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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy
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August 2015
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Faculty: Institute For Mathematical Research

Rabin cryptosystem has fast encryption and proven as secure as the integer factoriza-
tion problem. Nonetheless, its decryption produces four possible correct results with
no indicator for choosing the right one is given. Therefore, this scenario leads to a
decryption failure. In order to engage with this problem and to refine the existing
works, further analysis subjected to mathematical proof are needed.

This thesis concentrates on an investigation into a new method to overcome all the
existing drawbacks of the previous effort to refine the Rabin cryptosystem. One of
the ways to achieve this is through the utilization of the modulus N = p2q. The
first contribution of this thesis deals with the level of security and the difficulty of
factoring the modulus N = p2q. As a consequence, we develop four cryptanalysis
methods by which to show that N = p2q can be factored in polynomial time under
certain conditions.

The second part of this thesis focuses on revisiting the Rabin encryption scheme;
with the goal to overcome all the previous drawbacks of its predecessor, including
it’s variants. Existing methods exploit some mathematical object or put paddings and
redundancies into the message, whilst the new proposed method opens up a refresh-
ing window of research into the problem. The proposed method, called the Rabin-p
cryptosystem has recorded an improvement which bears the idea of a failure-free
decryption scenario.
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In this thesis, we also develop a new cryptographic hard problem based on a spe-
cial instance of a linear Diophantine equation in two variables, with some provided
restrictions and carefully selected parameters. We reason that the proposed crypto-
graphic hard problem can be used for developing practical cryptographic construc-
tions. In parallel, we review the AAβ cryptosystem based on the design of Rabin-p
function over integers and also as a demonstration of the proposed cryptographic
hard problem concept. We then put forward an enhancement of the AAβ decryption
for better efficiency.

Additionally, we conduct rigorous mathematical analyses on both cryptosystems in-
troduced in this thesis. Moreover, for the purpose of empirical evidences, some
parameters are chosen in the course of the process to validate the efficiency in terms
of algorithmic running time and memory consumptions. We then conduct a com-
parative analysis toward estimating the running time during the encryption and de-
cryption process. We also evaluate the memory cost for system parameters and ac-
cumulators. Finally, we study the provable security element for both cryptosystems.
Emphasis is given to the standard security goal and the strong attack model, namely
the indistinguishability and the chosen-ciphertext attack, respectively.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISISKRIPTO TERHADAP MODULUS N = p2q DAN REKABENTUK
BERASASKAN SISTEMKRIPTO RABIN TANPA KEGAGALAN

PENYAHSULITAN

Oleh

MUHAMMAD ASYRAF BIN ASBULLAH

Ogos 2015

Pengerusi: Muhammad Rezal bin Kamel Ariffin, PhD
Fakulti: Institut Penyelidikan Matematik

Sistemkripto Rabin mempunyai penyulitan cepat dan keselamatannya terbukti setara
masalah pemfaktoran integer. Bagaimanapun, penyahsulitannya menghasilkan em-
pat kemungkinan jawapan dengan tiada petunjuk yang mengesahkan jawapan yang
sebenar, menjurus kepada kegagalan penyahsulitan. Demi memperhalusi permasala-
han ini dan menambahbaik kerja yang terdahulu, maka analisis lanjutan secara pem-
buktian bermatematik adalah diperlukan.

Tesis ini tertumpu kepada penyelidikan suatu kaedah baharu untuk mengatasi kese-
mua kelemahan sistemkripto Rabin sedia ada. Antara cara mencapai tujuan terse-
but ialah memanfaatkan penggunaan modulus N = p2q. Sumbangan pertama tesis
adalah membincangkan tahap keselamatan dan kepayahan memfaktorkan modulus
N = p2q. Hasilnya, empat kaedah analisiskripto terbina yang menunjukkan bahawa
N = p2q boleh difaktorkan dalam jangkamasa berpolinomial tertakluk kepada syarat
tertentu.

Bahagian kedua tesis ini bertumpukan semakan semula keatas skim penyulitan Ra-
bin; bermatlamat untuk mengatasi segala kelemahan sedia ada, termasuklah vari-
asinya. Kaedah sedia ada melibatkan eksploitasi beberapa objek bermatematik atau
meletakkan pemadatan dan lebihan terhadap tulisan biasa, manakala kaedah yang
dicadangkan membuka lembaran baharu dalam penyelidikan permasalahan tersebut.
Kaedah yang dicadangkan, dipanggil sistemkripto Rabin-p didapati mencatatkan
peningkatan, yang mana membawa gagasan bebas kegagalan penyahsulitan.

iii



© C
OPYRIG

HT U
PM

Dalam tesis ini, kami juga membangunkan masalah payah kriptografi baharu
berdasarkan kes tertentu bagi persamaan linear Diophantus dua pembolehubah yang
memenuhi syarat dan parameter tertentu. Kami berhujah bahawa masalah kriptografi
payah yang dicadangkan boleh digunakan untuk membangunkan sistem kriptografi
yang praktikal. Disamping itu, kami melihat semula sistemkripto AAβ berdasarkan
reka bentuk fungsi Rabin-p ke atas nombor bulat beserta konsep masalah kriptografi
payah yang dicadangkan. Kami kemudian mengemukakan penambahbaikan ter-
hadap penyahsulitan AAβ untuk kecekapan yang lebih baik.

Selain itu, kami menjalankan analisis bermatematik yang rapi terhadap kedua-dua
sistemkripto yang diperkenalkan di dalam tesis ini. Selanjutnya, bagi tujuan bukti
empirikal, beberapa parameter dipilih untuk proses pengesahkan kecekapan pecu-
tan masa algoritma dan kepenggunaan memori. Kami kemudiannya menjalankan
analisis perbandingan anggaran pecutan masa semasa proses penyulitan dan penyah-
sulitan. Kami juga menilai kos memori untuk sistem parameter dan penumpukkan-
nya. Akhir sekali, kami mengkaji unsur keselamatan terbuktikan bagi kedua-dua sis-
temkripto tersebut. Penekanan diberikan kepada matlamat piawai keselamatan dan
model serangan yang kuat, masing-masing iaitu ketidakbolehbezakan dan serangan
ke atas tulisan rahsia terpilih.
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CHAPTER 1

INTRODUCTION

1.1 Cryptography

Post 1990’s, the exponentially growing common medium for transporting informa-
tion is through electronic means. Currently, the internet assumes this role. The
internet; is a worldwide network that is being shared amongst the people all around
the globe. The internet contains large amount of entities, indistinguishable from
countries or nations, with users of varied interests and intentions, in every aspect
imaginable. With just simple clicks, we could send emails or communicate with
people, do monetary transactions through electronic commerce, and purchase items
online.

Nowadays, our daily activities and conversation are dependent on the internet con-
nectivity. Such internet dependencies led us to consider about the security and pri-
vacy of communication that occurs in the cyberspace, since it may easily be com-
promised by the authorities, hackers, or terrorists, of which some consider them as
the adversary of the system. Hence, it is necessary and important for establishing a
system or environment that guarantee the security of the internet users from any type
of adversary.

Out of the wilderness and all the sophistication that we experience within the online
world, the field of cryptography turns into a handy tool when security begins to
matters. Cryptography provides a mean to ensure that our privacy and confidential
information is secured, hence provides confidence for sharing and exchanging such
information between other parties (the sender and the intended receiver). It is of a
great interest, to be able to analyze the strengths and weaknesses of encryption and
decryption processes.

In classical terminology, encryption is defined as a conversion procedure of an in-
formation; which changes its readable state into another type of information, yet
appearing to be nonsense. When we enter the age of the computer, the technologies
evolves at a rapid state, therefore the definition of encryption is also amended. In
modern terminology, we may say that encryption is a process of converting an ordi-
nary information (i.e. known as a plaintext) into an unintelligible form (i.e. called as
a ciphertext). On the opposite, the decryption is the reverse process of encryption,
which functions to recover the intended or actual plaintext from its corresponding
ciphertext.

Apparently, both of the encryptor (sender) and the decryptor (receiver) must have
‘the key’ in order to successfully performs their operation, respectively. The encryp-
tor uses the key to scramble a plaintext (an ordinary information such as a readable
message or any meaningful data) and turns it into a ciphertext. This very same key is
also being used by decryptor in order to recover back the original plaintext from its

1
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ciphertext. Consequently, no matter how obscure the algorithm for encryption and
decryption is, it could be problematic if the key is not safe in the first place. This is
the basic concept that is well known as the Kerckhoffs’ principle, that states that the
security level of an encrypted information is as strong as the security of its key.

Definition 1.1 (Kerckhoffs’ Principle) (Katz and Lindell, 2008). Security of any
cryptosystem should depend only on the secrecy of its key, and not the secrecy of the
cryptosystem algorithm itself.

The reason behind this is because it is much easier to maintain secrecy of a key
instead of an algorithm. If the key is exposed then it is easier to change the key
instead of replacing the algorithm being used. Accordingly, it is good practice to
replace a new key after a certain period. Furthermore, it is much more practical to
share the same algorithm publicly between the communicating parties.

As suggested by Kerckhoffs’s principle, the details of any cryptographic algorithm
need to be public knowledge, which is the contrast to the concept of the ‘security by
obscurity’, except the secrecy for key (Katz and Lindell, 2008). In modern cryptog-
raphy philosophy, it is natural to assume that the adversary knows everything about
the algorithm. Therefore, the only information that needs to be kept secret is the key.

1.2 Asymmetric Encryption

In the classical system, the secret key is supposedly being shared between the sender
and the receiver in a symmetrical manner. In order to maintain the secrecy, the
key must be shared or distributed securely to both parties. However, the process
of exchanging secret keys is problematic when the number of users get larger since
more keys are needed to be delivered to various parties. To tackle this problem,
Diffie and Hellman (1976) has came up with the notion of asymmetric encryption.

Definition 1.2 (Asymmetric Encryption) (Diffie and Hellman, 1976). Let M de-
note the message space, C denote the ciphertext space, K denote the key space, m
denote the plaintext and c denote the ciphertext. Asymmetric encryption scheme is
defined as follows.

1. Key generation algorithm K is a probabilistic algorithm that will generate a
public key denoted as e ∈K and private key as d ∈K respectively.

2. Encryption algorithm E is a probabilistic algorithm that takes a message m ∈
M and the public key e, to produce a ciphertext c ∈ C as a function of c =
Ee(m).

3. Decryption algorithm D is a deterministic algorithm which is given the cipher-
text c and the private key d, will output m. That is m = Dd(c).

Basically, a cryptosystem that uses the same secret keys and shared by both; sender
and receiver, then it is called as symmetric cryptosystem. If a cryptosystem involves

2
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a private key and public key, then the cryptosystem is known as an asymmetric cryp-
tosystem or commonly referred to as public key cryptosystem.

Definition 1.3 (Proof of Correctness) (Diffie and Hellman, 1976). For each pairs
of key (e,d) ∈K output by the algorithm K, and for every message m ∈M and
ciphertext c ∈ C then

Dd(c) = Dd(Ee(m)) = m.

The proof of correctness, as defined by Definition 1.3, suggest that the decryption
is the reversal operation of encryption and should be proved to be correct to return
back the plaintext from its ciphertext.

Definition 1.4 (One-way Function) (Menezes et al., 1997). A one-way function is a
function that is easily applied in one direction, but very hard to calculate the inverse.

Let f : X −→ Y be an invertible function. For x ∈ X and y ∈ Y , then

1. it is easy to compute the value of y = f (x),
2. it is hard to compute the value of x = f−1(y).

Definition 1.5 (Trapdoor One-way Function) (Menezes et al., 1997). A trapdoor
one-way function is a piece of information that allows the inverse for the one-way
function to be easily computed (i.e. it is easy to compute the value of x = f−1(y) by
using trapdoor information).

The trapdoor information is a piece of auxiliary information that allows the inverse
to be easily computed (Hoffstein et al., 2008). For instance, the private key is said to
be the trapdoor information to the encryption function. Without the correct private
key, one will not be able to do decryption. On the contrary, decryption is an easy
task with correct private key.

The design of the encryption and decryption function in public key setting can be
realized using the concept of a one-way function and trapdoor one-way function,
respectively (Diffie and Hellman, 1976). It is a surprise to learn that despite years
of research, it is still not known whether one-way functions exist (Katz and Lindell,
2008). Since we cannot prove the existence of the one-way function, we always can
show that a problem is indeed hard corresponding to the concept of the one-way
function.
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Definition 1.6 (Cryptographic Hard Problem) (Menezes et al., 1997). A crypto-
graphic hard problem is defined as a concrete mathematical object which is easy to
compute in one direction, but very hard to invert.

Basically, a cryptographic hard problem is widely believed to be hard. Cryptograph-
ically speaking, the word hard from Definition 1.6 is referring to the difficulty level
for solving a certain mathematical problem, including with the help from the state
of the art technology. The terminology of cryptographic hard problem provides con-
fidence to the designing process of a cryptosystem, which the security measured is
dependent on how difficult its related hard problem could be. If the correct steps are
taken and the appropriate parameters are chosen, then to solve hard problems might
be infeasible, even via brute force. This is the main ingredient for designing and
constructing a public key cryptosystem.

Remark that from the Definition 1.6, it does not necessarily mean that no one has
figured out on how to do the inversion, but it is rather shown that there exist no ef-
ficient algorithm that runs in a reasonable time (i.e. in polynomial time) that can do
such operation (Katz and Lindell, 2008). Thus, if the efforts to solve a stated mathe-
matical problem exceeds a certain amount of time (i.e. in exponential time) then we
say that such mathematical problem is considered to be intractable, even using the
most powerful tools available. On the other hand, suppose the stated mathematical
problem can be solved below or within the range of a certain polynomial time, then
the cryptosystem that relies upon such problems are considered insecure (Galbraith,
2012).

Definition 1.7 (Prime and Composite) (Hoffstein et al., 2008). An integer p≥ 2 is
called a prime if the only positive integers dividing such number are 1 and p itself.
If an integer N > 1 and not a prime, then we say that such number is composite.
The integer 1 is neither prime nor composite. The first few primes are 2, 3, 5, 7, 11,
13,. . .

Theorem 1.1 (Fundamental Theorem of Arithmetic) (Kumanduri and Romero,
1998). Let N ≥ 2 be an integer. Then N can be factored as a product of prime
numbers

N = p
r1
1 p

r2
2 p

r3
3 . . . prs

s

where pi are distinct primes and integers ri ≥ 1 for i = 1,2, · · · ,s. Moreover,this
expression is unique, regardless of its ordering.

Example 1.1 N = 168 = 23 ·3 ·7
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To date, one of the most celebrated problem in mathematics, particularly in num-
ber theory is known as the integer factorization problem and exhibits properties of
a cryptographic hard problem. It is assumed to be very difficult to solve and is sup-
ported by decades of evidence for its hardness. In addition, it is widely believed that
the integer factorization problem is a suitable candidate for a one-way function.

Definition 1.8 (Integer Factorization Problem) (Hoffstein et al., 2008). Let N be
a positive integer. Then, the integer factorization problem (IFP) is defined as the
problem to find the prime factorization of N such that, N = p

r1
1 p

r2
2 p

r3
3 . . . prs

s where
pi are distinct primes and ri ≥ 1. For most cases in cryptography, the problem is to
find the prime factors p and q from N = pq.

1.3 RSA Cryptosystem

Prior to 1970’s, encryption and decryption was done symmetrically. This was the
practice until the advent of public key cryptosystem that was introduced by Diffie
and Hellman (1976). Yet, at that time the notion of asymmetric cryptosystem is
somehow not well realized by many people. In 1978, the RSA cryptosystem that
was introduced by Rivest, Shamir and Adlemen went public and it is regarded now
by the cryptographic community as the first practical realization of the public key
cryptosystem. The security of the RSA cryptosystem is based on the intractability
to solve the modular eth root problem coupled with the integer factorization problem
(IFP) of the form N = pq and the difficulty to solve key equation ed + φ(N)t = 1
where φ(N) = (p−1)(q−1) and d the inverse of e modulo φ(N).

Definition 1.9 (Modular eth Root Problem) (Menezes et al., 1997). Let N = pq
and odd integer e ≥ 3. Then the modular eth root problem is defined as to find the
integer m from c such that c≡ me (mod N).

Definition 1.10 (Euler’s φ Function) (Menezes et al., 1997). Let a complete
residue system modulo N is a set of elements {0,1, · · · ,N−1}. The number of in-
vertible elements in a complete residue system modulo N is denoted as φ(N) and is
called Euler’s φ Function.

Theorem 1.2 (Menezes et al., 1997). If N = p
r1
1 p

r2
2 p

r3
3 . . . prs

s is the prime factor-
ization of N, then

φ(N) =
s

∏
i=1

pri−1
i (pi−1)

Corollary 1.1 (Menezes et al., 1997). If N = pq, then

φ(N) = (p−1)(q−1)
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The RSA cryptosystem is defined as follows.

Algorithm 1.1 RSA Key Generation Algorithm

Input: The size k of the security parameter
Output: The public key (N,e) and the private key (N,d)

1: Choose two random and distinct primes p and q such that 2k < p,q < 2k+1

2: Compute N = pq and φ(N) = (p−1)(q−1)
3: Choose e such that 3≤ e < φ(N) and gcd(e,φ(N)) = 1
4: Compute d such that ed ≡ 1 (mod φ(N))
5: Return the public key (N,e) and the private key (N,d)

Algorithm 1.2 RSA Encryption Algorithm

Input: The plaintext m and the public key (N,e)
Output: A ciphertext c

1: Choose integer 0 < m < N such that gcd(m,N) = 1
2: Compute c≡ me (mod N).
3: Return the ciphertext c

Algorithm 1.3 RSA Decryption Algorithm

Input: A ciphertext c and the private key (N,d)
Output: The plaintext m

1: Compute m≡ cd (mod N)
2: Return the plaintext m

1.3.1 Proof of Correctness for RSA Decryption

Proposition 1.1 (Rivest et al., 1978). Let N = pq and φ(N) = (p− 1)(q− 1). For
every integer m such that gcd(m,N) = 1, then mφ(N) ≡ 1 (mod N).

Proposition 1.2 (Rivest et al., 1978). Let (N,e) and (N,d) be the public and pri-
vate key for the RSA cryptosystem, respectively. Suppose 0 < m < N such that
gcd(m,N) = 1 and c≡ me (mod N). Then m≡ cd (mod N).

Proof:
Let N = pq ,φ(N) = (p−1)(q−1) and ed ≡ 1 (mod φ(N)) be the RSA parameters.
Thus there exist an integer t such that ed = 1+ tφ(N). Hence we have

cd ≡ (me)d

≡ med

≡ m1+tφ(N)

≡ m ·mtφ(N) (mod N)
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From the Proposition 1.1 it follows that m ·mtφ(N) ≡m (mod N). Since m < N, then
we have cd ≡ m (mod N). �

1.4 Rabin Cryptosystem

One year after the invention of the RSA cryptosystem, Rabin (1979) introduced an-
other cryptosystem based on the intractability to solve the square root modulo prob-
lem of a composite integer. In fact, this cryptosystem is the first public key cryp-
tosystem of its kind that was proved equivalent to factoring N = pq.

Definition 1.11 (Modular Square Root Problem) (Menezes et al., 1997). The
modulo square root problem is defined as to find the integer m from c such that
c≡ m2 (mod N), where N = pq.

The Rabin cryptosystem is defined as follows.

Algorithm 1.4 Rabin Key Generation Algorithm

Input: The size k of the security parameter
Output: The public key N and the private key (p,q)

1: Choose two random and distinct primes p and q such that 2k < p,q < 2k+1

satisfy p,q≡ 3 (mod 4)
2: Compute N = pq
3: Compute two integers r,s such that rp+ sq = 1
4: Return the public key N and the private key (p,q)

Algorithm 1.5 Rabin Encryption Algorithm

Input: The plaintext m and the public key N
Output: A ciphertext c

1: Choose integer 0 < m < N such that gcd(m,N) = 1
2: Compute c≡ m2 (mod N).
3: Return the ciphertext c.

At the first glance, we might consider the Rabin cryptosystem as an RSA variant with
the use of the public exponent e = 2 apart from the RSA with public exponent e≥ 3.
Interestingly, this claim is not necessarily true since by definition, the value of public
key e for the RSA requires gcd(e,φ(N)) = 1 where φ(N) = (p− 1)(q− 1), yet in
the case of Rabin cryptosystem is gcd(e = 2,φ(N)) 6= 1. In addition, the role of the
public exponent e = 2 of the Rabin encryption gives a computational advantage over
the RSA (Williams, 1980).
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Algorithm 1.6 Rabin Decryption Algorithm

Input: A ciphertext c and the private key (p,q)
Output: The plaintext m

1: Compute mp ≡ c
p+1

4 (mod p)

2: Compute mq ≡ c
q+1

4 (mod q)
3: Compute m1 ≡ rpmq + sqmp (mod N)
4: Compute m2 ≡ rpmq− sqmp (mod N)
5: Compute m3 ≡−m2 (mod N)
6: Compute m4 ≡−m1 (mod N)
7: Return the correct plaintext m amongst the four possible candidates

1.4.1 Proof of Correctness for Rabin Decryption

Definition 1.12 (Quadratic Residue) (Menezes et al., 1997). Let p be an odd prime
number. An element c ∈ Zp is said to be a quadratic residue modulo p (i.e. has
square roots modulo p) if and only if there exists some m ∈ Zp such that c ≡ m2

(mod p). Otherwise, c is said to be a quadratic nonresidue modulo p.

Theorem 1.3 (Euler’s Criterion) (Kumanduri and Romero, 1998). If p be an odd
prime number and c is an integer coprime to p, then c is a quadratic residue modulo

p if and only if c
p−1

2 ≡ 1 (mod p).

Theorem 1.4 (Chinese Remainder Theorem) (Hoffstein et al., 2008). Suppose
that n1,n2, . . . ,nr are pairwise relatively prime positive integers, and let a1,a2, . . . ,ar
be integers. Then the systems of congruences, x ≡ ai (mod ni) for 1 ≤ i ≤ r has a
unique solution modulo N = n1n2 . . .nr, which is given by

x≡
r

∑
i=1

aiNiyi (mod N)

where Ni =
N
ni

and yi ≡ N−1
i (mod ni) for 1≤ i≤ r.

Corollary 1.2 (Hoffstein et al., 2008). Suppose we have a system of congruences
x ≡ ai (mod ni) for i = 1,2, then the solution x to such simultaneous congruences
can be written as

x≡ a1N1y1 +a2N2y2 (mod N)

where N = n1n2 and y1,y2 such that N1y1 +N2y2 = 1.

Proposition 1.3 (Rabin, 1979). Let N = pq with p,q ≡ 3 (mod 4) be the public
and private key for the Rabin cryptosystem, respectively. Suppose 0 < m < N such
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that gcd(m,N) = 1 and c≡ m2 (mod N). Then mi for i = 1,2,3,4 are the solutions
generated from Rabin’s decryption procedure.

Proof:
Firstly, we compute mp = c

p+1
4 (mod p) and mq = c

q+1
4 (mod q). By Theorem

1.3, c is a square root modulo p if and only if c
p−1

2 ≡ 1 (mod p) and is a square

root modulo q if and only if c
q−1

2 ≡ 1 (mod q). Hence

±m2
p ≡

(
±c

p+1
4

)2

≡ c
p+1

2

≡ c · c
p−1

2

≡ c (mod p).

Thus, ±mp are the two square roots of c (mod p), and in analogous manner, ±mq
are the two square roots of c (mod q). Then using integers r,s such that rp+ sq = 1,
we combine the congruence ±mp and ±mq using Corollary 1.2 as follows.

m1 ≡ rpmq + sqmp (mod N)

m2 ≡ rpmq− sqmp (mod N)

m3 ≡ −rpmq + sqmp (mod N)≡−m2 (mod N)

m4 ≡ −rpmq− sqmp (mod N)≡−m1 (mod N)

Finally, if return the value mi for i = 1,2,3,4. Remark that, currently at the moment,
there are no convincing method on how to choose the correct plaintext m amongst
the four possible candidates without any probabilistic error. �

1.5 Comparison of RSA and Rabin Cryptosystem

The efficiency of the Rabin cryptosystem is at least as good as the RSA. For Rabin
cryptosystem, the encryption is computed by performing a single squaring modulo
N. This is far more efficient by comparison to the RSA encryption, which requires
the calculation of at least a cubic modulo N (Menezes et al., 1997).

Based on some recent results, the public exponent for RSA must be sufficiently large.
Values such as e = 3 (the smallest possible encryption exponent for RSA) and e = 17
can no longer be recommended, but commonly used values such as e = 216 + 1 =
65537 still serve to be fine, thus Rabin has some advantage regarding to this matter
(Lenstra and Verheul, 2001).

On the other hand, the Rabin decryption algorithm breaks up into two parts. The first
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part is the calculation of two modular exponentiations, and the latter part is about the
computation using Chinese Remainder Theorem (CRT). Hence, the efficiency of the
Rabin decryption is comparable to the decryption of RSA.

The Rabin encryption function is in the form c≡ m2 (mod N), where N = pq such
that p,q are primes congruence 3 (mod 4). This modular square roots problem is
considered to be as hard as the IFP. In other words, it is mathematically proven that a
random plaintext can be recovered completely from the ciphertext, if and only if the
adversary is able to efficiently factoring the public key N = pq. See Lemma 1.2.

On the contrary, the RSA encryption in the form c = me (mod N) might be easier
than factoring problem. This is the case because the equivalent of RSA encryption
function vis-a-vis factoring is not yet proven (Boneh, 1999). Therefore, the process
of finding the eth root is might be possible without initially the need to factor N = pq.
The security of the RSA encryption scheme is merely based on the strong assumption
that the modular eth root problem is a one-way function. Up to this very moment, the
publicly known methods to find the eth root is only with a machine that is capable to
efficiently factor the RSA modulus N = pq.

Definition 1.13 (Computational Reduction) (Galbraith, 2012). Let A and B be
two different cryptographic hard problems. We say that a problem A is reducible
to a problem B if by any mean we able to show that for an algorithm that solves
problem B then such algorithm also solves the problem A .

Definition 1.14 (Computational Equivalent) (Galbraith, 2012). Let A and B be
two different cryptographic hard problems. A problem A is said to be equivalent to
problem B if and only if the problem A is reducible to problem B and vice-versa.

For instance, suppose we have the integer factorization problem (IFP), the modular
eth root problem (also known as RSA-problem) and the modular square root prob-
lem. Thus, we have the following lemmas.

Lemma 1.1 (Galbraith, 2012). The modular eth root problem is reducible to factor-
ing the modulus N = pq.

Lemma 1.1 simply says that suppose we are given a randomly generated RSA param-
eters. Assume there exists an efficient algorithm with the ability to factor N = pq.
Hence the modular eth root problem is solved as easily as the RSA decryption pro-
cedure itself since we already obtain the secret primes p and q.

The converse of the above statement is still left unproven to be true (Boneh, 1999).
Thus the question such that is factoring the modulus N = pq reducible to solving the
modular eth root problem remains open unanswered until today. As a consequence,
we cannot simply say that the modular eth root problem is equivalent to factoring the
modulus N = pq.
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Lemma 1.2 (Galbraith, 2012). The modular square root problem is equivalent to
factoring the modulus N = pq.

This lemma is similar to saying that the modular square root problem is reducible
to factoring the modulus N = pq and the converse of such assertion is also true.
Suppose we are given a modular square root problem with a modulus of N = pq.
The first statement means that if there exists an algorithm that is capable of factoring
N = pq then such algorithm also can be used to solve the given modular square root
problem.

Conversely, suppose there exists an algorithm that is capable to solve a modular
square root problem (i.e. successfully obtains all the four distinct roots). Hence, if
we add any two such roots, out of four, then we have at least an integer such that is a
multiple of either p or q. Proceed by computing the greatest common divisor of that
integer with the modulus N = pq will output one of its prime factors. The significant
of Lemma 1.2 leads to the following theorem.

Theorem 1.5 (Galbraith, 2012). Breaking the Rabin cryptosystem is equivalent to
factoring the modulus N = pq.

From Theorem 1.5, on one side it shows that the Rabin cryptosystem gives confi-
dence for its security, of which breaking the Rabin cryptosystem is as difficult as
factoring. On the other side, this equivalence relationship makes the Rabin cryp-
tosystem vulnerable to a realistic attack, namely chosen ciphertext attack (Koblitz
and Menezes, 2007). In addition, any cryptosystem that has the property of its secu-
rity is equivalent to factoring are only of theoretical significance yet not very prac-
ticable as of its vulnerability in real attack situation (i.e. chosen ciphertext attack)
(Müller and Müller, 1998). The Rabin cryptosystem was prevented for practical use,
simply because of these shortcomings.

1.6 Problem Statement

The Rabin encryption scheme is one of an existing workable asymmetric cryptosys-
tem that comes with nice cryptographic properties. For instance, it has low-cost en-
cryption of which the Rabin encryption is relatively fast to encrypt compared to the
widely commercialized RSA cryptosystem, and it has been proven to be as difficult
as the integer factorization problem. On the other hand, the decryption of Rabin’s
scheme produces four possible answers, which only one is correct. This four-to-one
decryption setting of the Rabin decryption could lead to a decryption failure scenario
since no indicator for selecting the correct plaintext is given.

Theoretically speaking, it is such a waste to abandon a cryptosystem that possesses
nice features such as the Rabin cryptosystem. Hence attempts were made by nu-
merous researchers (see Section 2.4 of this thesis) with the objective to turn the
Rabin cryptosystem to be as practical and implementable as the RSA cryptosystem.
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Broadly speaking, all the previous attempts made seem to employ one or more ad-
ditional features in order to obtain a unique decryption result, but at the same time
may have a small probability for decryption failure. One of the ways to accomplish
this is through manipulation of some mathematical objects such as the role of the
Jacobi symbol or the Dedekind’s sums theorem. Also, it can be done by designing
an encryption function with a special message structure. Yet, at the same time all the
designs lose the computational advantage of the original Rabin’s encryption over the
RSA cryptosystem.

In order to engage this problem and to overcome all the shortcomings, further theo-
retical analysis and mathematical proves are needed to refine that existing work.

1.7 Research Objectives and Methodology

In this section, we put forward the research objectives and explanations of the method
used towards achieving the stated objectives as follows.

1. To cryptanalysis the modulus N = p2q.

Objective: The modulus of the form N = p2q is frequently used in cryptogra-
phy, especially for designing asymmetric cryptosystems. We aim to refine the
Rabin cryptosystem and its variations utilizing the modulus N = p2q. On the
other hand, several methods have been produced to cryptanalysis the modulus
N = p2q. Hence, it is indeed very important to consider the degree of security
of such modulus.

Methodology: In this study, the method to find a good approximation to φ(N)
and the manipulation of generalized key equations was explored to review the
difficulty level for factoring the modulus N = p2q. Note that the theory of
continued fractions is one of the primary methods employed in the field of
mathematical cryptanalysis (Nitaj, 2013). We determined that the best method
to take up for this investigation is the Legendre’s theorem of the continued
fraction.

2. To refine the Rabin cryptosystem and its existing variants.

Objective: This work can be considered as another look at the design of the
Rabin cryptosystem, from a different perspective. Our target is to refine the
Rabin encryption scheme in order to overcome all the previous drawbacks of
its original design and also its variants. We revisit the Rabin cryptosystem and
then aspire to furnish a new design aiming for efficient, secure and practical
Rabin-like cryptosystem.

Methodology: In an attempt to refine the original Rabin cryptosystem and its
variants, numerous published studies is identified. We then critically reviews
all the related previous works to outline all the advantages and drawbacks. In
our design, we use the modulus N = p2q and we restrict the plaintext to be
less than p2. Hence, to decrypt correctly, it suffices to apply an efficient algo-
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rithm that solves the square root of quadratic congruence modulo p2 instead
of modulo N = p2q.

3. To reproduce a new cryptographic hard problem.

Objective: Motivated by the work of Herrmann and May (2008), we focus
on the study of a particular case of a linear Diophantine equation in only two
variables, which discusses the inability to retrieve variables from a given linear
Diophantine equation.

Methodology: An observation made on the work by Herrmann and May
(2008) gave rise an intuition for a potentially new cryptographic hard prob-
lem that uses a simple mathematical structure. The methodology is to study
and analyze deeper on linear Diophantine equations in two variables of a par-
ticular setting.

4. To design a more efficient implementation of the AAβ cryptosystem.

Objective: The AAβ cryptosystem that was proposed by Ariffin (2012) is re-
designed according to the newly refine Rabin-like cryptosystem (i.e. the result
from the second objective) combines with the mathematical structure of the
newly proposed hard problem (i.e. the result from the third objective).

Methodology: We would start out to achieve our intention by observing the
relationship between the Rabin encryption function over the integers and the
security notion of the newly proposed cryptographic hard problem. We then
propose to design a more efficient implementation of the AAβ cryptosystem as
mentioned in Ariffin (2012), that manifests such relationship integrated with
the new cryptographic hard problem concept, with a few modifications made
on the public and private key size.

5. To give a comparative analysis on the designated Rabin-like cryptosystems.

Objective: We would carry out a comparative analysis toward estimating the
running time during encryption and decryption processes upon several Rabin-
like cryptosystems. We then provide analysis by evaluating the memory cost
for system parameters and accumulators during each operation, respectively.

Methodology: For comparative analysis, besides the designated Rabin-like
cryptosystems, we also included other Rabin-like cryptosystems such that uti-
lize the modulus type of N = p2q, does not use the Jacobi symbol, and does not
apply any padding method. For comparative purpose, we adopt the method-
ology presented in Menezes et al. (1997) to estimate the algorithm running
times for each cryptosystem in consideration and the methodology presented
in Vuillaume (2003) to evaluate their memory cost for system parameters and
accumulators, respectively.

6. To provides elements of provable security.

Objective: We would present provable security elements for the designated
Rabin-like cryptosystems. The emphasis is given to the standard security goal
and the strongest attack model, namely the indistinguishability and the chosen-
ciphertext attack, respectively.
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Methodology: In this work, we applied the random oracle model to achieve
the provable security elements of the designated Rabin-like cryptosystems.
For careful analysis, the proof methodology introduced by Cramer and Shoup
(2003) and Katz and Lindell (2008) was applied, which is viewed as such a
game played between a cryptosystem and an adversary that try to break such
cryptosystem.

1.8 Thesis Outline

This thesis is organized as follows.

In Chapter 1, we present an introduction that guide readers to the motivation of
this research. We then encapsulate all the introductory materials into the problem
statement. We also highlight the objectives of this research.

Chapter 2 provides mathematical backgrounds such as the linear Diophantine equa-
tion, Garner’s algorithm, continued fractions, and basic description of the lattice and
the LLL algorithm. Later on, we review some materials related to the cryptanalysis
method for factoring that will be used throughout this thesis. In addition, we provide
a survey of Rabin variants.

The work presented in this thesis focuses on using the modulus N = p2q as a method
to refine the Rabin cryptosystem, which will be used in almost all new discoveries
in this thesis. In Chapter 3, we investigate the level of security and the difficulty of
factoring the modulus N = p2q.

In Chapter 4, we provide a list of drawbacks of previous strategies that need to be
avoided for practically implementing the Rabin encryption scheme. In this chapter,
we also prove some useful lemmas and then highlight the methodology of the re-
search performed. Afterwards, we present our Rabin-like cryptosystem, namely the
Rabin-p cryptosystem. This is followed by rigorous analysis and discussion on the
security related to the proposed scheme.

Chapter 5 reproduces a new cryptographic hard problem based on a special instance
of a linear Diophantine equation in two variables as mentioned in Ariffin (2012),
namely the Bivariate Function Hard Problem. Provided with carefully selected pa-
rameters that satisfying the given conditions, we show that the newly introduced
cryptographic hard problem is suitable for developing practical cryptographic con-
structions.

Chapter 6 discusses the relations between the encryption function of the Rabin-p
cryptosystem over the integer, coupled with the security notion of the Bivariate Func-
tion Hard Problem. Henceforth, we put forward a new and more efficient design of
a public key encryption scheme addressed as the AAβ cryptosystem as mentioned in
Ariffin (2012). Rigorous mathematical analyses of the design of AAβ cryptosystem
are provided in this chapter. Eventually, three other variants of the AAβ cryptosystem
will be presented.
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In Chapter 7, we conduct a comparative study of the proposed Rabin-like cryptosys-
tems and the other Rabin variants that uses a modulus of type N = p2q and without
using the Jacobi symbol and any padding method in their strategy. In this chapter, we
look into the running time estimation for each scheme using the single-precision mul-
tiplication measurement. We then evaluate the memory cost for system parameters
and accumulators of the encryption and the decryption process for every respective
Rabin-like cryptosystems that are chosen in our comparative study.

In Chapter 8, we design two efficient and provably secure cryptosystems. The first
design is a hybrid cryptosystem; combining the Rabin-p cryptosystem with an appro-
priate symmetric encryption scheme. This proposed hybrid construction is proven to
be resilient to the stronger attack, namely the chosen ciphertext attack. In the second
design, we set a randomized setting to the AAβ cryptosystem from its determinis-
tic form that is preceded earlier in Chapter 6. This randomized AAβ cryptosystem
is also shown to be secure against chosen ciphertext attack. Both provably secure
cryptosystem in this chapter is projected in the random oracle model.

Finally, we conclusively summarize all the contributions made out in this thesis in
Chapter 9, along with some potential future works.
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Cesáro, E. (1881). Question proposeé 75. Mathesis, 1(184).
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