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The ordinary least squares (OLS) method is the most commonly used method 
in multiple linear regression model due to its optimal properties and ease of 
computation. Unfortunately, in the presence of multicollinearity and outlying 
observations in a data set, the OLS estimate is inefficient with inflated standard 
errors. Outlying observations can be classified into different types, such as 
vertical outlier, high leverage points (HLPs) and influential observations (IO).  
 
It is very crucial to identify HLPs and IO because of their responsibility for 
having large effect on various estimators, causing masking and swamping of 
outliers in multiple linear regression. All the commonly used diagnostic 
measures fail to correctly identify those observations. Hence, a new improvised 
diagnostic robust generalized potential (IDRGP) is proposed. The proposed 
IDRGP is very successful in detecting multiple HLPs with smaller masking and 
swamping rates.   
 
This thesis also concerned on the diagnostic measures for the identification of 
bad influential observations (BIO). The detection of BIO is very important 
because it is accountable for inaccurate prediction and invalid inferential 
statements as it has large impact on the computed values of various estimates. 
The Generalized version of DFFITS (GDFF) was developed only to identify IO 
without taking into consideration whether it is good or bad influential 
observations. In addition, although GDFF can detect multiple IO, it has a 
tendency to detect lesser IO as it should be due to swamping and masking 
effect. A new proposed method which is called the modified generalized 
DFFITS (MGDFF) is developed in this regard, whereby the suspected HLPs in 
the initial subset are identified using our proposed IDRGP diagnostic method. 
 
To the best of our knowledge, no research is done on the classification of 
observations into regular, good and bad IOs. Thus, the IDRGP-MGDFF plot is 
formulated to close the gap in the literature.  
 



© C
OPYRIG

HT U
PM

ii 
 

This thesis also addresses the issue of multicollinearity problem in multiple 
linear regression models with regards to two sources. The first source is due to 
HLPs and the second source of multicollinearity problem is caused by the data 
collection method employed, constraints on the model or in the population, 
model specification and an over defined model. However, no research is 
focused on the parameter estimation method to remedy the problem of 
multicollinearity which is due to multiple HLPs. Hence, we propose a new 
estimation method namely the modified GM-estimator (MGM) based on 
MGDFF. The results of the study indicate that the MGM estimator is the most 
efficient method to rectify the problem of multicollinearity which is caused by 
HLPs. 
 
When multicollinearity is due to other sources (not HLPs), several classical 
methods are available. Among them, the Ridge Regression (RR), Jackknife 
Ridge Regression (JRR) and Latent Root Regression (LRR) are put forward to 
remedy this problem. Nevertheless, it is now evident that these classical 
estimation methods perform poorly when outliers exist in a data. In this regard, 
we propose two types of robust estimation methods. The first type is an 
improved version of the LRR to rectify the simultaneous problems of 
multicollinearity and outliers. The proposed method is formulated by 
incorporating robust MM-estimator and the modified generalized M-estimator 
(MGM) in the LRR algorithm. We call these methods the Latent Root MM-
based (LRMMB) and the Latent Root MGM-based (LRMGMB) methods.  
 
Similar to the first type, the second type of robust multicollinearity estimation 
method also aims to improve the performance of the robust jackknife ridge 
regression. The MM-estimator and the MGM-estimator are integrated in the 
JRR algorithm for the establishment of the improved versions of JRR. The 
suggested method is called jackknife ridge MM-based denoted by JRMMB and 
the jackknife ridge MGM based denoted by JRMGMB. All the proposed 
methods outperform the commonly used methods when multicollinearity comes 
together with the existence of multiple HLPs. 
 
The classical multicollinearity diagnostic measure is not suitable to correctly 
diagnose the existence of multicollinearity in the presence of multiple HLPs. 
When the classical VIF is employed, HLPs will be responsible for the increased 
and decreased of multicollinearity pattern. This will give misleading conclusion 
and incorrect indicator for solving multicollinearity problem. In this respect, we 
propose robust VIF denoted as RVIF(JACK-MGM) which serves as good 
indicator that can help statistics practitioners to choose appropriate estimator 
to solve multicollinearity problem.    
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Kaedah  biasa kuasa dua terkecil (OLS) merupakan kaedah yang sering 
digunapakai dalam model regresi linear berganda kerana ia mempunyai ciri-ciri 
optimum dan pengiraan yang mudah. Malangnya, dengan kehadiran  
multikolinearan dan titik terpencil dalam data, penganggar OLS menjadi tidak 
cekap dengan ralat piawai yang tinggi. Cerapan titik terpencil boleh dikelaskan 
kepada pelbagai jenis, iaitu titik terpencil menegak, titik tuasan tinggi (HLP) 
dan cerapan berpengaruh (IO). 
 
Adalah sangat penting untuk mengenalpasti titik tuasan tinggi dan cerapan 
berpengaruh kerana keduanya bertangungjawab memberi pengaruh besar 
keatas pelbagaian  penganggar menyebabkan limpahan dan litupan titik 
terpencil dalam regresi linear berganda. Kesemua pengukuran diagnostik yang 
biasa digunakan  gagal mengenalpasti cerapan tersebut dengan tepat. Oleh 
itu, kaedah baru Penambahbaikan Berdiagnostik Teguh Potensi Teritlak 
(IDRGP) dicadangkan. Kaedah IDRGP yang dicadangkan sangat berjaya 
mengenalpasti kesemua titik tuasan tinggi berganda dengan kadar litupan dan 
limpahan lebih kecil.  
 
Tesis ini juga mempertimbangkan pengukuran diagnostik bagi mengenalpasti 
cerapan berpengaruh buruk (BIO). Pengenalpastian BIO amat penting kerana 
ia penyebab kepada ketidaktepatan ramalan dan inferensi tidak sah 
disebabkan ia memberi kesan besar keatas nilai pelbagai penganggaran yang 
dikira. Versi teritlak DFFITS (GDFF) telah dibangunkan hanya untuk 
mengenalpasti cerapan berpengaruh tanpa mengambil kira sama ada ianya 
cerapan berpengaruh baik atau buruk. Tambahan pula, walaupun  GDFF  
boleh mengesan cerapan berpengaruh berganda, ia cenderung mengesan 
bilangan IO lebih rendah daripada yang sepatutnya disebabkan  kesan 
pengaruh litupan dan limpahan. Kaedah baru yang dicadangkan dan 
dinamakan Pengubahsuaian Teritlak DFFITS (MGDFF) dibangunkan, yang 
mana suspek HLPs dalam subset awal  dikenalpasti menggunakan kaedah 
IDRGP yang kami cadangkan. 
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Sepanjang pengetahuan kami, belum ada kajian dibuat ke atas pengelasan 
kepada cerapan berpengaruh biasa, baik dan buruk. Oleh itu, plot IDRGP-
MGDFF diformulasi bagi menampung lompang dalam literasi. 
 
Tesis ini juga mengenengahkan isu  masalah  multikolinearan dalam model 
regresi linear berganda yang berkaitan dengan dua punca.  Pertama, ia 
berpunca disebabkan titik tuasan tinggi, dan punca kedua disebabkan kaedah 
yang digunakan bagi pengumpulan data, kekangan ke atas model atau dalam 
populasi, spesifikasi model dan model lampau tertakrif.  Walaupun begitu, 
belum ada kajian memfokus kepada kaedah penganggaran parameter bagi 
memulihkan masalah multikolineran disebabkan oleh titik tuasan tinggi 
berganda. Oleh yang demikian, kami mencadangkan kaedah penganggaran 
baru yang dinamakan Penganggar Terubahsuai GM (MGM) berdasarkan 
MGDFF.  Keputusan kajian menunjukkan  penganggar MGM adalah 
penganggar paling cekap dalam memperbaiki masalah multikolinearan 
berpunca dari titik tuasan tinggi.  
 
Apabila multikolineran disebabkan oleh punca lain, beberapa kaedah klasikal 
kedapatan. Di antaranya regresi Ridge (RR), Regresi  Jackknife Ridge (JRR) 
dan regresi  Latent Root diketengahkan untuk memulihkan masalah tersebut. 
Walaubagaimanapun, jelas terbukti bahawa prestasi kaedah penganggaran 
klasik tersebut sangat lemah dengan kehadiran titik terpencil dalam data.  
Dalam hal ini, kami mencadangkan dua kaedah penganggaran teguh. Jenis 
pertama,  adalah versi pembaikan LRR bagi memulihkan kedua-dua masalah 
multikolinearan dan titik terpencil. Kaedah yang dicadangkan diformulasikan 
dengan menggabungkan  penganggar teguh MM dan Pengubahsuaian 
Penganggar Teritlak M (MGM) dalam algorithma LRR. Kami namakan kedua 
kaedah ini sebagai kaedah  Latent Root berasaskan MM (LRMMB) dan 
kaedah  Latent Root berasaskan MGM (LRMGMB). 
 
Seperti mana jenis pertama, kaedah penganggaran teguh multikolinearan jenis 
kedua juga berhasrat untuk pembaikan prestasi  regresi teguh  Jackknife 
Ridge.  Penganggar  MM dan penganggar MGM digabungkan  dalam 
algoritma JRR bagi membangunkan versi pembaikian JRR. Kaedah yang 
dicadangan dinamakan  Jackknife Ridge berasaskan MM (JRMMB) dan  
Jackknife Ridge  berasaskan MGM (JRMGMB).  Semua kaedah yang telah 
dicadangkan mengatasi kaedah biasa bila mana multikolineran hadir bersama 
titik tuasan tinggi berganda.  
 
Pengukuran  diagnostik multikolinearan klasik tidak sesuai untuk mendiagnos 
kewujudan  bersama multikolinearan dengan kehadiran titik tuasan tinggi 
berganda. Apabila VIF klasik digunakan, titik tuasan tinggi menyebabkan 
peningkatan dan penurunan corak multikolineran. Ini akan mengelirukan 
kesimpulan dan memberi penunjuk tidak benar dalam menyelesaikan masalah 
multikolinearan. Maka, kami mencadangkan  VIF teguh dinamakan 
RVIF(JACK-MGM)  yang menjadi penunjuk terbaik yang boleh membantu 
pengamal statistik dalam memilih penganggar yang bersesuaian bagi 
menyelesaikan masalah multikolinearan. 
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CHAPTER 1 
 
 

INTRODUCTION   
 
 

1.1  Introduction and Background of the Study 
 

Regression analysis is basically a statistical technique for investigating the 
functional relationship among two or more quantitative variables so that, a 
dependent or response variable can be predicted from one or more of predictor 
or explanatory variables (Kutner et al., 2005), where the predictor variables 
assumed to be fixed. Regression analysis involves model building, parameter 
estimation and prediction. The ordinary least squares (OLS) is one of the 
predominant regression analysis techniques. When the Gaussian Markov 
assumptions are met, the OLS is the most popular estimation method in linear 
regression model due to its supreme properties and ease of computation. In 
addition, when  the  random  errors  are  independent identically distributed (iid) 
normal,  the  OLS  estimator  is  the  “best”  linear unbiased  estimators 
(BLUE).  In other words, the OLS estimator has the smallest variance among 
all possible linear unbiased estimators.  Furthermore, the maximum likelihood 
estimator (MLE) equals the OLS estimator under these conditions.  
Unfortunately, in real practice the assumptions about the normality of the error 
term distribution and the independency of the predictor variables 
(multicollinearity problem) are always violated. Furthermore, the OLS estimator 
is not robust against unusual data and it has very low breakdown point which is 
equals to 1/n (Maronna, 1976), where n is the size of the sample. 
 
Even one unusual observation can drastically change the OLS estimate very 
badly (see Rousseeow and Leroy, 1987; Gujarati, 2003; Kamruzzaman and 
Imon, 2002; Kutner et al., 2005; Maronna et al., 2006; Andersen, 2008).   
 
The assumption of normality is violated in the presence of one or more 
influential observations. Belsley et al. (1980) stated that influential observations 
were those observations either alone or together with several other 
observations have the largest impact on the computed values of various 
estimates. Barnett and Lewis (1994) defined outliers as those observations that 
are markedly far from the majority of observations in a data set.   
 
There are several versions of outliers in regression problems. Observations are 
judged as residual outliers based on how unsuccessful the fitted regression 
equation is in accommodating them.  This is the reason why observations 
corresponding to very large residuals are treated as residual outliers. 
Observations which are extreme or outlying in the y-coordinate are called 
outliers or vertical outliers. High leverage points (HLPs) are those observations 
which are outlying in the X-coordinate. It is often very essential in regression 
analysis to find out whether HLPs; those observations which fall far from the 
majority of the independent variables, have much impact on the fitting of a 
model. HLPs not only fall far from the majority of predictor variables, but also 
are deviated from a regression line (Belsley et al., 1980; Hocking and 
Pendelton 1983; Rousseeow and Leroy, 1987).  
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The other serious problem is that HLPs have high impact on the OLS 
estimators and is responsible for causing multicollinearity problem. 
Multicollinearity  is  a  situation of  multiple  regression model  when  the  
independent variables  are highly correlated. If the purpose of a study is to 
predict response variable (y) from a group of explanatory variables (x), the 
multicollinearity is not problematic. Nevertheless, if the purpose is to illustrate 
the impact of individual x variable on y, then the multicollinearity is a big 
problem. Imon and Khan (2003) exemplified that HLPs is a new source of 
multicollinearity. These leverage points may increase (enhancing observation) 
or decrease (reducing observation) multicollinearity problem (Habshah et al., 
2011).  
 
In real-life situations, multicollinearity, the existence of anomalous points and 
departure from the normality assumption are common problems in regression 
analysis. This fact is pointed out by many standard books, articles and 
researchers. Nowadays, several procedures which deal with multicollinearity 
and outliers separately are available. However, there is not much significant 
work reported in the literature which takes into account the presence of both 
multicollinearity and outlier problems simultaneously (see Johnston, 1984; 
Montgomery et al., 2001; Gujarati, 2002; Kutner et al., 2005; Chatterjee and 
Hadi, 2006; Kamruzzaman and Imon, 2002, Imon, 2005). 
 
 
1.2 Importance and Motivation of the Study 
 
Linear regression analysis is the most significant statistical technique in many 
fields such as economics, survival studies, business, medicine, engineering 
and others. To estimate the coefficients of the linear regression model, the 
least squares method is often used because of tradition and it is easy to 
compute. However, in the presence of single or multiple enormous points in a 
data set can destroy the OLS estimates. Many researchers stated that a real 
data set usually contain 1% to 10% of unusual observations (Hampel et al., 
1986; Wilcox, 2005). HLPs have more serious effects on the OLS estimates 
than the outliers in y variable. According to Pena and Yohai (1995), HLPs are 
responsible for masking and swamping of outliers in linear regression. HLPs 
are also causing multicollinearity problem and have great effect on the values 
of various estimates. Hence, it is vital to detect those unusual observations. 
Although, Hadi’s potential values (Hadi, 1992) can detect single leverage point 
but they are not successful to identify multiple HLPs due to masking and 
swamping effects (Rousseeuw and Leroy, 1987; Ruppert and Simpson, 1990; 
Imon, 1996; Imon, 2005, Habshah et al. 2009). To address this problem, Imon 
(1996) suggested the generalized potentials (GP) as a diagnostic method for 
detecting multiple HLPs. The idea of generalized potential is by extending a 
single case deletion to a group of case deletion. Habshah et al. (2009) pointed 
out that the GP approach is not very successful in identifying the correct 
number of HLP due to its inefficient way of choosing the initial basic subset, 
which suffers from masking effects. To remedy this problem, Habshah et al. 
(2009) developed the diagnostic robust generalized potential (DRGP) approach 
which is very successful in identifying HLPs. Nonetheless, the DRGP approach 
has small rate of masking and swamping effects, especially with small size of 
sample and high percentage of contamination. This shortcoming of DRGP has 
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inspired us to develop a new technique to improve the performance of DRGP 
which we call the improvised DRGP (IDRGP). It is proposed by adding new 
step in the DRGP algorithm pertaining to two cases. The proposed IDRGP is 
expected to show higher rate of detection of HLPs with smaller masking and 
swamping rates.   
 
This thesis also concerned on the diagnostic measures for the identification of 
bad influential observations (BIO). The detection of BIO is very important 
because it is accountable for inaccurate prediction and invalid inferential 
statements as it has large impact on the computed values of various estimates. 
The Generalized version of DFFITS (GDFF) which is proposed by Imon (2005) 
is developed only to identify influential observations (IO) without taking into 
consideration whether it is good or bad. In addition, although GDFF can detect 
multiple IO, it has a tendency to detect lesser IO as it should be. This is due to 
the choice of the initial basic subset of the GDFF which is not adequately 
effective in classifying the deletion and the remaining groups. The weakness of 
Imon’s work has motivated us to propose an adaptive method which is 
anticipated to improve the detection rate of IO while keeping smaller masking 
and swamping effects. The new proposed method is called modified 
generalized DFFITS (MGDFF), whereby the suspected HLPs (HLP) in the initial 
subset are identified using our proposed IDRGP diagnostic method. 
 
Statistics practitioners are often rely on handy plot to quickly capture 
irregularities in a data set. A diagnostic plot is very useful in this regard. 
Russeeuw and Van Zomeren (1990) proposed the LMS-RMD plot to classify 
observations into regular observations, vertical outliers, good and bad high 
leverage points. Nonetheless, this plot is based on the RMD which is known to 
suffer from masking and swamping effects. Bagheri and Habshah (2015) 
suggested the LTS-DRGP(MVE) plot for identifying such points. This plot 
depends on the DRGP which has small swamping effects. Moreover, both plots 
do not specifically constructed to classify observations into regular, vertical, 
good and bad influential observations. To the best of our knowledge, no such 
plot is found in the literature. The limitation of these plots and literature gap has 
encouraged us to formulate a new classification scheme which we call IDRGP-
MGDFF to classify observations into good and bad influential observations. 
The performance of the MGDFF is assessed through real data and simulation 
study.   
 
This thesis also addresses the issue of multicollinearity problem in multiple 
linear regression models. The OLS estimator suffers a huge set back in the 
presence of multicollinearity. There are many sources of multicollinearity 
problem, such as the data collection method employed, constraints on the 
model or in the population, model specification and an over defined model 
(Montgomery et al., 2001). However, there is an evident that the high leverage 
point is another source for multicollinearity (Imon and Khan, 2003). Irrespective 
of the source, when multicollinearity problem is detected it is obvious to remedy 
this problem in order to obtain efficient parameter estimates. Imon and Khan 
(2003) proposed using generalized potentials (GP) measure to overcome the 
multicollinearity problem caused by the presence of multiple HLPs. As already 
mentioned the drawback of this measure is that it is not very successful in 
identifying correct HLPs and suffers from masking and swamping effects. To 
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the best of our knowledge, there do not exist any literature in multicollinearity 
which discusses solution to the problem of multicollinearity caused by HLPs. 
This inspires us to propose a new estimation method namely the modified GM-
estimator (MGM) based on MGDFF to combat the multicollinearity caused by 
the multiple HLPs. When multicollinearity is due to other sources not HLPs, 
several classical methods are available. Among them, the Ridge Regression 
(RR), Jackknife Ridge Regression (JRR) and Latent Root Regression (LRR) 
are put forward to remedy this problem. Nevertheless, it is now evident that 
these classical estimation methods perform poorly when outliers exist in a data. 
Not much work is devoted when multicollinearity comes together with the 
existence of outliers. In this situation, we propose two types of robust 
estimation methods. The first type is an improved version of the LRR to rectify 
the simultaneous problems of multicollinearity and outliers. The proposed 
method is formulated by incorporating robust MM-estimator and the modified 
generalized M-estimator (MGM) in the LRR algorithm. We call these methods 
the Latent Root MM-based (LRMMB) and the Latent Root MGM-based 
(LRMGMB) methods. Similar to the first type, the second type of robust 
multicollinearity estimation method also aim to improve the performance of the 
robust jackknife ridge regression. The MM-estimator and the MGM-estimator 
are integrated in the JRR algorithm for the establishment of the improved 
versions of JRR. The suggested method is called jackknife ridge MM based 
denoted by JRMMB and the jackknife ridge MGM based denoted by JRMGMB. 
 
The classical multicollinearity diagnostic methods may not be suitable to 
correctly diagnose the existence of multicollinearity in the presence of HLPs 
(Montogmery and Askin, 1981; Rosen, 1999). When we use the classical 
multicollinearity diagnostic methods, the HLPs may increase (high leverage 
collinearity-enhancing observation) or decrease (high leverage collinearity-
reducing observation) the multicollinearity pattern of a data. Subsequently, the 
classical VIF gives incorrect indicator for solving multicollinearity problem 
because statistics practitioners often rely on this diagnostic measure. To the 
best of our knowledge, not much work is devoted to robust VIF. Bagheri and 
Habshah (2011) proposed RVIF(MM) and RVIF(GM(DRGP)) to diagnose 
multicollinearity. Nonetheless, the RVIF(MM) is not efficient (Bagheri and 
Habshah, 2011). The RVIF(GM(DRGP)) is expected not to be very efficient 
because it is formulated based on DRGP that has been proven in Chapter 3, 
less efficient than IDRGP. Moreover, it is also based on GM(DRGP) estimator 
which is less efficient as it downweight all detected HLPs irrespective of 
whether it is good or bad. This issue has inspired us to develop a new robust 
VIF, namely the RVIF(jack-MGM) which is anticipated to be more reliable than 
the RVIF(GM(DRGP) because it is based on Jack-MGM estimator which is 
proven in Chapter 5 to do credible job.   
 
 
1.3 Research Objectives 
 
The main aim of this thesis is to investigate the multicollinearity problems for 
linear regression model in the presence of HLPs. The classical diagnostic and 
estimation methods which deal with multicollinearity problems are mostly based 
on ordinary least squares (OLS) estimates. Unfortunately, the OLS estimate is 
not robust for HLPs. Moreover, there is evidence that HLPs is a new source for 
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multicollinearity. It is important to modify the classical diagnostic 
multicollinearity methods to be more resistance for HLPs. In addition, it will be 
interesting to develop a new technique to detect the correct number of HLPs in 
a data set and to classify correctly the HLPs into good and bad influential 
observations. The foremost objectives of our research can be outlined 
systematically as follows: 
 

1. To propose a new improved diagnostic measure for the identification of 
multiple HLPs in order to obtain the exact number of multiple HLPs that 
able to reduce masking and swamping effects.  

2. To formulate a new diagnostic measure to identify multiple influential 
observations. 

3. To propose a new classification scheme to classify observations into 4 
types: regular observation, vertical outliers, good and bad influential 
observation. 

4. To propose a new robust estimation method to solve the 
multicollinearity problem that is due to HLPs.  

5. To formulate a robust latent root regression and robust jackknife ridge 
regression estimation techniques for linear regression having both 
multicollinearity and HLPs. 

6. To develop robust multicollinearity diagnostic measures for detecting 
multicollinearity problem in the presence of HLPs.  

 
 
1.4  Scope and limitation of the study 
 
The multiple linear regression model is widely used in many fields of studies 
such as business, economics, medicine and social sciences. In real situation, it 
has many practical uses. However, the most application is to fit the predictive 
model to an observed data set of response and predictor variables. Multiple 
linear regressions are predominantly fitted using the OLS method because of 
tradition and ease of computation. When the underlying assumptions are hold, 
the OLS estimates have the optimal properties. In reality, the underlying 
assumptions of independency among the predictor variables and normality of 
the random errors are always violated. In addition, the OLS estimate is not 
resistant to outlying observations. Even one outlier can make a big changed in 
the OLS estimate. As an alternative methods, many robust statistical estimation 
techniques are suggested such as, least median of squares, least trimmed 
squares, S-estimator, M-estimator and MM-estimator. Nonetheless, most of the 
existing methods alone cannot be used to remedy the combined problem of 
outliers in the presence of multicollinearity. On the other hand, there are good 
numbers of work on the identification of HLPs (Ellenberg, 1976; Belsley et al. 
1980; Rousseeuw, 1987; Imon, 2002; Imon 2005; Habshah et al. 2009). 
Nevertheless, most of these detection methods basically focused only on the 
identification of HLPs without taking into consideration their classification into 
good and bad leverage points. It is very important to detect and classify the 
good and bad leverage points, as only bad leverage points are responsible for 
the misleading conclusion about the fitting of the regression model.  
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Since robust statistic is relatively new technique in statistics, there are not so 
many algorithms and statistical softwares which are available for complicated 
robust applications. In addition, not many outlying data sets are available in the 
literatures. Furthermore, only few outlying data sets with multicollinearity 
problems are available. For these reasons, the same data sets were used 
repeatedly for different objectives of this study.  
 
 
1.5  Overview of the Thesis 
 
In accordance with the objectives and the scope of the study, the contents of 
this thesis are structured in the eight chapters. The thesis chapters are 
organized so that the study objectives are apparent and are conducted in the 
sequence outline. 
 
Chapter Two: This chapter briefly presents the literature review of the least 
squares estimation method and the violations from its underlying assumptions 
such as departure of normality and presence of multicollinearity problem. The 
outliers, HLPs, influential observation and their diagnostics methods are also 
discussed. Moreover, basic concepts of robust regression and some important 
existing robust regression methods are also reviewed. The effects, sources and 
consequences of multicollinearity and its estimation and diagnostics methods 
are also highlighted. Finally, bootstrapping methods are also briefly discussed.   
 
Chapter Three: This chapter discusses the existing DRGP which is developed 
by Habshah et al. (2009). The new proposed method, the improvised DRGP 
(IDRGP), for the identification of multiple HLPs is presented. The steps for 
IDRGP and its algorithm are also highlighted. Finally, some examples artificial 
data and A Monte Carlo simulation study are discussed.  
 
Chapter Four: In this chapter, a modified generalized DIFFITS (MGDFF) 
based on IDRGP for the identification of good and bad influential observations 
is developed. A new IDRGP-MGDFF Scheme of classifying observations into 
regular observations, vertical outlying observations, good and bad influential 
observations is also presented. Some real data, artificial data and A Monte 
Carlo simulation study are discussed to assess the performance of our 
proposed method.   
 
Chapter Five: This chapter deals with the development of the GM-estimator 
based on modified generalized DIFFITS (denoted by MGM) for data having 
multicollinearity due to HLPs. A Monte Carlo simulation study and two 
numerical examples are carried out to assess the performance of the proposed 
method.   
 
Chapter Six: In this chapter, two types of robust multicollinearity estimation 
methods are formulated. The first type deals with the development of robust 
latent root regression estimation methods; LRMMB and LRMGMB. This 
method is formulated by incorporating the high efficient and high breakdown 
MM-estimator and our proposed MGM-estimator methods in the classical latent 
root regression, respectively. The second type deal with the robust jackknife 
ridge regression estimation methods. In this respect we propose two robust 
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methods namely; JRMM and JRMGM. These robust methods are formulated 
by integrating the classical jackknife ridge regression method with the MM-
estimator and MGM-estimator, respectively.  A Monte Carlo simulation study 
and some numerical examples are given to assess the performance of the 
proposed method.   
 
Chapter Seven: In this chapter, we present the proposed multicollinearity 
diagnostic measures, namely the robust VIF based on robust jackknife ridge 
regression (denoted by RVIF(Jack-MGM)).The new proposed measures are 
useful to detect the multicollinearity problem in the presence of influential 
observations. In this respect, two types of data are considered, the collinearity 
data with reducing influential observations and non-collinearity data with 
enhancing influential observations. The numerical results and Monte Carlo 
simulation are also discussed to assess our proposed measures. 
 
Chapter Eight: This chapter provides summary and detailed discussions of the 
thesis conclusions. Areas for future research are also recommended.  
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