EFFECTS OF EMULSIFIER ON FEED PROCESS, FEED QUALITY, GROWTH PERFORMANCE, RELATIVE ORGAN WEIGHT AND FAT DIGESTIBILITY IN BROILER CHICKEN

CHEAH YING SEE

FP 2016 15
EFFECTS OF EMULSIFIER ON FEED PROCESS, FEED QUALITY, GROWTH PERFORMANCE, RELATIVE ORGAN WEIGHT AND FAT DIGESTIBILITY IN BROILER CHICKEN

By

CHEAH YING SEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2016
Dedicated to
My beloved family
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF EMULSIFIER ON FEED PROCESS, FEED QUALITY, GROWTH PERFORMANCE, RELATIVE ORGAN WEIGHT AND FAT DIGESTIBILITY IN BROILER CHICKEN

By

CHEAH YING SEE

March 2016

Chairman: Professor Loh Teck Chwen, PhD

Faculty: Agriculture

A feed production trial was conducted to study the effect of synthetic emulsifier and natural biosurfactant on feed process and quality of pelletized broiler feed. A corn-soy based broiler diet was formulated with fixed ratio 2:1 of oil-to-water with two types of emulsifiers, namely glycercyl polyethylene glycol ricinoleate synthetic emulsifier, and lysophosphatidylcholine natural biosurfactant. T1: Basal diet with no water and no emulsifier; T2: Basal diet with water and no emulsifier; T3: Basal diet with water and synthetic emulsifier glycercyl polyethylene glycol ricinoleate, which has been dispersed into an oil phase before added with water, pre-blended at 60 °C for 3 minutes to form a water-in-oil (w/o) emulsion; T4: Basal diet with water and a natural biosurfactant lysophosphatidylcholine as comparative treatment. The treatment diets were manufactured by a commercial feed mill. The electricity cost and meal temperature were measured during the process of milling. Composite samples were collected from different processed points, tested for physical properties, chemical stability and biostability of pelletized feed. Pellet quality of emulsifier supplemented diets was significantly (P<0.05) improved in crumble and pellet intact form. Correlation between emulsifier and pelletize processed cost was not observed in this present study. No deteriorate effect was observed in hydrolytic rancidity (AV), oxidation rancidity (PV), mold count, moisture content, water activity and water retention rate. However, percentage of starch gelatinization on pelletized feed was significantly (P<0.0001) improved in both types of emulsifier treated diets. These results demonstrated that the addition of emulsifier to broiler diet improved pellet quality to some extent although no significant difference between synthetic emulsifier and natural biosurfactant was observed.

In the second experiment, a randomized complete block design study with 2x3 factorial arrangements was conducted to evaluate the response of exogenous emulsifier on broiler
performance, relative organ weight and fat digestibility. A corn-soy based broiler diet was formulated with fixed ratio 2:1 of oil-to-water, supplemented with glyceryl polyethylene glycol ricinoleate (GPGR) synthetic emulsifier and lysophosphatidylcholine (LPC) natural biosurfactant. A total of 1,800 one-day-old Cobb 500 male broilers with nine treatments diet were adapted. T1: Basal diet with metabolizable energy (ME) 3,000 kcal/kg in starter (S) and 3,100 kcal/kg in grower (G); T2: Basal diet with ME 2,900 kcal/kg (S) and 3,000 kcal/kg (G); T3: Basal diet with ME 2,800 kcal/kg (S) and 2,900 kcal/kg (G); T4, T5 and T6 consisted of T1, T2 and T3 supplemented with GPGR; T7, T8 and T9 consisted of T1, T2 and T3 supplemented with LPC. The study was conducted 14 days for starter and 35 days for grower phase. The results of the experiment demonstrated that the effect of emulsifier on broiler performance was dependent on the ME level used in the diet formulations and ages of the bird. Emulsifier improved (P<0.05) FCR in starter phase at higher ME level, but was not significantly (P>0.05) improved at lower ME levels of diets. Correlation between emulsifier and low ME diet in FCR was not observed in this present study. AME and fat digestibility at all levels of ME were higher (P<0.05) in birds fed with emulsified diets. However, compensation effect to recover the energy value to control level was not found. Significant reduction (P<0.05) in liver fat, abdominal fat and digesta fat was observed in birds which consumed emulsified grower diets. However, no significant difference between synthetic emulsifier and natural biosurfactant was observed.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

KESAN PENGEMULSI KE ATAS PEMPROSESAN MAKANAN, KUALITI MAKANAN, PRESTASI PERTUMBUHAN, BERAT ORGAN RELATIF DAN NILAI CERNA LEMAK PADA AYAM PEDAGING

Oleh

CHEAH YING SEE

Mac 2016

Pengerusi: Professor Loh Teck Chwen, PhD

Fakulti: Pertanian

Satu kajian pengeluaran makanan ayam telah dijalankan untuk meneliti kesan pengemulsia sintetik dan biosurfaktan semula jadi pada pemprosesan makanan dan kualiti makanan ayam pedaging yang dipeletkan. Diet asas jagung-kacang soya ayam pedaging telah diformulasi dengan nisbah tetap 2:1, iaitu minyak-kepada-air dengan penggunaan dua jenis pengemulsia: gliserin polietilena glikol risinoleat pengemulsi sintetik dan lisofosfatidikolin biosurfaktan semula jadi. T1: Diet asas tanpa air dan tanpa pengemulsi; T2: Diet asas berair dan tanpa pengemulsi; T3: Diet asas berair dan pengemulsi gliserin polietilena glikol risinoleat, yang telah ditukarkan kepada fasa minyak sebelum ditambah dengan air, pra-campuran pada 60°C selama 3 minit bagi pembentukan emulsi air-dalam-minyak (w/o); T4: Diet asas berair dan biosurfaktan semula jadi lisofosfatidikolin digunakan untuk perbandingan rawatan. Kesemua rawatan diet telah dihasilkan oleh sebuah kilang pengeluaran makanan ternakan komersial. Kos elektrik dan suhu proses hasilan makanan juga diukur semasa pemprosesan di kilang. Komposit sampel telah diambil dari titik pemprosesan yang berbeza, untuk ujian sifat-sifat fizik, kestabilan kimia dan biostabiliti makanan yang dipantau. Kualiti pelet menunjukkan penambahan pengemulsia yang signifikan (P<0.05) pada ‘crumble’ dan pelet yang ditambah pengemulsi. Korelasi antara pengemulsi dan kos penghasilan pelet tidak dilihat dalam kajian ini. Tiada kesan kemerosotan diperhatikan dari segi ketengikan hidrolitik (AV), ketengikan pengoksidada (PV), kiraan kulapuk, kandungan lembapan, aktiviti air dan kadar retensi air. Walau bagaimanapun, peratusan penggelatinan kanji pada makanan yang dipantau menunjukkan peningkatan yang signifikan (P<0.0001) pada makanan yang dirawat dengan kedua-dua jenis pengemulsi tersebut. Keputusan ini menunjukkan bahawa penambahan pengemulsi kepada makanan ayam pedaging akan menambah baik kualiti pelet pada suatu tahap tertentu walaupun tiada perbezaan yang signifikan didapati pada perbezaan pengemulsi sintetik dan biosurfaktan semula jadi.
Dalam kajian kedua, satu kajian rawak lengkap telah dijalankan dengan susunan faktorial 2x3 untuk menilai tindakbalas luaran emulsi terhadap prestasi ayam pedaging, berat organ relatif dan nilai cerna lemak. Diet ayam pedaging berasaskan jagung-soya telah diformulasi pada nisbah yang tetap, 2:1 iaitu minyak kepada air, ditambah dengan gliserin polietilena glikoli risinoleat (GPGGR) emulsi sintetik dan lisofosfatidikolin (LPC) biosurfaktan semula jadi. Sejumlah 1,800 ekor anak ayam pedaging Cobb 500 jantan berumur sehari digunakan pada sembilan jenis rawatan diet iaitu T1: Diet basal dengan tenaga metabolisme (ME) 3,000 kcal/kg di peringkat pemula (S) dan 3,100 kcal/kg di peringkat pertumbuhan (G); T2: Diet basal dengan 2,900 kcal/kg (S) dan 3,000 kcal/kg (G); T3: Diet basal dengan ME 2,800 kcal/kg (S) dan 2,900 kcal/kg (G); T4, T5 dan T6 terdiri daripada T1, T2 dan T3 yang ditambah dengan GPGGR; T7, T8 dan T9 terdiri daripada T1, T2 dan T3 yang ditambah dengan LPC. Kajian ini telah dijalankan selama 14 hari semua fasa pemula dan 35 hari semua fasa pertumbuhan. Hasil kajian menunjukkan kesan emulsi terhadap prestasi ayam pedaging bergantung kepada aras ME yang diformulasi pada diet dan umur ayam tersebut. Emulsi meningkatkan (P<0.05) kadat pertukaran makanan (FCR) dengan berkesan pada fasa pemula pada aras ME yang tinggi, tetapi tidak memberi kesan nyata (P>0.05) pada aras ME yang rendah. Korelasi antara emulsi dan ME yang rendah di dalam diet pada FCR tidak dilihat dalam kajian ini. AME dan nilai cerna lemak pada semua aras ME adalah tinggi (P<0.05) pada ayam yang diberi makanan beremulsi. Walau bagaimanapun, kesan untuk mengimbangi sejumlah tenaga pada aras kawalan tidak dilihat. Penurunan didapati sangat nyata (P<0.05) pada lemak di hati, lemak abdomen dan lemak digesta pada ayam yang mengambil makanan yang mengandungi emulsi pada fasa pertumbuhan. Walau bagaimanapun, tiada perbezaan yang signifikan di antara emulsi sintetik dan biosurfaktan semula jadi.
ACKNOWLEDGEMENTS

I would like to give a sincere thanks to my supervisor, Prof. Dr. Loh Teck Chwen and Dr. Samrerng Kimkool for their guidance and advice. Their knowledge and support had been invaluable throughout this study.

Special thanks to Nurhazirah Shazali, all the post graduate students and laboratory assistants of Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, who have been extremely helpful in many ways.

I would also like to extend my appreciation to all my colleagues at the Feed Technology Department and to the farm employees of Charoen Pokphand Holdings Malaysia who have helped me through all the tedious work.
I certify that a Thesis Examination Committee has met on 23 March 2016 to conduct the final examination of Cheah Ying See on her thesis entitled "Effects of Emulsifier on Feed Process, Feed Quality, Growth Performance, Relative Organ Weight and Fat Digestibility in Broiler Chicken" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Awis Qurni bin Sazili, PhD
Senior Lecturer
Halal Products Research Institute
Universiti Putra Malaysia
(Chairman)

Anjas Asmara @ Ab. Hadi bin Samsudin, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Wan Zahari Mohamed, PhD
Professor
Universiti Malaysia Kelantan
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 25 May 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Loh Teck Chwen, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Henny Akit, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminars papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _________________________ Date: _____________________

Name and Matrix no.: Cheah Ying See (GS35674)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________Signature: ___________________________
Name of Chairman of Name of Member of Supervisory Supervisory Committee Committee
Signature: ___________________________Signature: ___________________________
Name of Chairman of Name of Member of Supervisory Supervisory Committee Committee
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 - 2.1 Market trend and poultry industry growth
 - 2.2 Impact to commercial practice
 - 2.3 Feed formulation alternative approach
 - 2.4 Feed quality issue
 - 2.5 Feed manufacturer alternative approach
 - 2.6 Emulsifier
 - 2.6.1 Chemical structure of emulsifier
 - 2.6.2 Functionality of emulsifier
 - 2.6.3 Effect of emulsifier on feed process
 - 2.6.4 Effect of emulsifier on animal performance
 - 2.7 Feed composition
 - 2.7.1 Major nutrient composition: starch
 - 2.7.2 Main dietary energy source: oil/fat

3. **EFFECTS OF EMULSIFIER ON FEED PROCESS AND FEED QUALITY IN PELLETIZED BROILER FEED**
 - 3.1 Introduction
 - 3.2 Materials and Methods
 - 3.2.1 Treatment diet and design
 - 3.2.2 Manufacturing and facilities
 - 3.2.3 Measurements and analytical methods
 - 3.2.3.1 Emulsion stability test
 - 3.2.3.2 Process parameter
 - 3.2.3.3 Relative electricity energy consumption
 - 3.2.3.4 Degree of friction at pellet mill
 - 3.2.3.5 Bulk density
 - 3.2.3.6 Pellet durability index
 - 3.2.3.7 Percentage fine/powdery
3.2.3.8 Determination of moisture 24
3.2.3.9 Determination of water activity 25
3.2.3.10 Determination of acid value 25
3.2.3.11 Determination of peroxide value 25
3.2.3.12 Determination of starch gelatinization 26
3.2.3.13 Mold count 26
3.2.3.14 Statistical analysis 27

<table>
<thead>
<tr>
<th>3.3</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Electricity consumption</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Meal temperature</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Gelatinization of starch</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Pellet quality</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Moisture and water activity</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Acid value</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Peroxide value</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Biostability</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Water retention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.4</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Electricity consumption</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Meal temperature</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Gelatinization of starch</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Pellet quality</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Moisture and water activity</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Acid value</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Peroxide value</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Biostability</td>
</tr>
<tr>
<td>3.4.9</td>
<td>Water retention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.5</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

4 | GROWTH PERFORMANCE, RELATIVE ORGAN WEIGHT AND FAT DIGESTIBILITY IN BROILER CHICKEN FED WITH SYNTHETIC EMULSIFIER AND NATURAL BIOSURFACTANT |

4.1 Introduction 41
4.2 Materials and Methods 41
4.2.1 Treatment diet and design 41
4.2.2 Farm and facilities 45
4.2.3 Measurements and analytical methods 45
4.2.3.1 Feed conversion ratio 46
4.2.3.2 Pasty vent and pad lesion observation 46
4.2.3.3 Determination of crude protein 47
4.2.3.4 Determination of crude fat 48
4.2.3.5 Determination of gross energy 48
4.2.3.6 Determination of apparent digestibility 48
4.2.3.7 Statistical analysis 49

4.3 Results 49
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Major properties of the starch components</td>
</tr>
<tr>
<td>2.2</td>
<td>Constant used in Wiseman Equation in ME prediction</td>
</tr>
<tr>
<td>2.3</td>
<td>ME values calculated by Wiseman Equation</td>
</tr>
<tr>
<td>3.1</td>
<td>Ingredients of starter diet formulation</td>
</tr>
<tr>
<td>3.2</td>
<td>Ingredients of grower diet formulation</td>
</tr>
<tr>
<td>3.3</td>
<td>Influence of emulsifier on energy consumption in starter and grower feed production</td>
</tr>
<tr>
<td>3.4</td>
<td>Effects of emulsifier on meal temperature in the process of starter and grower feed</td>
</tr>
<tr>
<td>3.5</td>
<td>Starch gelatinization in processed meal of starter and grower feed</td>
</tr>
<tr>
<td>3.6</td>
<td>Pellet quality on starter and grower feed supplemented with emulsifier</td>
</tr>
<tr>
<td>3.7</td>
<td>Effects of emulsifier on meal moisture and water activity in starter and grower feed</td>
</tr>
<tr>
<td>3.8</td>
<td>Increased rate of acid value (AV) in starter and grower feed throughout 14 days of storage period</td>
</tr>
<tr>
<td>3.9</td>
<td>Increased rate of peroxide value (PV) in starter and grower feed throughout 14 days of storage period</td>
</tr>
<tr>
<td>3.10</td>
<td>Biostability on mold count in starter and grower feed supplemented with emulsifier</td>
</tr>
<tr>
<td>4.1</td>
<td>Ingredients and calculated nutrient of starter diet formulation</td>
</tr>
<tr>
<td>4.2</td>
<td>Ingredients and calculated nutrient of grower diet formulation</td>
</tr>
<tr>
<td>4.3</td>
<td>Treatment effects on body weight gain</td>
</tr>
<tr>
<td>4.4</td>
<td>Treatment effects on feed intake</td>
</tr>
<tr>
<td>4.5</td>
<td>Treatment effects on feed conversion ratio</td>
</tr>
</tbody>
</table>
4.6 Treatment effects on pasty vent, 1-to-5-week observation and pad lesion on day 35

4.7 Treatment effects on relative organ weight and abdominal fat on day 14

4.8 Treatment effects on relative organ weight and abdominal fat on day 35

4.9 Treatment effects on chemical composition of digesta, liver and breast meat on day 14

4.10 Treatment effects on chemical composition of digesta, liver and breast meat on day 35

4.11 Treatment effects on apparent fat digestibility for starter and grower phase

4.12 Treatment effects on apparent metabolizable energy (AME) for starter and grower phase
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structure of emulsifier</td>
</tr>
<tr>
<td>2.2</td>
<td>A comparison between molecular aggregation solution characteristic, HLB value</td>
</tr>
<tr>
<td>3.1</td>
<td>Formation of oiling layer indicate liquid phase not miscible; formation of creaming layer showing complete emulsion; higher portion of dispersed phase in creaming layer.</td>
</tr>
<tr>
<td>3.2</td>
<td>Pellet durability tester</td>
</tr>
<tr>
<td>3.3</td>
<td>Total weight per bag throughout 14 days of storage period on starter feed supplemented with emulsifier</td>
</tr>
<tr>
<td>3.4</td>
<td>Total weight per bag throughout 14 days of storage period on grower feed supplemented with emulsifier</td>
</tr>
<tr>
<td>4.1</td>
<td>Experiment farm with dimension 2x2 meter square per pen</td>
</tr>
<tr>
<td>4.2</td>
<td>Pasty vent when bird’s dropping stuck surrounding the vent</td>
</tr>
<tr>
<td>4.3</td>
<td>Pad lesion according to 3-point scale</td>
</tr>
<tr>
<td>4.4</td>
<td>Birds developed pasty vent on day 7</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AA ashamed acid
Amp ampere
AV acid value
Aw water activity
AME apparent metabolizable energy
BW body weight
BWG body weight gain
cfu/g colony-forming units per gram
CP crude protein
CPO crude palm oil
DCP di-calcium phosphate
DM dry matter
ERH Equilibrium relative humidity
FCR feed conversion ratio
FFA free fatty acid
g gram
GE gross energy
h hour
HLB hydrophile-lipophile balance
kcal kilo calorie
kg kilogram
KOH potassium hydroxide
kw kilowatt
L:D length to diameter ratio
ME metabolizable energy
mg milligram
ml milliliter
mm millimeter
O/W oil-in-water
PDI pellet durability index
PIT phase-inversion temperature
PV peroxide value
rpm round per minute
SD standard deviation
SEM standard error of mean
T tonne
U:S unsaturated : saturated fatty acid ratio
Vol voltage
WG weight gain
W/O water-in-oil
CHAPTER 1

INTRODUCTION

Poultry diets formulated in Malaysia are mainly corn-soy diet with minor inclusion of animal-by-products or plant-by-products, with a supplement of oil and fat as dietary energy. Among the dietary ingredients, a large proportion of cost is devoted to energy and protein. In order to maximize the profitability in least cost formulation, it is common to include cheap energy sources while maintaining optimum nutrient availability in the diet. However, inclusion of high fat or oil in the feed formulation may have a negative impact in feed processing (Attawong et al., 2014). The effect of formulation on processing, especially pelleting might be overlooked by most of the nutritionists. They may focus in preserving feed formulation with a profitable margin, and do not consider much of the loss in pellet quality in order to have some extent of ingredient cost reduction. As a pellet becomes reduced in quality, it is prone to break into pieces when it is passed through handling systems (Fairfield, 1994).

They are many feeding management methods that are utilized to improve the quality of pellet feed. Besides the art of pelleting, feed formulation may include pellet binders to aid in keeping the pellet cohesive. Some nutritionists even include wheat grain in the diet to improve pellet binding ability (Winowiski, 1988; Skoch et al., 1983). Adding water has been tried by many feed manufacturer as part of the feed formulation program to improve pellet quality. However, incompatibility between water and oil become a big challenge in feed manufacturing. The concept of emulsification was introduced as an innovative solution to overcome the related issue (Anonymous, 2012; Ziggers, 2012).

A series of commercial available emulsifiers have shown positive response in industrial feeding. It improves feed mill efficiency and focus on product quality through the emulsion effect at conditioner (Van der Heijden and de Haan, 2010). Depending on the types of emulsion, some emulsifiers are used to maximize the efficiency in feed process; some can even extend their functionality up to the gastrointestinal tract, enhance lipid digestibility and improve animal growth performance (Guerreiro Neto et al., 2011; Maertens et al., 2011). However, a parallel comparison between different types of emulsifier, exhibit the activity of a solely product throughout the whole chain of poultry industries, from feed manufacturing to farm animal performance have not being conducted. Thus, the general objective of this study was to identify the effectiveness of emulsifier in feed process, feed quality and growth performance of broiler chickens. The research project was conducted with specific objectives to determine,

1. the effect of emulsifier on feed process and energy saving in milling process.
2. the effect of emulsifier on quality of pelletized feed.
3. the effect of emulsifier on growth performance, relative organ weight and fat digestibility of broiler chicken.
The hypotheses of this project were:

1. Miscible of water and oil is possible in feed production with emulsion process.
2. Better feed palatability with emulsifier can be achieved by improving pelletized feed quality.
3. Exogenous emulsifier can enhance the utilization of dietary fat in broiler diet.
REFERENCES

AOAC Official Method 930.15. (2011). Loss of drying (moisture) for feeds (at 135 °C for 2 hours). Dry matter on oven drying for feeds (at 135 °C for 2 hours).

AQUA LAB WATER ACTIVITY METER, DECAGON DEVICES, INC. FORTH REVISED AND EXTENDED EDITION OF FOOD CHEMISTRY.

Ziggers, D. (2012). The better the pellet, the better the performance. AllAboutFeed.net, February 1, 2012.