

UNIVERSITI PUTRA MALAYSIA

TEST MODELS FOR SOFTWARE TESTING

MASNITA AB. GHANI.

FSKTM 2005 14

TEST MODELS FOR SOFTWARE TESTING

BY

MASNITA AB. GHANI

Thesis Submitted in Fulfillment of the Requirement for the Degree of Master of

Science in Faculty of Computer Science and Information Technology

University Putra Malaysia

May, 2005
© C

OPYRIG
HT U

PM

Test Models for Software Testing

BY

Masnita Ab. Ghani

GS 12594

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

May, 2005

© C
OPYRIG

HT U
PM

PERPUSTAKAAN SULTAN AWUL S W
UNIVERWI PUTRA MALAYSIA

ABSTRACT

This study is to analyze the test models that are used in there company referred

as Company A, B and C. This three company located in Klang Valley and each

of them has a different background of business. The objective of this study is to

identi@ the test models that are used by company handling software testing

activities steps; features are analyzed from the three test models. A refinement

test models are proposed in this study with relevant steps and features.

© C
OPYRIG

HT U
PM

Model Pengujian untuk Pengujian Perisian

Oleh

Masnita Ab. Ghani

GS12594

Fakulti Sains Komputer dan Teknologi Maklumat

Universiti Putra Malaysia

May, 2005

© C
OPYRIG

HT U
PM

ABSTRAK

Kajian ini adalah untuk menganalisa Model Pengujian yang digunakan di tiga

syarikat yang dirujuk sebagai syarikat A, B and C. Lokasi ketiga-tiga syarikat

ini ialah di sekitar Lembah Klang dan setiap syarikat mempunyai latarbelakang

perniagaan yg berbeza.Objektif kajian ini ialah untuk mengenal pasti model

pengujian yang digunakan oleh syarikat bagi mengendalikan aktiviti model

pengujian perisian; di mana ciri-ciri umum bagi ketiga-tiga model pengujian

dianalisis.Berdasarkan dari maklumat kajian, satu model pengujian

dicadangkan. Model pengujian ini mengandungi langkah-langkah dan ciri-ciri

yang berkaitan.

vii

© C
OPYRIG

HT U
PM

ACKNOWLEDGEMENTS

Firstly, I thank to Allah S.W.T for giving me the strength, patience and courage

to face all the obstacles in life.

Here, I would like to express my sincere thankfulness and appreciation to my

supervisor, Puan Norhayati Mohd. Ali for her willingness to give excellent

guidance. Thanks for her concern and invaluable support and guidance

throughout the period of my studies that lead to success of the thesis.

Lastly, it is my pleasure to acknowledge the support and understanding given

by my beloved husband Mr. Azhar Ahmad, my parents Puan Karnsiah Atan and

Encik Ab. Ghani Ahrnad and my children Syasya and Muhammad Aiman

throughout the period of my study.

. . .
Vl l l

© C
OPYRIG

HT U
PM

TABLE OF CONTENTS

Contents Page

Title page

Declarations

Approval Sheet

Abstract

Acknowledgments

Table of Contents

List of Tables

List of Figures

CHAPTER I: INTRODUCTION

Introduction

Problem Statement

Project Objectives

Project Scope

CHAPTER 11: LITERATURE REVIEW

2.0 Introduction to Test Model

2.1 Bayesian Graphical Model (BGM)

. . .
Vll l

ix

xii

. . .
Xll l

© C
OPYRIG

HT U
PM

Extended Finite State Machines (EFSMs)

Usage Model

CHAPTER 111: METHODOLOGY

3 -0 Methodology

CHAPTER IV: ANALYSIS AND RESULTS

Analysis

4.1.1 Background of Company A

4.1.2 Background of Company B

4.1.3 Background of Company C

Result

4.2.1 The Refinement Test Model

CHAPTER V: DISCUSSION

5.0 Discussion

© C
OPYRIG

HT U
PM

CHAPTER VI: CONCLUSION

6.0 Conclusion

REFERENCES

© C
OPYRIG

HT U
PM

LIST OF TABLES

Table No. Page

Summary of The Test Models

Test Models and Types of Testing

Test Team Responsibilities

Test Procedure for Smart School Managements System (SSMS) 40

Level of Severity for Company A

Test Procedure for Auto Teller Machine (ATM)

Level of Severity for Company B

Test Procedure for Employee Self Service (ESS)

Level of Severity for Company C

Summary of Software Testing in Company A, B and C

xii

© C
OPYRIG

HT U
PM

LIST OF FIGURES

Figure No. Page

State Transaction in a State Graph that Represents a FSMs

Parallel Between a Classical Validation Paradigm

and Software Testing 19

Usage Model as a Directed Graph with Transaction Probabilistic 21

on The Arcs

Activities in Methodology

Test Team Structure

General Steps of Testing in Company A

General Steps of Testing in Company B

General Steps of Testing in Company C

The Activities in The Refinement Test Model

...
Xlll

© C
OPYRIG

HT U
PM

CHAPTER I: INTRODUCTION

1.0 Introduction

The important of software testing and its implications with the respect to

software quality cannot be overemphasized. Software testing is a critical

element in software life cycle and represents the ultimate review of

specification, design and coding [I].

The increasing visibility of software as a system element and the attendant

"cost" associated with a software failures are motivating forces for well planned

through testing. It is not usual for a software development organization to

expand 40 percent effort on testing. In the extreme, testing human-rated

software can cost three to five times as much as all other step combined [I].

Software testing is a vital part of the software lifecycle. To understand its role,

it is important to understand the definition of software testing

Formal process carried out by the specialized testing team in which a software

unit, several integrated units or an entire software package are examined by

running the program on a computer. All the associated tests are performed

according to approved test procedure on approved test case.

Software testing is defined as 'the execution of a program to find its faults'.

Thus, a successful test is one that finds a defect. This sounds simple enough,

© C
OPYRIG

HT U
PM

but there is much to consider when we want to do software testing. Besides

finding faults, we may also be interested in testing performance, safety, fault-

tolerance or security [2].

Testing often becomes a question of economics. For projects of a large size,

more testing will usually reveal more bugs. The question then becomes when to

stop testing, and what is an acceptable level of bugs. This is the question of

'good enough software'. It is important to remember that testing assumes that

requirements are already validated.

Testing objectives

Software testing objective can divide into two, where it consist direct objective

and indirect objectives. First objective is direct objectives are to identifl and

reveal as many error as possible in the tested software. Second to bring tested

software, after correction of the identified error and retesting to an acceptable

level of quality and lastly is to perform the required test efficiently and

effectively with budgetary and scheduling limitation.

Second objective is Indirect is to compile a record of software errors for use in

error prevention by corrective and preventive actions [I].

© C
OPYRIG

HT U
PM

1.1 Problem Statement

Difficulties of various software testing approach therefore the needs of test

model are important.

1.2 Project Objectives

The project aim is

Identify test model that used in software testing.

Analyze test model by looking at steps and common features.

Study test model that used in company,

Propose refinement of test model.

1.3 Project Scope

This study will focus on structural test model and functional test model.

Select three companies in Klang Valley.

Study three test models applied by each company.

Identify the approach that used in each test model.

Identify the steps and common features of test model.

© C
OPYRIG

HT U
PM

CHAPTER 11: LITERATURE REVIEW

2.0 What is Test Model

Test Model is modeling technique or approaches that use in the software

testing. The approach that used in Test Model is different from one another. In

this paper present three test models. There are Bayesian Graphical Model

(BGM), Extended Finite State Machines (EFSMs) and Usage Model. Two of

the model Bayesian Graphical Model (BGM) and Usage Model are statistical

based model. The rest of the test model is structural and functional based

model.

2.1 Bayesian Graphical Model

Bayesian Graphical Model (BGM) is derived fiom Bayesian statistical

methodology, which is characterized by providing a formal framework for the

combination of data with the judgments of experts such as software testers

[3][4]. BGM present formal mechanisms for the logical structuring of the

software testing problem, the probabilistic and statistical treatment of the

uncertainties to be addressed, the test design and analysis process, and the

implication of test result[3] [4].

© C
OPYRIG

HT U
PM

Test Procedure

The test procedure for the model is as follows: select a number to test. If the test

fails then the software is modified and retested. The BGM for the software is

adjusted to reflect information about the nature of the software failure and the

belief about likely success in fixing the problem without new faults.

For test which are successful, the probabilistically propagate the implication of

the success across the BGM. This reduces the current probability of software

failure for many of the various nodes on the model and particularly for those

nodes most strongly connected to the node where we have observed a test pass.

Then need to choose a further test.

The fixing and retesting each time when the fault occurred and update the

probabilities for successful test until exceed test resources or have reach the

point where the probability that the software is reliable is sufficiently high that

there is no need for further testing. This criterion may be refined if there are

several different types of potential faults, to terminate with low probability for

faults with major consequences but to tolerate a higher probability for faults

with minor consequences.

The BGM approach provides probabilities assessments of the reliability of the

sohare being tested before and during the testing process. As such, these

© C
OPYRIG

HT U
PM

assessments provide a natural approach. There are two criteria for test suite.

First, to judge the software acceptable if all tests are successful, then choose the

test suite which maximizes the conditional probability of software acceptability,

given success for each test, subject to any constraints. We may access the value

of such a termination probability before carrying out the test suite thus may

judge a priori whether the resources are sufficient to test the software to

required level of confidence.

Second, each time the fault is found, there may need for regression testing.

Typically prefer to find most of the fault as early as possible in the testing

sequence. The test set have to select to optimize a termination probability, then

sequence the test so that, at each stage, have to chose the subject to any

practical constraints, the test with maximum probability of finding a fault given

that each previous test has been successful.

BGM approach is straight fonvard to design tests to take account of different

levels of fault consequence and show how regression testing and test-retest

cycle can be accommodated and resolved.

© C
OPYRIG

HT U
PM

How to create BGMs for Software Testing?

The process of developing a BGM corresponding to software system that needs

to be tested is generally as follows:

1. A list of Software Action (transaction) is prepared.

2. Software action are sequence (if required)

3. Related SAs are connected to take account that different SAs may not

fully independent.

4. The input spaces are partitioned

5. SAs are converted into BGMs

6. Conditional probabilities on the arcs of the BGMs are elicited

7. Probabilities of nodes without arcs feeding into them are elicited

8. Prior probabilities for observed node are assessed

9. relevant in cases where one test actually tests several software actions

Step 6 - 7 allow the expert knowledge to be taken account. Step 9 is relevant in

cases where one test actually tests several software actions.

Step 3 and 4 are essential in this method, there are three situation of interest

suppose that are two SAs A and B forming parts of two transactions. A and B is

common if A and B are the same piece of code so that test of A with a given

set of inputs necessary also tests B if the details are identical. A and B is

related if before you carry out a test of A, you expect the test information about

© C
OPYRIG

HT U
PM

the reliability of B. A and B are independent if you believe the test of A cannot

give you information about the reliability of B.

Software Action may be related for various , for example they may share some

code or use similar algorithms or codes may supplied by the software supplier.

In this case, the actions remain distinct, but related. The input spaces for

different software actions will often different, so the entire input domain must

be partitioned into sub domain which share the same software actions.

Using the BGMs for Testing.

Mapping of Domain Nodes to Tests

Any tests that carry out will result in observation of subsets of the domains

nodes the various graphical models constructed to represent the software-testing

problem. It is important to map the test to the domain nodes. Each test is likely

to test several aspects of the problem. One simple way of forming the mapping

is to list all possible domain nodes, list all possible tests and form matrix

showing which test result in observation.

This is straightforward when there already exists a given test suites. The focus

will be on test design. To avoid unnecessary duplication the mapping of domain

nodes to test is mapping to potential test and must be carried out at the SAs

level example the stage reached before partitioning the input space. Which

© C
OPYRIG

HT U
PM

partition is then observed by a given test is choosable and becomes one of the

features addressed by test design.

Computation

All the result required by the approach are computationally straightforward

using any package capable of performing the basic algorithms of Bayesian

graphical Modeling such as Netica TM (Norsys Software Corporation,

Vancouver Canada) and HUGIN Expert N S Aalborg, Denmark, which

provide inter alia, libraries of C routines providing BGM tools.

Preposterior Analysis Assuming Existing Test Suites

Preposterior analysis of a given test suite provides an assessment of the

posterior reliability of the software, assuming that it passes the given test suite

and is the key to accessing the efficiency of a particular test suite. Before

running the tests, we can examine the implications for the model of all tests

passing. It is straightforward to compute these implications for the various

reliability measures we employ. Similarly, it is straightforward to explore the

implications of test failures and alternative sequences of the proposed test suite

so that we may use such assessment to compare and select between different

potential test suites. © C
OPYRIG

HT U
PM

Simplifying and Sequencing Test Suites

Given a test suite, can calculate the implication of any subset of tests and any

sequences of tests. This enables a study of overlap of tests. It is easy to

sequence a given test suite; for example for early selection of tests which test

software area with high remaining probability of failure.

Design and Analysis of Test Additional to a Test Suite

To use the outputs of the BGM to identify software areas which would contain

substantial unreliability even if all of the tests in the test suites were to be

successful and so to design extra tests to tackle these areas.

Design of New Test Suites

A simple approach is to choose tests in order to reduce the probability of at

least one fault remaining in the software being tested by considering all

possible test in turn and assessing the implication for the model assuming a

successfd test for each test. This will produce one or more tests with the

biggest gain in the chosen performance measure. This test is selected as the first

test to be run. This process will be repeated until the desired criteria will

achieve. This algorithm should produce one which near optimal.

Test design must take must take account of constraints such as sequencing. It is

simple to update the BGM using composite test which does take account of

© C
OPYRIG

HT U
PM

sequencing and in principle easy to take account of batch constraint for test

design. A further consideration in eficient test design is that it is useful to be

able to sequence tests according to some criterion.

Posterior Sensitivity Analysis

This is important because it helps to inform decisions as to when the software

will be ready for release, given specific test suites. A simple approach based on

one-off changes to root nodes is a follow

1. Specie and calibrate the model .
2. Apply the given test suite to the model and calculate the desired

posterior summaries assuming that all test are successful

3. Leaving all other root nodes unchanged for each root node in the model

in turn, we take the probability of at least one fault and alter it on an

appropriate scale .
4. Then apply the given test suite to the altered model and calculate the

desired posterior summaries.

5. The differences between the posterior summaries for the initial and

altered models measure the sensitivity of our conclusions to the

probability specification for the altered root node.

© C
OPYRIG

HT U
PM

