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Survival models with a cure fraction have received considerable attention in recent 

years. It becomes a very useful tool for handling situations in which a proportion of 

subjects under study may never experience the event of interest. Cure fraction models 

for interval-censored data are less developed compared to the right-censoring case. 

Moreover, most of the existing cure fraction models share in common the assumption 

that the effect of a covariate is constant in time and over the range of the covariate. This 

assumption is not completely valid when a significant change occurs in subjects' failure 

rate or cure rate. Therefore, this study focuses on developing several classes of 

parametric survival cure models for interval-censored data incorporating a cure fraction 

and change-point effect in covariate.  

 

 

The analysis starts with the extension of the existing cure models; mixture cure model 

(MCM) and Bounded cumulative hazard (BCH) model, with fixed covariates in the 

presence of interval-censored data. Then, this research introduces a modified cure 

model as an alternative to the MCM and BCH model.  The proposed model has sound 

motivation in relapse of cancer and can be used in other disease models. The parametric 

maximum likelihood estimation method is employed to verify the performance of the 

MCM within the framework of the expectation-maximization (EM) algorithm while the 

estimation methods for other models are employed in a simpler and straightforward 

setting. 

 

 

In addition, the models are further developed to accommodate the problem of change-

point effect for the covariate and a smoothed likelihood to obtain relevant estimators is 

proposed. An estimation method is proposed for right-censored data, and the method is 

then  extended to accommodate interval-censored data. Simulation studies are carried 

out under various conditions to assess the performances of the models that have been 

developed. The simulation results indicate that the proposed models and the estimation 

procedures can produce efficient and reasonable estimators. Application of suggested 
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models to a set of gastric cancer data is demonstrated. The proposed models and 

approaches can be directly applied to analyze survival data from other relevant fields. 
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Kebelakangan ini model mandirian dengan pecahan sembuh telah menerima banyak 

perhatian. Ianya telah menjadi alat yang penting untuk menangani keadaan yang mana 

sebahagian daripada subjek dalam kajian mungkin tidak mengalami peristiwa yang 

menjadi perhatian. Model pecahan sembuh bagi data tertapis – selang tidak banyak 

kemajuan jika dibandingkan dengan kes tertapis – kanan. Lagipun, kebanyakan model 

pecahan sembuh yang sedia ada mempunyai andaian yang kesan kovariat adalah malar 

mengikut masa dan merentangi kovariat. Andaian ini tidak sah apabila berlaku 

perubahan signifikan ke atas kadar sembuh atau kadar kegagalan bagi subjek. Justeru, 

tumpuan kajian ini adalah untuk membina beberapa kelas model sembuh mandirian 

berparameter bagi data tertapis – selang dengan mengambilkira pecahan sembuh dan 

kesan titik – ubah dalam kovariat. 

 

 

Analisis bermula dengan melanjutkan model yang sedia ada; model campuran sembuh 

(MCS) dan model kumulatif bahaya terbatas (KBT) dengan kovariat tak berubah 

dengan mengambilkira kehadiran data tertapis-kiri,-selang dan-kanan. Kajian 

diteruskan dengan memperkenalkan model terubah saui sebagai alternatif kepada 

model MCS dan KBT. Model yang dicadangkan mempunyai motivasi yang baik bagi 

kambuh kanser dan boleh digunakan dalam model penyakit yang lain. Kaedah 

anggaran kebolehjadian maksimum berparameter digunakan untuk mengesahkan 

prestasi MCS dengan melaksanakan algoritma memaksimumkan – jangkaan (MJ) 

manakala kaedah anggaran bagi model yang lain dilakasanakan secara lebih mudah. 

 

 

Disamping itu model ini dibangunkan selanjutnya untuk mengambilkira masalah kesan 

titik –ubah dalam kovariat dengan mencadangkan kebolehjadian licin untuk 

memperoleh anggaran. Satu kaedah anggaran diusulkan untuk data tertapis – kanan dan 

kaedah ini diperluaskan untuk menampung data tertapis – selang. Kajian simulasi 

dijalankan di bawah pelbagai keadaan untuk menilai prestasi model yang telah 

dibangunkan. Keputusan simulasi menunjukkan bahawa model dan prosedur anggaran 

yang dicadangkan dapat menghasilkan penganggar yang cekap dan wajar. Model telah 
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diterapkan dengan menggunakan data kanser gastrik. Model dan pendekatan yang 

dicadangkan boleh diterapkan terus untuk menganalisis data mandirian dari bidang lain 

yang relevan.    
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         CHAPTER I 

 

 
         INTRODUCTION 

  
 

1.1 Background of Study 

 

Survival analysis is one group of statistical techniques that is playing an increasingly 

important role in many fields of medical and equivalent areas of research. It is a 

collection of statistical techniques for data analysis, in which the response variable of 

interest, 𝑇, is the time taken until the event of interest occurs. The data can be about 

time till death, time passing until the patient responds to therapy, time passing till 

disease relapse, or time to disease development. Depending on the fields of application, 

survival analysis has other descriptions, such as event history, duration analysis, failure 

time, and reliability analysis. The most common feature of time-to-event data analysis 

is that some, or even all, 𝑡𝑖 , 𝑖 = 1, 2, … , 𝑛 are censored due to a variety of potential 

reasons, e.g., subject not experiencing the event before study ends, subject quitting 

follow up during the period of the study, or subject withdrawing from the study. 

 

In medical studies, survival models are widely used to analyze time-to-event data in 

which subjects are followed over a certain time period and the time till the occurrence 

of an event of interest is recorded. For example, a study may analyze the time from 

surgery to recurrence of tumor in breast cancer patients or the time from treatment to 

infection in patients with renal insufficiency. It is typically assumed that every study 

subject will eventually experience the event of interest if she/he is observed long 

enough. However, in reality the event may not occur with some subjects even after a 

very long period of time. For instance, in prostate or breast cancer studies, it is common 

for a proportion of the patients never to experience the event of interest (recurrence) 

after treatment. In this case, the patients are not censored in the traditional sense and are 

hence confidently assumed to be cured. Therefore, traditional survival models like the 

accelerated failure time and the proportional hazard model of Cox are not appropriate 

for such cases and this type of data. Consequently, cure rate models have been basically 

developed for handling this type of data. In the cure model, censored group is divided 

into two sets: those that are event-free, thus cured and those that will evenatually have 

events if they could be followed for a long enough period of time. 

 

Two major approaches to model survival data with cure rate. The first one is the 

mixture cure model (MCM), which was proposed by Boag (1949) on the basis of the 

assumption that the cohort of the study is composed of susceptible subjects and cured 

subjects. The second is the non-mixture cure model (NMCM) which was established by 

Yakovlev et al. (1993) and was, for long, referred to as the Bounded Cumulative 

Hazard (BCH) model. It was motivated by the underlying biological mechanism and 

developed based on the assumption that number of cells of cancer which remain active 

after cancer treatment follows Poisson distribution. These two models are related and 

the BCH model can be transformed into the standard mixture cure model when the cure 

fraction is specifically specified. 

 

Both cure models have been extensively studied and applied in medical research. 

However, the so-far existing cure models do not take advantages of some additional 
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sources of data that may provide or elucidate further information about the cure rate 

such as the change-point phenomena. In reality, cured individuals may exist in change-

point situations. For example, in assessing the possibility of a patient cured under a 

treatment depending on an individual’s biomarker, one may suspect that for patients 

with the biomarker value above a certain threshold, the treatment works more or less 

effectively (Ma, 2011). As another example, rates of cancer incidence stay stable, 

relatively, in young individuals but drastically change later to a specific age threshold 

(MacNeill and Mao, 1995). So, a cure model that allows for a change-point effect, 

either in hazard rate or in covariates, should be considered for the analysis of these, and 

similar, phenomena. 

 

 

1.2 Scope of Study 

 
The focus of this thesis is on the problem of cure fraction estimation in the presence of 

censored data and change point effect in covariates. This research will be divided into  

two parts; the first part will be devoted to extend several parametric cure models to 

accommodate interval-censored data in the presence of time-independent covariates. A 

parametric maximum likelihood estimator is constructed using log-normal distribution. 

The second part of this study will be devoted to develop these models to allow for a 

change-point effect in a covariate. An estimation method will be proposed for right 

censored data and the method will be further extended to accommodate interval 

censored data. 

 

 

1.3 Problem Statement 

 
Due to advances in cancer treatment, many cancer patients get cured of their cancer. 

Therefore, one of the most important reasons for using cure models is that cure fraction 

is a very interesting measure for someone suffering from cancer that gives valuable 

information to her/him. Furthermore, by using cure models, information about the cure 

fraction besides the uncured subjects’ survival function can be obtained and by looking 

into changes in both of these estimates a lot more can be understood about the change 

in survival rates than by looking only into the probability of survival. 

 

Survival models accounting for patients who are expected to be cured are growing fast 

because these models handle the proportion of cured patients which is highly important 

for our conception of prognosis in possibly terminal diseases and which can reveal 

unknown health problems associated with the study population. 

 

Many cure models have been developed to handle survival data with cure fraction. 

Parametric approach is one method that has been used to estimate the cure probability 

and survival function for uncured subjects. So far, in most previously published 

research parametric cure models have been proposed for right censored data. Moreover, 

the existing cure models assume that the covariates act smoothly on the cure rate or the 

survival/hazard function. In practice, this assumption is not always adequate in the 

whole range of a covariate and the covariate may be dichotomized according to a 

threshold that may be fixed or have to be estimated from data. An important 

generalization of the cure models is to allow the survival function or cure fraction to 

depend to the strata defined by the covariates whose effect vary over time. In 
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consequence, this research investigates how to incorporate a change-point effect in 

covariate into several classes of parametric cure models in presence of two types of 

censoring (right and interval) and hence develops new cure models. This study also 

proposes a parametric estimation procedure for these models.  

 

 

1.4 Research Objectives  

 
The aim of this research is to develop parametric cure models to accommodate the 

problem of change-point effect in covariates for survival time with right-, and interval-

censored data. The parametric approach to the analysis will be based on the log-normal 

distribution. Therefore, the main objectives of this study are: 

 

 To extend the parametric cure models; Mixture Cure Model (MCM) and 

Bounded Cumulaive Hazrad (BCH)  model to accommodate  interval-

censored data in the presence of fixed covariates.  

 To extend and modify  the non-mixture cure model (NMCM) as an alternative 

to the MCM and BCH model. A parametric method of the model is proposed 

for 

 Right-censored data. 

 Interval-censored data.  

 To extend and develop the MCM and BCH model that incorporates a change-

point effect in covariate in the presence of 

 Right-censored data. 

 Interval-censored data. 

 To extend and develop the modified  model (GNMCM) that allows for a 

change-point effect in covariate in the presence of  

 Right-censored data 

 Interval-censored data. 

 To propose  parameter estimation procedures for the developed models. 

 To evaluate the performances of the developed cure models through 

simulation study. 

 

 

1.5 Outline of the Thesis 

 
This thesis is divided into two main sections, each handling several important 

approaches to cure rate estimation, applied to censored data. The first section handles 

parametric estimation of the cure fraction for interval-censored data based on MCM 

and BCH in presence of fixed covariates. This part also introduces a modified class of 

cure models.  The second part addresses extension of those classes of cure models to 

accommodate a change-point effect in a covariate. Estimation methods are proposed for 

right-censored, and the methods are naturally extended to accommodate interval-

censored data.  

 

In Chapter 2, a review of the literature related to the main theme of this research is 

presented. Sections 2.1 and 2.2 address the survival data and common censoring types 

with particular attention to interval and right censoring, respectively. An overview of a 

number of broadly-used survival cure models is presented in Section 2.3. Section 2.4 
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describes the problem of change-point. In Section 2.5, the estimation method, 

Expectation Maximization (EM) algorithm is introduced.  

 

Chapter 3 presents a general view of the parametric approach to cure rate estimation 

with censored data. The log-normal distribution is used to express the uncured 

individuals’ distributional function. This research uses the maximum likelihood for 

estimation of the parameters of interest. We then conduct a simulation study for each 

scenario in this part of the research to evaluate the estimation method’s performance 

and then compare the performances of the different models. Sections 3.2 elaborate on 

the derivation of the MCM for interval-censored data. Section 3.2.1 discusses the 

maximum likelihood parametric estimation method in the MCM. In Section 3.3 an 

elaboration is given on the parametric BCH model for right-censored data. Similar 

procedure is presented in Section 3.3.2 for interval-censored data. Section 3.4 

introduces a modified class of cure rates models which can be considered as an 

alternative to the MCM and BCH model. lastly, a brief description of the parametric 

method is introduced in Section 3.6. 

 

Parametric estimation of the mixture cure model with a change point effect in 

covariates based on censored-data is presented in Chapter 4. In Section 4.2 an 

elaboration is given on the parametric approach to cure fraction estimation for right 

censoring and log-normal distribution. Section 4.3 discusses the same procedure 

illustrated in Section 4.1 but with interval-censored data. The major study findings and 

conclusions are provided in Section 4.4. 

 

Chapter 5 discusses parametric estimation of the two classes of cure models with a 

change-point effect in covariate. Section 5.2 gives a description of the parametric 

estimation technique for the BCH model under right censoring, and interval censoring 

(Section 5.2.2). Then, Section 5.3 discusses the parametric estimation approach for the 

second class of cure models (GNMCM). The main findings and conclusions of the 

research work are given in Chapter 6 together with some recommendations for future 

studies. 
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