-7</td>
<td>112</td>
</tr>
<tr>
<td>B-8</td>
<td>113</td>
</tr>
<tr>
<td>B-9</td>
<td>115</td>
</tr>
<tr>
<td>B-10</td>
<td>Crude protein (CP) and neutral detergent fiber (NDF) content of fresh and ensiled Napier cultivars harvested at 6 and 8 weeks old</td>
</tr>
<tr>
<td>B-11</td>
<td>Acid detergent fiber (ADF) content and asymptotic gas (b) of fresh and ensiled Napier cultivars harvested at 6 and 8 weeks old</td>
</tr>
<tr>
<td>B-12</td>
<td>The rate of in vitro degradation of insoluble fraction and energy content of fresh and ensiled Napier cultivars harvested at 6 and 8 weeks old</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The left-sided view of ruminant forestomach</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Ruminal protein degradation pathways</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Split plot arrangement of Napier cultivars and cutting age</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Dry matter yield of Napier cultivars harvested at 4, 6 and 8 weeks old</td>
<td>35</td>
</tr>
<tr>
<td>4.2</td>
<td>Leaf to stem ratio of Napier cultivars</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Leaf to stem ratio of Napier harvested at 4, 6 and 8 weeks old</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Crude protein content of Napier cultivars harvested at 4, 6 and 8 weeks old</td>
<td>38</td>
</tr>
<tr>
<td>4.5</td>
<td>Neutral detergent fiber of Napier cultivars harvested at 4, 6 and 8 weeks old</td>
<td>39</td>
</tr>
<tr>
<td>4.6</td>
<td>Acid detergent fiber of Napier cultivars harvested at 4, 6 and 8 weeks old</td>
<td>40</td>
</tr>
<tr>
<td>4.7</td>
<td>Acid detergent lignin of Napier cultivars harvested at 4, 6 and 8 week old</td>
<td>41</td>
</tr>
<tr>
<td>4.8</td>
<td>Hemicellulose content of Napier cultivars harvested at 4, 6 and 8 weeks old</td>
<td>42</td>
</tr>
<tr>
<td>4.9</td>
<td>Cellulose content of Napier cultivars</td>
<td>43</td>
</tr>
<tr>
<td>4.10</td>
<td>Cellulose content of Napier harvested at 4, 6 and 8 weeks old</td>
<td>44</td>
</tr>
<tr>
<td>4.11</td>
<td>In vitro dry matter digestibility of Napier cultivars harvested at 6 and 8 weeks old</td>
<td>45</td>
</tr>
<tr>
<td>4.12</td>
<td>In vitro organic matter digestibility of Napier cultivars harvested at 6 and 8 weeks old</td>
<td>46</td>
</tr>
<tr>
<td>4.13</td>
<td>In vitro gas production of fresh Napier cultivars harvested at 6 and 8 week old at 96 hours of incubation period</td>
<td>47</td>
</tr>
<tr>
<td>4.14</td>
<td>Asymptotic gas production of Napier cultivars</td>
<td>50</td>
</tr>
<tr>
<td>4.15</td>
<td>Asymptotic gas production of Napier harvested at 6 and 8 weeks old</td>
<td>50</td>
</tr>
<tr>
<td>4.16</td>
<td>Degradability of insoluble fraction of Napier cultivars</td>
<td>51</td>
</tr>
<tr>
<td>4.17</td>
<td>Degradability of insoluble fraction of Napier harvested at 6 and 8 weeks old</td>
<td>52</td>
</tr>
<tr>
<td>4.18</td>
<td>Potential gas production of Napier cultivars</td>
<td>53</td>
</tr>
<tr>
<td>4.19</td>
<td>Potential gas production of Napier harvested at 6 and 8 weeks old</td>
<td>53</td>
</tr>
<tr>
<td>4.20</td>
<td>Total volatile fatty acids of Napier cultivars</td>
<td>54</td>
</tr>
<tr>
<td>4.21</td>
<td>Total volatile fatty acids of Napier harvested at 6 and 8 weeks old</td>
<td>55</td>
</tr>
<tr>
<td>4.22</td>
<td>Proportion of acetic acid of Napier cultivars</td>
<td>56</td>
</tr>
<tr>
<td>4.23</td>
<td>Proportion of acetic acid of Napier harvested at 6 and 8 weeks old</td>
<td>56</td>
</tr>
<tr>
<td>4.24</td>
<td>Proportion of butyric acids of Napier cultivars</td>
<td>57</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Proportion of butyric acids of Napier harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>Proportion of propionic acids of Napier cultivars harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td>Acetic to propionic ratio content of Napier cultivars</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>Acetic to propionic ratio content of Napier harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>Gross energy content of Napier cultivars harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>Metabolisable energy content of Napier cultivars</td>
<td></td>
</tr>
<tr>
<td>4.31</td>
<td>Metabolisable energy content of Napier harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.32</td>
<td>pH changes of silage on day 0 and day 4 after exposure to the air</td>
<td></td>
</tr>
<tr>
<td>4.33</td>
<td>Crude protein content of Napier cultivars harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.34</td>
<td>Crude protein content of fresh and ensiled Napier cultivars</td>
<td></td>
</tr>
<tr>
<td>4.35</td>
<td>Neutral detergent fiber of fresh and ensiled Napier harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.36</td>
<td>Neutral detergent fiber of Napier cultivars</td>
<td></td>
</tr>
<tr>
<td>4.37</td>
<td>Acid detergent fiber content of Napier cultivars harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.38</td>
<td>Acid detergent fiber content of fresh and ensiled Napier</td>
<td></td>
</tr>
<tr>
<td>4.39</td>
<td>Asymptotic gas production of fresh and ensiled Napier cultivars</td>
<td></td>
</tr>
<tr>
<td>4.40</td>
<td>Asymptotic gas production of Napier harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.41</td>
<td>Degradability of insoluble fraction of fresh and ensiled Napier cultivars harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.42</td>
<td>Potential gas production of Napier cultivars harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.43</td>
<td>Potential gas production of fresh and ensiled Napier cultivars</td>
<td></td>
</tr>
<tr>
<td>4.44</td>
<td>In vitro gas production of fresh and ensiled Napier cultivars at 96 hours of incubation period</td>
<td></td>
</tr>
<tr>
<td>4.45</td>
<td>In vitro gas production of Napier cultivars harvested at 6 and 8 weeks age at 96 hours of incubation period</td>
<td></td>
</tr>
<tr>
<td>4.46</td>
<td>In vitro gas production of fresh and ensiled Napier cultivars harvested at 6 and 8 week age at 96 hours of incubation period</td>
<td></td>
</tr>
<tr>
<td>4.47</td>
<td>Gross energy content of fresh and ensiled Napier at 6 and 8 weeks old</td>
<td></td>
</tr>
<tr>
<td>4.48</td>
<td>Metabolisable energy content of fresh and ensiled Napier cultivars harvested at 6 and 8 weeks old</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Common Napier at 8 weeks</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Silver Napier at 8 weeks</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Red Napier at 8 weeks</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>Dwarf Napier at 8 weeks</td>
<td>22</td>
</tr>
<tr>
<td>3.5</td>
<td>Manual separation of leaf and stem fraction</td>
<td>25</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>Acid detergent fiber</td>
<td></td>
</tr>
<tr>
<td>ADL</td>
<td>Acid detergent lignin</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Amino acid</td>
<td></td>
</tr>
<tr>
<td>ANF</td>
<td>Anti-nutritive factor</td>
<td></td>
</tr>
<tr>
<td>CHO</td>
<td>Carbohydrate</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>Condensed tannin</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>Crude protein</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Digestible energy</td>
<td></td>
</tr>
<tr>
<td>DMY</td>
<td>Dry matter yield</td>
<td></td>
</tr>
<tr>
<td>G3P</td>
<td>Glyceraldehyde-3-phosphate</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>Gross energy</td>
<td></td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
<td></td>
</tr>
<tr>
<td>IVDMD</td>
<td>In vitro dry matter digestibility</td>
<td></td>
</tr>
<tr>
<td>IVOMD</td>
<td>In vitro organic matter digestibility</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
<td></td>
</tr>
<tr>
<td>LAB</td>
<td>Lactic acid bacteria</td>
<td></td>
</tr>
<tr>
<td>LSR</td>
<td>Leaves to stem ratio</td>
<td></td>
</tr>
<tr>
<td>MJ</td>
<td>Mega joule</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>Metabolisable energy</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane gas</td>
<td></td>
</tr>
<tr>
<td>mM</td>
<td>Milli Molarity</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
<td></td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral detergent fiber</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
<td></td>
</tr>
<tr>
<td>OM</td>
<td>Organic matter</td>
<td></td>
</tr>
<tr>
<td>OAA</td>
<td>Oxaloacetate</td>
<td></td>
</tr>
</tbody>
</table>
h\(^{1}\) per hour
\%
Percentage
RUBISCO Ribulose-1,5-biphosphate carboxylase
RUP Rumen undegradable protein
NaOH Sodium hydroxide
H\(_{2}\)SO\(_{4}\) Sulphuric acid
WSC Water soluble carbohydrate
CHAPTER 1

INTRODUCTION

The ruminant industry in Malaysia is faced with the problem of high cost of production. The scarcity of feed resources has made farmers dependent on imported commercial concentrate feed. Farmers need to find alternative sources of feed to substitute the heavy use of expensive commercial concentrates. Ironically, Malaysia can grow a wide range of forages that could reduce the use of concentrate feed and lower the feed cost.

Feed cost represents major single cost item for livestock production as it accounts for more than 70% of the total cost of production. Farmers are inclined to choose cheap and accessible feed source to maximize their profitability. The considerations of nutritional composition of forages and requirement of the animal itself are crucial in formulating the least cost ration. With this knowledge, the utilization of available sources of feedstuffs such as forages could be optimised. The self-sufficiency of livestock products especially dairy products are extremely low compared to other tropical countries. There should be collaborations among farmers and researchers in searching for suitable adaptive strategies such as pasture-based production to increase the productivity intended for consumption.

Forages are the best feed resources for ruminants as forages do not compete with agricultural production of concentrate feed for human consumption. Forages can be digested and utilised by ruminant as a source of nutrient. There is no doubt that ruminant digestive tract is capable in providing a favourable environment as a host for symbiotic microbes (bacteria, protozoa and fungi) to hydrolyze cellulose, hemicellulose and other substances that are resistant to enzymes secreted by the host animal.

Guinea (*Megathyrsus maximus*) and Napier are the common cultivated grass species in Malaysia. Guinea grass yielded from 9 to 12 tonnes dry matter yield ha\(^{-1}\) cut\(^{-1}\) with cumulative mean of more than 20 tonnes ha\(^{-1}\) yr\(^{-1}\) (Ahmed *et al*., 2012; Munyasi *et al*., 2015). Napier is the most popular forage species due to high dry matter production, high nutritive value and it can be easily established through stem propagation. Besides, the Napier grass tends to produce high dry matter yield up to 70 tonnes ha\(^{-1}\) yr\(^{-1}\) (Wijitphan *et al*., 2009). The broad range in yield and nutritional composition is influenced by the morphology and management of Napier cultivars.

Generally, the determination of limiting factors is prerequisite in evaluating the yield and quality of grasses. The cultivar selection, cutting management (cutting frequency, interval and height) application of fertilizer (rate and type of fertilizer), soil condition, and environmental factors are among the crucial factors (Jusoh *et al*., 2014; Lounglawan, *et al*., 2014). Napier grass was first introduced to Malaysia in the 1920’s and there were many cultivars introduced in Malaysia since 1950’s known as Common Napier, Red Napier, Taiwan Napier, Dwarf Napier, Dwarf “Mott”, Australian Dwarf, Indian Napier, Uganda Napier and King grass (Halim *et al*., 2013; Jusoh, 2005). However, very few comparative studies on Napier cultivars had been done.
The terminology of “cultivar” and “variety” bring a different meaning and these two terms often abused by farmers. According to Haynes (2009), varieties often occur in nature and most varieties are true to type, meanwhile cultivars is a combination of “cultivated” and “variety” which are not necessarily true type and it was selected and cultivated by humans. Nevertheless, it is possible for a plant to have both variety and cultivars. The documentation of Napier cultivars are scanty and cannot be relied upon for choosing the best cultivars. A number of Napier grass cultivars have been in circulation, often with more than one name (Struwig, 2007).

Napier grass grows best in high-rainfall areas up to 1500 mm rainfall yr\(^{-1}\) but it does not tolerate flooding (FAO). The estimated area prone to flood disaster is 9% of total area in Malaysia (Diyia et al., 2014). In spite of flood, tropical countries are more vulnerable to drought compared to temperate countries and therefore, the conservation of feed is crucial to preserve the quality and supply adequate feed to livestock. Silage was found to be more suitable than hay making process because of high relative humidity, more than 90% which will easily spoil the hay.

Statement of problem

Many cultivars of Napier grass (*Pennisetum purpureum*) have been planted in Malaysia as discussed previously. Common Napier, Red Napier, Taiwan Napier, Indian Napier, Uganda Napier, King grass, Zanzibar Napier and Kobe Napier are classified as tall cultivars whereas Dwarf Napier, Dwarf “Mott”, Australian Dwarf are short cultivars. Generally, tall cultivars with a high yielding grass are normally grown in several areas under a cut-and-carry system in Malaysia. Common Napier is among the highest yielding crops and has a better nutritive value as compared to Uganda Napier (Halim et al., 2013). Red Napier was high in metabolisable energy and this crucial parameter reflected the actual level of energy available for absorption (Haryani et al., 2012). Dwarf Napier has high leaf to stem ratio and this associated with good forage quality. However, Silver Napier was recently introduced without any documentation regarding the performance of this cultivar. There is a need to have comparative evaluation of these Napier cultivars so that definite recommendations can be made in the choice and management of the respective cultivars. Four cultivars (Common, Red, Dwarf and Silver Napier) were selected for this study.
Objectives

The general aim of the proposed project is to investigate the yield and nutritive value of four Napier (*Pennisetum purpureum*) cultivars harvested at different ages as fresh and ensiled fodder.

The specific objectives of the projects are as below:

1) To determine the dry matter yield and proportion of leaves to stem fraction of different Napier cultivars harvested at 4, 6 and 8 weeks age.

2) To evaluate the nutritional composition and digestibility of different Napier cultivars harvested at 4, 6 and 8 weeks age.

3) To evaluate and compare the nutritional composition and digestibility of fresh and ensiled Napier cultivars harvested at 6 and 8 weeks age.
REFERENCES

