UNIVERSITI PUTRA MALAYSIA

CROSSBREEDING BETWEEN CLEARFIELD® RICE
WITH WEEDY RICE UNDER VARIOUS CONDITIONS

ENGKU AHMAD KHAIRI BIN ENGKU ARIFF

FP 2016 27
CROSSBREEDING BETWEEN CLEARFIELD® RICE WITH WEEDY RICE UNDER VARIOUS CONDITIONS

By

ENGKU AHMAD KHAIRI BIN ENGKU ARIFF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

February 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science.

CROSSBREEDING BETWEEN CLEARFIELD® RICE WITH WEEDY RICE UNDER VARIOUS CONDITIONS

By

ENGKU AHMAD KHAIRI BIN ENGKU ARIFF

February 2016

Chairman : Norida Mazlan, PhD
Faculty : Agriculture

Rice is an important crop in our country as it is our staple food. Due to huge productivity losses because of weeds, the imidazolinone-resistant Clearfield® rice was developed to control it. Its close genetic relation with the weedy rice makes it a good candidate for hybridization, producing super weeds. The main objective of this study was to determine whether gene flow from Clearfield® rice to weedy rice can occur. This study has three experiments. In the first experiment, Clearfield® rice varieties (CL1, CL2) and weedy rice variants (V1, V2, V3, V4) were planted to observe the morphological characteristics. The second experiment was conducted in rice field for two seasons. The first (dry) season, two variants of weedy rice (V1, V2) and four varieties (V1, V2, V3, V4) were used and were planted at a distance of 1m, 2m, 3m, 4m and 5m from the Clearfield® rice. Seeds (F1) from weedy rice were collected and germinated in trays before being sprayed with OnDuty™ at day fourteen with a rate of 220 g/ha. The third experiment was determining hybrids using Simple Sequence Repeat (SSR) primer RM251 using leaves for the DNA extraction. The first experiment showed that weedy rice was morphologically superior to Clearfield® rice whereby it had double the number of tillers (more than 30) and almost 50 cm taller. In the second study after spraying OnDuty™, CL2 has significant difference at 20.38% compared to CL1 at 13.00% in second season. V1 showed the highest survival percentage, at 11.15% and 22.45% in both season. CL2 and V2 were the best combination of parent with 28.91% seedlings survived. About 80% seedlings survived from CL2V1 at the distance of 1m in second season. Higher number of overlapping period and wind speed in the second season were considered to affect survival percentages. The third study shows that molecular analysis has determined seven hybrids among the seedlings using primer RM251 with hybrids producing three bands. In conclusion, Clearfield® rice can hybridize with weedy rice under field condition and the percentages could increase with days of overlapping and wind speed.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains.

KACUKAN ANTARA PADI CLEARFIELD® DENGAN PADI ANGIN DI BAWAH PELBAGAI KEADAAN

Oleh

ENGKU AHMAD KHAIRI BIN ENGKU ARIFF

Februari 2016

Pengerusi : Norida Mazlan, PhD
Fakulti : Pertanian

Padi merupakan tanaman penting di negara kita kerana ia adalah makanan ruji. Oleh kerana kerugian produktiviti yang banyak disebabkan rumpai, padi Clearfield® yang rintang imidazolinone telah dibangunkan untuk mengawalnya. Genetiknya yang berkait rapat dengan padi angin menjadikannya calon yang baik untuk penghibridan, menghasilkan rumpai super. Objektif utama kajian ini adalah untuk menentukan sama ada aliran gen daripada padi Clearfield® ke padi angin boleh berlaku. Kajian ini mempunyai tiga eksperimen. Dalam eksperimen pertama, varieti padi Clearfield® (CL1, CL2) dan varian padi angin (V1, V2, V3, V4) telah ditanam untuk melihat ciri-ciri morfologinya. Eksperimen kedua dijalankan di sawah untuk dua musim. Musim pertama (kering), dua varian (V1, V2) digunakan dan empat varian padi angin (V1, V2, V3, V4) telah digunakan dalam musim kedua (hujan) dan telah ditanam pada jarak 1m, 2m, 3m, 4m dan 5m daripada padi Clearfield®. Benih (F1) dari padi angin telah dikumpulkan dan dicambahkan dalam dulang sebelum disembur dengan OnDuty™ pada hari empat belas dengan kadar 220 g / ha. Eksperimen ketiga adalah menentukan hibrid menggunakan primer Ulang Urutan Mudah (SSR) RM251 menggunakan daun untuk pengekstrakan DNA. Eksperimen pertama menunjukkan bahawa padi angin mempunyai morfologi lebih baik daripada padi Clearfield® di mana ia mempunyai dua kali ganda bilangan anak padi (lebih daripada 30) dan hampir 50 cm lebih tinggi. Dalam kajian kedua selepas menyembur OnDuty™, CL2 mempunyai perbezaan yang signifikan pada 20.38% berbanding dengan CL1 pada 13.00% pada musim kedua. V1 menunjukkan peratusan hidup yang paling tinggi, pada 11.15% dan 22.45% dalam kedua-dua musim. CL2 dan V2 adalah kombinasi terbaik induk padi dengan 28.91% benih terselamat. Kira-kira 80% benih terselamat dari CL2V1 pada jarak 1m dalam musim kedua. Tempoh bertindihan dan kelajuan angin yang lebih tinggi pada musim kedua telah dianggap mempengaruhi peratusan hidup. Kajian ketiga menunjukkan bahawa analisis molekul telah mengenalpasti tujuh kacukan daripada anak benih
menggunakan primer RM251 dengan kacukan menghasilkan tiga jalur. Kesimpulannya, padi Clearfield® boleh kacuk silang dengan padi angin di bawah keadaan lapangan dan kadar itu boleh meningkat disebabkan hari pertindihan dan kelajuan angin.
ACKNOWLEDGEMENTS

In the name of Almighty ALLAH, Who provided me with the strength, wisdom and will to complete my master study. May His name be glorified and praised.

First and foremost, I would like to offer my heartfelt appreciation and utmost gratitude to my supervisor Dr. Norida Mazlan for her continuous support, invaluable guidance, patience, motivation and enthusiasm in my Master’s study. She had provided sound advice, good teaching and friendly company, and shared a lot of her expertise, research insight and ideas. I simply could not imagine having a better advisor and friendlier mentor for my Master’s study. I believe that one of the main gains of my Master’s study was working with Dr Norida Mazlan.

With a great deal of luck, I had an excellent Supervisory Committee. I owe an immense debt to Professor Dr. Abdul Shukor Juraimi and Professor Datin Dr. Siti Nor Akmar Abdullah for their encouragement, insightful comments and critical review. This thesis could not have been done without their advices.

I am deeply indebted to my dear family especially my mother who gave unconditional support in finishing my study and my lovely wedded wife for her encouragement.

I would like to thank UPM for providing Graduate Research Fellowship (GRF) and research facilities to conduct my Master’s study. I would also like to thank Lembaga Kemajuan Perusahaan Pertanian (LKPP) Padi Sdn Bhd for their contribution in giving manpower and resources to complete this study.
I certify that a Thesis Examination Committee has met on 05 February 2016 to conduct the final examination of Engku Ahmad Khairi bin Engku Ariff on his thesis entitled "Crossbreeding Between Clearfield® Rice With Weedy Rice Under Various Conditions" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

**Uma Rani a/p Sinniah, PhD**
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

**Dzolkifli b Omar, PhD**
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

**Asyraf Mansor, PhD**
Lecturer
School of Biological Sciences
Universiti Sains Malaysia
(External Examiner)

[Signature]

**ZULKARNAIN ZAINAL, PhD**
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 June 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

**Norida Mazlan, PhD**  
Senior lecturer  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Chairman)

**Abdul Shukor Juraimi, PhD**  
Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

**Datin Siti Nor Akmar Abdullah, PhD**  
Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

________________________  

**BUJANG KIM HUAT, PHD**  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________________ Date: 25 August 2016

Name and Matric No.: Engku Ahmad Khairi bin Engku Ariff (GS31135)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________________
Name of Chairman of Supervisory Committee: Norida Mazlan, PhD

Signature: ______________________________
Name of Member of Supervisory Committee: Abdul Shukor Juraimi, PhD

Signature: ______________________________
Name of Member of Supervisory Committee: Datin Siti Nor Akmar Abdullah, PhD
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iv
APPROVAL v
DECLARATION vi
LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF ABBREVIATIONS ix

CHAPTER

1 INTRODUCTION 1
2 LITERATURE REVIEW 3
  2.1 Introduction of Rice 3
  2.2 Production of Rice 3
  2.3 Issues in Rice Production 4
  2.4 Weedy rice 4
    2.4.1 Origins of Weedy Rice 4
    2.4.2 Characteristics of Weedy Rice 5
    2.4.3 Problems Caused by Weedy Rice 5
  2.5 Hybridization of weedy rice and commercial rice 5
  2.6 Imidazolinone herbicides 6
  2.7 Transgenic plants 7
    2.7.1 Advantages of transgenic crops 8
    2.7.2 Issues of transgenic crops 8
    2.7.3 Hybridization of transgenic crops with wild relatives 9
  2.8 Transgenic rice 9
3 MORPHOLOGICAL COMPARISON OF CLEARFIELD® RICE WITH WEEDY RICE 11
  3.1 Introduction 11
  3.2 Materials and Methods 12
    3.2.1 Collection of rice seeds 12
    3.2.2 Classification of weedy rice seeds 12
    3.2.3 Vegetative and reproductive study 12
  3.3 Results 13
    3.3.1 Weedy rice classification 13
    3.3.2 Seed morphology 13
    3.3.3 Germination percentage 15
    3.3.4 Height 15
    3.3.5 Tillering ability 18
    3.3.6 Reproductive study 20
  3.4 Discussion 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>22</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials and Methods</td>
<td>23</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Field planting</td>
<td>23</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Resistant study</td>
<td>25</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Molecular analysis</td>
<td>26</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>DNA extraction</td>
<td>26</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Primers for hybrid selection</td>
<td>26</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>PCR method</td>
<td>27</td>
</tr>
<tr>
<td>4.2.3.4</td>
<td>Optimization of SSR RM251</td>
<td>27</td>
</tr>
<tr>
<td>4.3</td>
<td>Results</td>
<td>28</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Comparison of injury level between Clearfield® rice and weedy rice parents</td>
<td>28</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Resistant study in first season</td>
<td>29</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Conditions during the overlapping of panicle initiation in first season</td>
<td>29</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Survivors of weedy rice F1 seedlings based on Clearfield® rice varieties</td>
<td>30</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Survival rates of weedy rice F1 seedlings based on weedy rice variants</td>
<td>30</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>Survival rates of weedy rice F1 seedlings based on combination of Clearfield® Rice and weedy rice</td>
<td>31</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Resistant study for second season</td>
<td>32</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Conditions during the overlapping of panicle initiation in second season</td>
<td>32</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Survivors of weedy rice F1 seedlings based on Clearfield® rice varieties</td>
<td>32</td>
</tr>
<tr>
<td>4.3.3.3</td>
<td>Survival rates of weedy rice F1 seedlings based on weedy rice variants</td>
<td>33</td>
</tr>
<tr>
<td>4.3.3.4</td>
<td>Survival rates of weedy rice F1 seedlings based on combination of Clearfield® Rice and weedy rice</td>
<td>34</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Effects of distance toward survival rates of weedy rice seedlings</td>
<td>35</td>
</tr>
<tr>
<td>4.3.4.1</td>
<td>Effect on distance of survival rates of weedy rice F1 seedlings in first season</td>
<td>35</td>
</tr>
<tr>
<td>4.3.4.2</td>
<td>Effects of treatment combination between parents and distance on survival rates of weedy rice F1 seedlings in first season</td>
<td>36</td>
</tr>
<tr>
<td>4.3.4.3</td>
<td>Effect on distance of survival rates of weedy rice F1 seedlings in second season</td>
<td>37</td>
</tr>
<tr>
<td>4.3.4.4</td>
<td>Effects of treatment combination between parents and distance on survival rates of weedy rice F1 seedlings in second season</td>
<td>38</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Confirmation of hybrids using molecular markers</td>
<td>39</td>
</tr>
</tbody>
</table>
4.3.5.1 DNA concentration and purity 39
4.3.5.2 Selection of suitable SSR primers for hybrid confirmation 40
4.3.5.3 Confirmation of Hybrids Using RM251 41
4.4 Discussion 41

5 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 43
5.1 Summary and General Conclusion 43
5.2 Recommendation for Future Research 43

REFERENCES 44
APPENDICES 52
BIODATA OF STUDENT 67
LIST OF PUBLICATIONS 68
## LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Weedy rice seed classification</td>
</tr>
<tr>
<td>3.2</td>
<td>Seed morphology of Clearfield® rice with weedy rice</td>
</tr>
<tr>
<td>3.3</td>
<td>Germination percentage</td>
</tr>
<tr>
<td>3.4</td>
<td>Mean height of Clearfield® rice and weedy rice variants from 7 DAT to 70 DAT</td>
</tr>
<tr>
<td>3.5</td>
<td>Mean number of tiller for Clearfield® rice with weedy rice variants from 7 DAT to 70 DAT</td>
</tr>
<tr>
<td>4.1</td>
<td>Forward and reverse primer sequences</td>
</tr>
<tr>
<td>4.2</td>
<td>Concentration and purity of Clearfield® rice and weedy rice parents</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Imidazolinone herbicide family; a: Imazapyr b: imazapic c: imazethapyr d: imazamox e: imazaquin</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Seeds of weedy rice and Clearfield® rice using QuickPHOTO MICRO 2.3</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Height of Clearfield® rice and weedy rice variants from 7 DAT until 70 DAT</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Number of tillers of Clearfield® rice and weedy rice variants from 7 DAT until 70 DAT</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>Panicle initiation of Clearfield® and weedy rice</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Planting area for first season. R: Replicate. Rice type: CL1, CL2, V1 and V2</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Planting area for second season. R: Replicate. Rice type: CL1, CL2, V1, V2, V3 and V4</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Parents of Clearfield® and weedy rice at 1 week after spraying</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>Survival percentage of weedy rice F1 seedlings from different Clearfield® rice plots 1 WAT with OnDuty™</td>
<td>30</td>
</tr>
<tr>
<td>4.5</td>
<td>Survival percentage of weedy rice F1 seedlings from different variants 1 WAT with OnDuty™</td>
<td>31</td>
</tr>
<tr>
<td>4.6</td>
<td>Survival percentage of weedy rice F1 seedlings from different combination treatment of parents 1 WAT with OnDuty™</td>
<td>32</td>
</tr>
<tr>
<td>4.7</td>
<td>Survival percentage of weedy rice F1 seedlings from different Clearfield® rice plots 1 WAT with OnDuty™</td>
<td>33</td>
</tr>
<tr>
<td>4.8</td>
<td>Survival percentage of weedy rice F1 seedlings from different variants 1 WAT with OnDuty™</td>
<td>34</td>
</tr>
<tr>
<td>4.9</td>
<td>Survival percentage of weedy rice F1 seedlings from different combination treatment of parents 1 WAT with OnDuty™</td>
<td>35</td>
</tr>
<tr>
<td>4.10</td>
<td>Survival percentage of weedy rice seedlings based on planting distance 1 WAT with OnDuty™</td>
<td>36</td>
</tr>
</tbody>
</table>
4.11 Survival percentage of weedy rice based on treatment combination of parents and distance after 1 WAT with OnDuty™

4.12 Survival percentage of weedy rice F1 seedlings based on planting distance 1 WAT with OnDuty™

4.13 Survival percentage of weedy rice based on treatment combination of parents and distance after 1 WAT with OnDuty™

4.14 Amplified products from genomic DNA of Clearfield® rice and weedy rice parents.

4.15 Confirmation of hybrids. L1: Clearfield® rice. L2 to L3: Weedy rice. L4 to L7: Detected hybrids
LIST OF ABBREVIATIONS

® Registered trademark
™ Trademark
μ micro
ALS acetolactate synthase
ANOVA Analysis of variance
Bt *Bacillus thuringiensis*
DAS Day after seeding
DAT Day after transplanting
DNA Deoxyribonucleic acid
FAO Food and Agriculture Organization
g Gram
ha Hectare
ht Height
IGMORIS Indian GMO research Information system
IMI Imidazolinone
IRRI International Rice Research Institute
ISAAA International service for the Acquisition of Agri-biotech Application
L Litre
LKPP Lembaga Kemajuan Perusahaan Pertanian
m metre
MARDI Malaysian Agriculture Research and Development Institute
min Minute
mm millimeter
MRL Maximum Residue Limit
mt  Million tons
PCR  Polymerase chain reaction
RAPD  Random amplified polymorphic DNA
Sdn Bhd  Sendirian Berhad
SSR  Simple sequence primer
SSLP  simple sequence length polymorphism
TAE  Tris/acetate/ Ethylenediaminetetraacetic acid
TBE  Tris/Borate/Ethylenediaminetetraacetic acid
Ti  Tillering ability
USD  United States Dollar
CHAPTER 1

INTRODUCTION

Rice is a very important crop in Asia as 90% of all rice production are consumed in this region (Gealy et al., 2003). It is the main staple food in Malaysia and the third largest crop production after palm oil and rubber. However rice is very weak in term of competitiveness as yield loss caused by weeds can go up to 35% (Karim et al., 2004). Under field conditions, weedy rice can absorb up to 60% of nitrogen (N) fertilizer that was applied (Burgos et al., 2006). Most of the weeds that can cause serious economic problems are the wild Oryza. They compete for sun, nutrients and water with commercial rice (Chin et al., 2007). Weedy rice is genetically related to cultivated rice (Gealy et al., 2003). Because of the genetic similarity they shared, controlling weedy rice is very difficult. Most weedy rice have the same common trait such as taller plants, fewer tillers, easy shattering of the seeds, and earlier time of flowering (Chin et al., 2007). The ease of shattering and seed dormancy of weedy rice can effect seed bank (Burgos et al. 2011) and increase managerial problem in the years to come. Compared to weedy rice, cultivated rice is less efficient in terms of N absorption efficiency while weedy rice can produce more biomass per one unit of N absorbed (Burgos et al., 2006). During harvesting, grain taken from weedy rice can reduce the quality of milled rice due to the extra milling done to remove the red pigments from red rice seeds (Shivrain et al., 2008).

The Clearfield® rice was developed specifically to control weeds in the rice fields. It is a type of naturally genetically modified rice that is resistant to imidazolinone based herbicides (Croughan, 2003). In Malaysia two varieties were released, MR220-CL1 and MR220-CL2. Although this technique is effective in controlling weedy rice it also has drawbacks. As Clearfield® rice and weedy rice are genetically related, these rice have the possibility to hybridize. Natural hybridization can occur depending on the factors such as genetic and environments. In terms of genetics, weedy rice and common cultivated rice are distinctly related. Although rice is self-pollinated, rice pollen can travel long distances from their mother plant. This can cause gene flow to occur. Gene flow occurrences are very low, less than 1% or less than 200 plants per hectare but the statistics can change due to type of weedy rice and cultivated rice that are within the vicinity of the area (Shivrain et al, 2008).

The main concern of this hybridization is the production of progenies that have the same resistance as Clearfield® rice and thus will cause a problem for rice production. Countries like Brazil (Roso et al., 2010), Greece (Kaloumenos et al., 2013), and United State (Shivrain et al., 2008) all have reported gene flow from Clearfield® rice to weedy rice under field condition. For our country that also uses Clearfield® rice, the chances of gene flow are almost certain. There are three objectives for this study. The objectives of this study are:

1. To determine the morphology differences of common weedy rice with Clearfield® rice
2. To study the possibility of hybridization between Clearfield® rice and weedy rice in field condition using genetic markers as confirmation.
3. To determine the distance factor that increases the hybridization frequency between Clearfield® rice with weedy rice.
REFERENCES


