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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of Doctor of Philosophy 

 
SIMILARITY SOLUTIONS FOR MATHEMATICAL MODELLING OF 

BOUNDARY LAYER FLOW AND HEAT TRANSFER IN VISCOUS FLUIDS 
AND NANOFLUID  

 
By 

 
 

NOR AZIAN AINI BINTI MAT 
 
 

May 2015 
 
 

Chair: Norihan Md. Arifin, PhD 
 
Faculty: Institute for Mathematical Research 
 
In this thesis, similarity solutions of boundary layer flow and heat transfer in viscous 
fluid and nanofluid are considered. The objectives of the thesis are to mathematically 
model heat and mass transfer problems and to obtain the numerical results of each 
problem. The scope of this study is restricted to two-dimensional, steady, 
incompressible, laminar boundary layer flows in viscous fluid or nanofluid. Two 
problems are considered in viscous fluid and three problems are considered in 
nanofluid which related to the Marangoni boundary layer flow, boundary layer 
stagnation point flow and boundary layer flow with the effect of radiation and 
stretching/shrinking sheet or cylinder. The radiation effects have important applications 
in physics and engineering particularly in space technology and high temperature 
processes. On the other hand, slip flow and permeable surface have also been 
considered. The governing nonlinear partial differential equations are transformed into 
a system of nonlinear ordinary differential equations using similarity transformation 
which is then solved numerically using a shooting function in Maple software to get the 
similarity solutions. Results and discussion which comprise the analysis of skin 
friction, temperature gradient, velocity and temperature profiles for some values of the 
governing parameters are presented in tabular and graphical form. In order to validate 
the numerical results obtained in this thesis, comparisons with known results from the 
previous literature have been made and show very good agreements. All the governing 
parameters influence the flow and heat transfer characteristics. For example, the heat 
transfer rate at the surface decreases as the radiation parameter increases. Besides, it 
was also shown that the imposition of suction was to decrease the heat transfer rate at 
the surface whereas injection showed the opposite effects. Furthermore, dual solutions 
exist for a certain range of the governing parameters and nanofluid can increase the 
heat transfer rate. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

 
PENYELESAIAN KESERUPAAN UNTUK PEMODELAN MATEMATIK BAGI 

ALIRAN LAPISAN SEMPADAN DAN PEMINDAHAN HABA DALAM 
BENDALIR LIKAT DAN NANOBENDALIR 

 
Oleh 

 
 

NOR AZIAN AINI BINTI MAT 
 
 

Mei 2015  
 
 

Pengerusi: Norihan Md. Arifin, PhD 
 
Fakulti: Institut Penyelidikan Matematik 

 
Di dalam tesis ini, penyelesaian keserupaan bagi aliran lapisan sempadan dan 
pemindahan haba dipertimbangkan dalam bendalir likat dan nanobendalir. Objektif 
tesis adalah untuk memodelkan secara matematik bagi masalah pemindahan haba dan 
jisim serta untuk mendapatkan penyelesaian berangka bagi setiap masalah. Skop kajian 
berkisar pada dua dimensi, tetap, tak termampat, aliran lapisan sempadan berlamina 
dalam bendalir likat atau nanobendalir. Dua masalah dipertimbangkan dalam bendalir 
likat dan tiga masalah dipertimbangkan dalam nanobendalir yang berkaitan dengan 
aliran lapisan sempadan Marangoni, lapisan sempadan aliran titik genangan dan aliran 
lapisan sempadan bebas dengan kesan radiasi dan permukaan serta silinder 
meregang/mengecut. Kesan radiasi mempunyai kegunaan dalam fizik dan kejuruteraan 
terutamanya dalam teknologi angkasa dan proses suhu tinggi. Di samping itu, aliran 
gelincir dan permukaan telap juga dipertimbangkan. Persamaaan terbitan separa tak 
linear dijelmakan kepada sistem persamaan terbitan biasa tak linear menggunakan 
penjelmaan keserupaan yang seterusnya diselesaikan secara berangka dengan 
menggunakan kaedah tembakan dalam perisian Maple untuk mendapatkan 
penyelesaian keserupaan. Keputusan dan perbincangan yang terbina oleh analisis 
pekali geseran kulit, nombor Nusselt setempat yang mewakili kadar pemindahan haba 
pada permukaan, profil halaju dan suhu untuk beberapa nilai parameter 
dipersembahkan dalam bentuk jadual dan graf. Perbandingan dengan keputusan kajian 
lepas telah dibuat untuk mengesahkan keputusan berangka yang diperolehi di dalam 
tesis dan menunjukkan perbandingan adalah sangat baik. Kesemua parameter 
menakluk mempengaruhi sifat aliran dan pemindahan haba. Contohnya, kadar 
pemindahan haba pada permukaan menyusut apabila parameter radiasi meningkat. Di 
samping itu, turut ditunjukkan bahawa kesan sedutan menyusutkan kadar pemindahan 
haba pada permukaan, manakala semburan bertindak sebaliknya. Tambahan lagi, 
penyelesaian dual wujud bagi julat parameter yang tertentu dan nanobendalir 
meningkatkan kadar pemindahan haba. 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 

1.1 Convection 
 
 

Convection is heat transfer by the movement of molecules within fluids such as air or 
water when heated fluid is caused to move away from the source of heat, carrying 
energy with it. Convection above a hot surface occurs because hot fluid expands, 
becomes less dense, and rises. Convection are generally described as one of either 
natural or forced, although other mechanism also exist. In natural or free convection, 
the fluid motion occurs by natural means such as buoyancy. Since the buoyancy force 
is proportional to the density difference, the larger the temperature difference between 
the fluid and the body, the larger the buoyancy force will be. At heating the density 
change in the boundary layer will cause the fluid to rise and be replaced by cooler fluid 
that also will heat and rise.  

Forced convection occurs when a fluid flow is induced by an external force where the 
fluid has a nonzero streaming motion in the far field away from the body surface, 
caused perhaps by a pump or fan or other driving force independent of the presence of 
the body. Forced convection also occurs as a product to other processes, such as the 
action of a propeller in a fluid or aerodynamic heating and also it is often encountered 
by engineers designing or analysing pipe flow, flow over a plate, heat exchanger and so 
on. 

Convection can also be induced by surface-tension forces provided it is a function of 
temperature called Marangoni convection. Surface tension can exchange because of 
inhomogeneous composition of the substances, and/or the temperature-dependence of 
surface tension forces. Marangoni convection is usually undesirable in material 
processing applications, the crystal growth melts and other processes (such as welding, 
balance the soap films and drying silicon wafers) with liquid-liquid or liquid-gas 
interfaces.  
 
 
1.2 Boundary Layer 
 
 
A boundary layer is a layer of fluid in the immediate region of a bounding surface. This 
thin layer has the velocity of the fluid that increases from zero at the wall (no slip) to its 
full value which corresponds to external frictionless flow, and the concept is due to 
Prandtl in 1904 (Schlichting, 1979). Figure 1.1 represents diagrammatically the 
velocity distribution in such a boundary layer at the plate, with the dimensions across it 
considerably exaggerated. In front of the leading edge of the plate the velocity 
distribution is uniform. With increasing distance from the leading edge in the 
downstream direction the thickness, δ, of the retarded layer increases continuously, as 
increasing quantities of fluid become affected.  Evidently the thickness of the boundary  

http://hyperphysics.phy-astr.gsu.edu/hbase/dens.html
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Figure 1.1. Boundary layer on a flat plate in parallel flow at zero incidence 
(Schlichting, 1979) 
 
 
layer decreases with decreasing viscosity. Even with very small viscosities (large 
Reynolds numbers) the frictional shearing stresses τ = μ∂u/∂y in the boundary layer are 
considerable because of the large velocity gradient across the flow, whereas outside the 
boundary layer they are very small. 
 
This physical picture suggests that the field of flow in the case of fluids of small 
viscosity can be divided, for the purpose of mathematical analysis, into two regions: the 
thin boundary layer near the wall, in which friction must be taken into account, and the 
region outside the boundary layer, where the forces due to friction are small and may 
be neglected, and where, therefore, the perfect-fluid theory offers a very good 
approximation. Such a division of the field of flow, brings about a considerable 
simplification of the mathematical theory of the motion of fluids of low viscosity. In 
fact, the theoretical study of such motions was only made possible by Prandtl when he 
introduced this concept (Schlichting, 1979). 
 
 
1.3 Boundary Layer Stagnation Point Flow 
 
 
A stagnation point is a point in a fluid flow where the flow has come to rest (speed is 
equal to zero adjacent to some solid body immersed in the fluid flow). Stagnation-point 
flow describing the fluid motion near the stagnation region of a circular body, exist for 
both the cases of a fixed or moving body in a fluid (Nandy and Mahapatra, 2013). 
Figure 1.2 is the simple example of this type of flow, is that leading to a stagnation 
point in plane that is two-dimensional flow. The velocity distribution in frictionless 
potential flow in the neighbourhood of the stagnation point at x = y = 0 is given by U = 
ax and V = −ay where a denotes a constant. The figure below is an example of a plane 
potential flow which arrives from the y-axis and impinges on a flat wall place at y = 0, 
divides into two streams on the wall and leaves in both directions. The viscous flow 
must adhere to the wall, whereas the potential flow slides along it (Schlichting, 1979). 
 
The stagnation region encounters the highest pressure, the highest rate of heat transfer 
and the highest rate of mass decomposition (Nandy and Mahapatra, 2013). The forced 
convection flow at a stagnation point (region) is a classical problem and it has been  
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Figure 1.2. Stagnation in plane flow (Schlichting, 1979) 
 
 
studied by many authors (Lok and Pop, 2011). In recent years, considerable amount of 
interest has been given to the stagnation point flows of viscous fluids because of their 
great importance in both theoretical and practical point of views. From the theoretical 
point of view, such kind of flow is fundamental in fluid mechanics and forced 
convective heat transfer. From the practical point of view, these flows have 
applications in forced convection cooling processes where a coolant is impinged on 
continuously moving surfaces. 
 
 
1.4 Viscous Fluid 
 
 
The word of viscous came from the Latin word, ‘viscum’ which means glue. Viscous 
fluid has an ability to cling at the solid’s surface. This is one of the most important 
boundary condition, that is in mechanic of viscous fluid. Fluid friction was invented for 
the first time by Mariotte, 1620-1684 (Darus, 1989). It had been realized even before 
Prandtl that the discrepancies between the results of classical hydrodynamics and 
experiment were, in very many cases, due to the fact that the theory neglected fluid 
friction (Schlichting, 1979). 
 
A Newtonian fluid is a viscous fluid for which the shear stress is proportional to the 
velocity gradient (i.e. to the time-rate of strain), τ = μ∂u/∂y; τ is the shear stress, μ is the 
constant dynamic or absolute viscosity of the fluid and ∂u/∂y is the velocity gradient 
perpendicular to the direction of shear. While a kinematic viscosity is ν = μ/ρ. For a 
non-Newtonian fluid, the viscosity changes with the applied strain rate (velocity 
gradient). As a result, non-Newtonian fluids may not have a well-defined viscosity. The 
Reynolds number is a dimensionless parameter defined as Re = UL/ν where U denotes 
a typical flow speed, L is a characteristic length scale of the flow and ν is the kinematic 
viscosity of the fluid. The Reynolds number gives a rough indication of the relative 

stagnation point 
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amplitudes of two key terms in the equations of motion. For the high Reynolds number 
flow, Re>>1, means a motion of a fluid of small viscosity. So the viscous effects can be 
on the whole negligible. While for the low Reynolds number flow, Re<<1 means a very 
viscous flow. 
 
 
1.5 Nanofluid 
 
 
Nanofluids is a fluid by dispersing solid nanoparticles in base fluid such as water and 
oil. Nanofluids are used to increase thermal conductivity, which goes up with 
increasing volumetric fraction of nanoparticles and it is concept to describe a fluid in 
which  nanometer-sized particles are suspended in conventional heat transfer basic 
fluids. The nanofluid concept which was firstly introduced by Choi and Eastman 
(1995), have remarkable properties that make them have many practical applications in 
heat transfer, including microelectronics, fuel cells, pharmaceutical processes, and 
hybrid-powered engines. There have been published several recent papers in 
nanofluids. 
 
Convectional heat transfer fluids, including oil, water, and ethylene glycol mixture are 
poor heat transfer fluids, since the thermal conductivity of these fluids plays an 
important role in determining the coefficient of heat transfer between the heat transfer 
medium and the heat transfer surface. Therefore, numerous methods have been used to 
improve the thermal conductivity of these fluids by suspending nanometer/micrometer-
sized particle materials in liquids (Hamad et al., 2011). There are two models used by 
researchers; Tiwari and Das model and  Buongiorno model. Buongiorno model used 
for nanofluid incorporated the effets of Brownian motion and thermophoresis and this 
model depended on seven slip mechanisms: inertia, Brownian diffusion, 
thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, and gravity settling. 
Buongiorno (2006) proceeded to write down conservation equations based on these two 
effects (Kuznetsov and Nield, 2010). His analysis however did not consider the 
influence of local velocity on the diffusion coefficients. Tiwari and Das (2007) have 
proposed a theoretical model to analyze the behaviour of nanofluids considering the 
solid volume fraction. It is found that both the Richardson number and the direction of 
the moving walls affect the fluid flow and heat transfer in the cavity. 
 
 
1.6 Objectives and Scope 
 
 
The objectives of the thesis are to model, analyse and to obtain the numerical results of 
the following five problems: 
 

1. Marangoni boundary layer flows due to an imposed temperature gradient with 
radiation where it can be formed along the interface of two immiscible fluids 
when the wall is permeable, where there is suction or injection effect is 
considered.  

2. Marangoni boundary layer flow in nanofluids with thermal radiation where the 
nanofluids were made by dispersion of Cu, Al2O3, and TiO2 in a water-based 
fluid. 
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3. Similarity solutions for the stagnation point flow and heat transfer over a 
nonlinear stretching/shrinking sheet in a nanofluid with various constant 
exponent m. 

4. The steady boundary layer stagnation-point flow and heat transfer towards a 
shrinking/stretching cylinder in the presence of velocity and thermal slips over 
a permeable surface. 

5. Forced convection boundary layer flow of nanofluid past a stretching surface 
due to presence of heat generation with effects of velocity and thermal slips 
condition. 

 
The scope of this study is restricted to two-dimensional, steady incompressible laminar 
boundary layer flows in viscous fluids or nanofluid, with the effect of radiation or with 
the effect of stretching or shrinking. Problem 1 and 4 are related with viscous fluid. 
Problem 2, 3 and 5 are related with nanofluids where Problem 2 and 3 are using model 
of Tiwari and Das (2007) while Problem 5 is using model of Buongiorno (2006). 
 
 
1.7 Outline of the Thesis 
 
 
This thesis is comprised of nine chapters. In Chapter 1, a brief introduction of 
convection and the types of fluids have been deliberated. Meanwhile, objectives, scope 
and the thesis outline which gives the overview of thesis have been highlighted in this 
chapter.  
 
The literature reviews are discussed in Chapter 2 which related to the problems of 
studies that are Marangoni boundary layer flow, boundary layer stagnation point flow 
and forced convection boundary layer flow. Summary from books and journals have 
also been discussed. 
 
In Chapter 3, the derivation of mathematical formulation and numerical method are 
given. The similarity transformation is used to transformed the nonlinear governing 
equations into similarity equations are then solved numerically using shooting method. 
 
In each of Chapter 4 to Chapter 8, the chapter is divided into four main sections and 
each chapter started with the introduction. Then, followed by the mathematical 
formulation of the problem and the method of solution are given in second section. 
Numerical results and discussion which comprise the analysis of shear stress or skin 
friction, temperature gradient, velocity and temperature profiles are presented in the 
third section and finally followed by the conclusions.  
 
In Chapter 4, we study the first problem in viscous fluid i.e. Marangoni boundary layer 
flow over a permeable surface in the presence of radiation, while in Chapter 5, we 
consider the above problem in nanofluid. Then, we investigated the similarity solutions 
for the stagnation point flow and heat transfer over a nonlinear stretching/shrinking 
sheet in a nanofluid, in Chapter 6. In Chapter 7, we consider the permeable surface 
effect on boundary layer stagnation point flow and heat transfer over a 
shrinking/stretching cylinder with slip and finally in Chapter 8, we investigated the 
forced convection slip flow and heat transfer of nanofluids past stretching sheet with 
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heat generation. The summary of the whole thesis, conclusion and future study this 
research and also some future research are presented in Chapter 9. 
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