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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

 

ROBUST OUTLIER DETECTION AND ESTIMATION IN RESPONSE 
SURFACE METHODOLOGY 

By 

MOHD SHAFIE MUSTAFA 

October 2015 

Chair: Professor Habshah Midi, PhD  

Faculty: Institute for Mathematical Research 

This thesis provides some extensions to the existing method of determining the 
optimization conditions in response surface design to cover situations with an 
unusual observations or outliers. It is shown how the presence of outliers have 
an unduly effect on the parameter estimation of response surface models and 
the optimum mean response. In real practice, the usual assumptions that the 
distribution of experimental data is approximately normal and constant 
variances are difficult to achieve.  
 
The classical outlier diagnostic methods may not be suitable to correctly 
diagnose the existence of outliers in a data set. To rectify this problem, two 
procedures of robust diagnostic methods are proposed. In response surface 
optimization methodology, the parameters of the model are usually estimated 
using the Ordinary Least Squares (OLS) technique. Nevertheless, the 
classical OLS suffers a huge set back in the presence of outliers. In this 
situation, the optimum response estimator is not reliable. As an alternative, we 
propose using a robust MM-estimator to estimate the   parameters   of   the   
RSM and subsequently the optimum mean response is determined. The 
results of the study reveal that our proposed method outperforms some of the 
existing methods. 
 
This thesis also addresses the problems in the optimization of multiresponses, 
each of which depends upon a set of factors. The desirability function approach 
is commonly used in industry to tackle multiple response optimization 
problems.  The shortcoming of this approach is that the variability in each 
predicted response is ignored. An augmented approach to the desirability 
function (AADF) is put forward to rectify this problem and to improve the 
practicality of the optimal solutions. Furthermore, the AADF can reduce the 
variation of predicted responses, as well as it is resistant to outliers. 
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In robust design studies, the usual assumptions of experimental data are 
approximately normal and there is no major contamination due to outliers in the 
data. In real practice, these two assumptions are difficult to meet. Hence we 
proposed Two-Stage Robust MM (TSR-MM based) method where it can 
remedy both problem of heteroscedasticity and outliers at the same time.    
 
In order to make significant improvements in robust design studies, robust 

location (median) and robust scales estimates (Median Absolute Deviation 

(MAD) and Interquartile Range (IQR))  of the response variables are employed 

for dual response surface optimization. To get more efficient results, we 

proposed to adopt the robust MM estimator and the TSR-MM based method 

based on robust location and robust scales estimates when the problem of 

heteroscedastic errors comes together with outliers. The results of the study 

indicate that the robust location and scales estimates provide a significant 

reduction in the bias and variance of the estimated mean response. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

PENGESANAN TITIK TERPENCIL TEGUH DAN ANGGARAN DALAM 
METHODOLOGI PERMUKAAN SAMBUTAN 

Oleh 

MOHD SHAFIE MUSTAFA 

Oktober 2015 

Pengerusi: Professor Habshah Midi, PhD 
 
Fakulti: Institut Penyelidikan Matematik 

Tesis ini menyediakan beberapa sambungan kepada kaedah sedia ada bagi 
menentukan keadaan pengoptimuman reka bentuk permukaan tindak balas 
untuk menangani situasi pemerhatian yang luar biasa atau titik terpencil. Ia 
menunjukkan bagaimana kehadiran titik terpencil mempunyai kesan 
kelampauan pada anggaran parameter model permukaan sambutan dan min 
optimum sambutan. Secara realitinya, andaian yang biasa dalam eksperimen 
data bertaburan hampir normal dan varians malar adalah sukar untuk dicapai.  
 
Kaedah tradisi dalam menentukan titik terpencil mungkin tidak sesuai untuk 
menentukan dengan tepat kewujudan data tersebut dalam sesuatu set data. 
Bagi mengatasi masalah ini, dua tatacara kaedah diagnosis teguh 
dicadangkan. Dalam kaedah pengoptimuman permukaan sambutan, lazimnya 
model parameter yang dianggarkan menggunakan kaedah biasa kuasa dua 
terkecil (OLS). Walaubagaimanapun, kaedah klasik OLS mengalami 
kelemahan dengan kehadiran titik terpencil. Dalam keadaan ini, penganggar 
sambutan optimum tidak lagi dipercayai. Sebagai alternatif, kami 
mencadangkan penggunaan penganggar teguh MM untuk menganggarkan 
parameter RSM dan seterusnya min optimum sambutan ditentukan. Keputusan 
berangka menunjukkan bahawa Optimum-MM adalah lebih cekap daripada 
Optimum-OLS. Keputusan kajian menunjukkan bahawa kaedah yang kami 
cadangkan mengatasi kaedah lain yang sedia ada. 
 
Tesis ini juga menangani masalah pengoptimuman bagi sambutan berganda, 
setiapnya bergantung kepada satu set faktor. Pendekatan fungsi desirability 
biasa digunakan di dalam industri untuk menangani masalah pengoptimuman 
sambutan. Kelemahan pendekatan ini adalah variasi bagi setiap ramalan 
sambutan diabaikan. Pendekatan yang diperkukuhkan dengan Fungsi 
desirability (AADF) diperkenalkan untuk membetulkan masalah ini dan 
meningkatkan penyelesaian optimum yang praktikal. Selain itu, AADF dapat 
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mengurangkan variasi bagi setiap ramalan sambutan dan ianya tahan terhadap 
titik terpencil. 
 
Dalam kajian reka bentuk teguh, kebiasaan andaian bagi eksperimen data 
adalah penghampiran normal dan tiada pencemaran utama disebabkan oleh 
titik terpencil di dalam data. Dalam keadaan sebenar, kedua-dua andaian 
tersebut adalah sukar untuk dipenuhi. Oleh itu kami mencadangkan kaedah 
Dua-Peringkat MM Teguh (TSR-MM berasas) di mana ianya pada masa yang 
sama boleh membetulkan kedua-dua masalah heterosedastik dan titik 
terpencil. 
 
Dalam usaha untuk membuat penambahbaikan ketara dalam kajian reka 
bentuk teguh, anggaran lokasi teguh (median) dan skala teguh (Sisihan 
Median Mutlak (MAD) dan kuartil antara Range (IQR)) bagi pembolehubah 
sambutan digunakan untuk pengoptimuman permukaan dwi sambutan. Untuk 
mendapatkan hasil yang lebih berkesan, kami mencadangkan untuk 
menggunakan penganggar teguh MM dan kaedah berasaskan TSR-MM 
berdasarkan anggaran lokasi teguh dan skala teguh apabila masalah ralat 
berheterosedastik dengan titik terpencil muncul bersama. Keputusan kajian 
menunjukkan bahawa anggaran lokasi dan skala teguh memberikan 
pengurangan yang ketara dalam kepincangan dan anggaran varians bagi min 
sambutan. 
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CHAPTER 1 

 

INTRODUCTION 

 

 
1.1  Introduction and Background of the Study 
 
Response Surface Methodology (RSM) was first developed and described by 
Box and Wilson in 1951 (Hill and Hunter, 1966). In a series of process 
optimization and experimental design, RSM consists of a group of 
mathematical and statistical techniques useful for modelling and analyzing a 
problem in which a response of interest is influenced by several variables. The 
main objective of RSM is to optimize the response and to find the combination 
of conditions that provides the highest response. RSM helps industrial world to 
realize how several input variables potentially influence some performance 
measures of a process and product. The relationship between a set of 
independent variables (also known as control, or input variables) and a 
response is determined by a mathematical model called regression model. 
Multiple regression analysis is one of the regression models useful for 
modelling and analyzing the relationship between a response and control 
variables required in RSM. In general, regression analysis is routinely applied 
in most applied sciences to observe the change in the response variable by 
changing any one of the control variables in the situation that the control 
variables are considered to be fixed. One of the predominant regression 
analysis techniques in RSM is Ordinary Least Squares Method (OLS). The 
popularity of OLS in industrial applications are due to its easy computation, 
universal acceptance, and elegant statistical properties. This method minimizes 
the errors sums of squares. Unfortunately, the OLS always depends on a 
number of restrictive and often unrealistic assumptions. Of all OLS 
assumptions, the normality of error distribution and the independency of 
explanatory variables are most common issues in linear regression 
(Montgomery et al., 2001, Psomas et al., 2007, Myers et al., 2009). 
 

In applications, the normality of error distribution assumption will be inefficient 
in the presence of outlying observations in a data set resulting in less reliable 
estimates of the model parameters (Montgomery et al., 2001; Anderson, 2001; 
Kutner et al., 2004; Montgomery, 2009). The second assumption of OLS i.e. 
the implication of independency of explanatory variables can cause serious 
multicollinearity problems. This situation occurs when there are near-linear 
relationships between the explanatory variables which make up the columns of 
x.   
 
Outliers can distort the regression results. When an outlier is included in the 
analysis, it pulls the regression line towards itself, which results the solution is 
more accurate for the outlier, but less accurate for the other cases in the data 
set. Outliers arise for many different reasons and appear in many different 
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forms (Simpson and Montgomery, 1998). The existence of outliers include 
computational error, observation that is not part of the population being studied, 
result of keypunch errors or machine failure, or even transient effects. Not only 
the responses variable can be outlying, but also the explanatory part, leading to 
so called leverage points. Another issue in the presence of outliers is masking 
and swamping effects. There are many other discussion that described the 
presence of outliers in RSM (Myers et al., 1989, 2009; Morgenthaler and 
Martin, 1999; Montgomery et al., 2001; Park and Cho, 2003; Ching et al., 2005; 
Khuri and Mukhopadhyay, 2010). 
 
 
1.2  Importance and Motivation of the Study 
 
Outliers are often referred to the existence of a few anomalous points and 
empirical data set typically contains 10% outliers (Hampel et al., 1986). In 
multiple regression model, outliers may occur in y-direction (response direction) 
or outliers in the x-direction (regressor direction), which are also referred to as 
leverage points. Regardless of their sources, Simpson and Montgomery (1998) 
pointed out that the least squares estimation can be rendered useless by the 
presence of outliers. Unfortunately, many statisticians are not aware that 
outliers among the measurements will have a highly confusing effect and 
consequently leading to a wrong interpretation on response surface design. As 
such, outlier diagnostics are required to detect the existence of outlier in a data 
set. Many outlier diagnostics are based on residuals resulting from least 
squares method. However, in the presence of outlier, least squares estimator 
tries to accommodate the expense of the remaining observations. Therefore, 
an outlier may have small residuals, and consequently, diagnostics based on 
least squares residuals often fail to reveal such points. Myers et al. (2009) 
utilized the studentized residuals, R-students, and Cook’s distance based on 
OLS estimates to detect outliers in response surface model. Unfortunately, to 
the best of our knowledge not much work has been devoted on detecting 
outliers in a second-order polynomial model for the response functions used in 
response surface methodology. This issue has motivated us to develop new 

diagnostics measures in RSM, namely, the studentized residuals, MMr , and 

deletion studentized residuals, MMt  for the detection of outliers based on 

robust regression techniques. Since in RSM the x variables are fixed, our focus 
is only on the detection of outliers in the y-direction. The MM-estimator is 
incorporated in the establishment of almost all the developed methods in this 
thesis, as it is robust in x and y directions and has very high efficiency and high 
breakdown point. In this thesis, we also attempt to formulate another new 
outlier detection measures for detecting multiple outliers in response surface 
model. The developed method is called Modified Generalized Response 

Surface Studentized residuals )( iMGRSt . This work also has not been 

investigated, except for Imon (2005) who has developed such measure in 
multiple linear regressions model.  
 
The first step in RSM is to fit a model between the controllable factors and the 
response variable. In response surface model particularly for one response 
variable, most of the estimation and regression analysis are generally 
constructed by the OLS method. However, it is well known that in the presence 
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of outliers, the OLS may affect the optimization stage. The optimum conditions 
may be affected from the true optimum conditions we are actually looking for. 
Thus, a suitable approach needs to be developed. As such in this thesis, we 
employ a very high breakdown and high efficient robust MM estimator to 
estimate the model parameters. The advantage of using this measure is that, 
the robust regression techniques are not easily affected by outliers and 
subsequently will produce reliable optimum mean response.  
 
This thesis also addresses the problem of optimization for multiresponse 
models in the presence of outliers. In many experimental situations, a number 
of responses need to be simultaneously optimized with respect to several 
criterions. Frequently, operating conditions need to satisfy several conditions or 
constraints on m responses. Outliers can wrongly show the optimum responses 
and are not reliable and may produce inefficient results. There are many good 
published articles in the literatures on the response surface (Myers and 
Montgomery, 1995; Morgenthaler and Martin, 1999; Park and Cho, 2003; 
Ching et al., 2005; Koksoy, 2008; Hejazi et al., 2010; Dellino et al., 2010). 
However, little attempts have been done in developing suitable robust methods 
for multiple response surface models in the existence of outliers in a data set.  
 
The desirability function approach was introduced by Harrington (1965) and 
has been widely used extensively to simultaneously optimize several 
responses. The desirability function has generally been defined as aggregates 
multiple responses into a single dimensionless measure, so that a problem in 
the optimization of multiple responses is then converted into a single objective 
optimization problem. An overall, this desirability function technique assigns a 
set of responses and chooses factor settings that maximize the overall 
desirability function. However, an outstanding problem of this approach is that 
the variability in each predicted response is ignored. It is noted that the actual 
response sometimes may fall outside the acceptable region even though the 
predicted response at the optimal solution has a high overall desirability score 
(Fuller and Scherer, 1998, Chen et. al, 2012). Furthermore, Chen et al. (2012) 
stated that if the transformation into desirability does not cover the prediction 
interval, the optimal solution will not be acceptable for practical implementation. 
Chen et al. (2012) developed Augmented Desirability Function Approach 
(AADF-OLS based) to determine the factors settings and optimum mean 
response. Nonetheless their approaches are based on OLS estimator and 
Geometric Mean which are very sensitive to outliers. Their work has 
encouraged us to develop Augmented Approach Desirability Function (AADF-
MM based) which is based on the MM estimator and Geometric Median which 
are outlier resistant. 
 
Response surface methodology is designed to construct an approximation 
model for the response y. This approximation model is usually the second-
order polynomial model to be fitted between the response variable (quality 
characteristics) and a number of input variables. The main aim is to find the 
best optimal settings of interest for the input variables or the best values of 
design parameters that optimize the response variable. Typically the main 
emphasis is on optimizing (minimizes or maximizes) the mean (location) value 
of y where the variance (scale) is assumed to be small and constant. These 
assumptions may not be valid in real-life practice. Nonetheless, only 
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constructing a response surface model for the mean may not be adequate and 
optimization result can be misleading. Therefore, the dual response approach 
(developed by Myers and Carter, 1973) is used to tackle such problem (see 
Myers and Carter, 1973; Vining and Myers, 1990; Del Castillo, 1999; Park and 
Cho, 2003; Shaibu and Cho, 2009). Basically in dual response surface 
optimization, two models are established for the mean and for the standard 
deviation of the response y. Then the two fitted response models are optimized 
simultaneously in a region of interest. The experiments are repeated m times to 
measure the variability of y.  
 
The OLS method is often used to estimate the parameters of the models. It is 
important to mention that the OLS regression estimates which are often used in 
RSM are also not appropriate for real-world industrial problems containing 
outliers. The problems get more complicated when outliers and heteroscedastic 
errors come together. Goethals and Cho (2011) employed the iterative 
reweighted least squares approach (RLS) method to estimate the model 
parameters when the assumptions of constant error variances are violated. 
Their work did not investigate the effect of outliers on the parameter estimates 
and consequently the mean optimal response will be affected. There is a strong 
evidence that the RLS is not reliable in this situation. The weakness of this 
estimator has inspired us to develop a new method that can rectify both 
problems simultaneously are call this method, the TSR-MM based method to 
estimate the parameters of the process mean model and the process standard 
deviation model in the dual response problems. Since the two fitted response 
surface models use the TSR-MM based method, we anticipated to get a more 
reliable estimated mean response.          
 
In the classical dual response approach problem, the sample mean and the 
sample variance are used to fit the process mean and process variance 
functions based on the OLS method. However, these estimators are very 
sensitive to outliers or departures from the normality assumption (Lee et al., 
2007). As a consequence, the optimum operating conditions may be located far 
from the true optimum values. Since contaminated data (or outlier) may reveal 
misleading results on sample mean and variance, Park and Cho (2003) 
proposed using sample median instead of the sample mean and the sample 
median absolute deviation (MAD) (and interquartile range (IQR)) instead of the 
sample variance of the responses. The results show that the new measures are 
less sensitive to contamination and departures from the normality assumption. 
However, they utilised the OLS estimator which is known to be sensitive to 
outliers to estimate the model parameters. The weakness of the Park and Cho 
(2003) approach has encouraged us to employ the MM estimator to estimate the 
parameters of the dual response surface models. The results of the study 
indicate that when using median and MAD of the response variables, it give the 
best optimal setting for the input variables. Due to the encouraging results of 
using robust location and scale, we investigate the performance of our 
developed TSR-MM based method using these measures. To the best of our 
knowledge this issue has not be explored. 
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1.3  Research Objectives 
 
The foremost objectives of our research can be outlined systematically as 
follows. 
 

1. To formulate an outlier detection measure for response surface model, 
polynomial regression model (single response y) by integrating the MM 

estimator in the studentized residuals, MMr
, deletion studentized 

residuals, MMt
, and modified generalized response surface 

studentized residulas, iMGRSt
. 

 

2. To develop a new outlier detection measure 
)( iMGRSt
for response 

surface model (single response y) to identify multiple outliers.  
 

3. To employ the robust MM estimator to estimate the parameters of the 
response surface model for a single response variable and 
subsequently compare the estimated mean response based on OLS 
(Optimum-OLS based) and Optimum-MM based in the presence of 
outliers. 
 

4. To develop a new augmented approach (AADF-MM based) to the 
desirability function based on MM estimator and geometric median for 
multiple responses. 
 

5. To develop a new robust estimator (TSR-MM based) in the response 
surface design for repeated responses with heteroscedastic conditions. 
 

6. To employ robust locations and robust scales measures and MM 
estimator and TSR-MM based estimator in dual response optimization 
approach for homoscedastic and heteroscedastic conditions. 

 
 
1.4  Overview of the Thesis 
 
In accordance with the objectives and the scope of the study, the contents of 
this thesis are organized in the eight chapters. The thesis chapters are 
structured so that the research objectives are apparent and are conducted in 
the sequence outlined. 
 
Chapter Two: This chapter presents a literature review on response surface 
methodology (RSM) and its experimental design, modelling, and optimization 
techniques are highlighted. The methods developed in RSM to cope with 
multiresponses are also discussed. In the second part of the chapter, the OLS 
estimation of regression parameters and violations from its assumptions are 
described briefly in order to estimate the parameters of a second-order 
polynomial RSM model. Diagnostic methods of influential observations and 
outlier diagnostics are also reviewed. Basic concepts of robust regression and 
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some important existing robust methods are also included. Finally, 
heteroscedasticity methods are reviewed briefly. 
 
Chapter Three: This chapter presents several techniques for the identification 
of multiple high leverage points in response surface design (RSM) model and 
outlier diagnostics is defined following the basic ideas of linear regression 
diagnostics. The two procedures of detection of outliers are proposed in RSM. 
The first procedure is based on residuals of the MM estimates and the second 

procedure incorporated the 
i

MGRSt  MM-estimator. The performance of 

i
MGRSt  is also evaluated for real data set in detecting outliers or contaminated 

points and for simulation studies. Moreover, the regression diagnostic plots 
which are useful in detecting outlier points are also shown in this chapter. 
 
Chapter Four: This chapter discusses the situations in optimum response 
when outliers (or without outliers) are present in the real data set. The existing 
analysis and optimization method in RSM which cause points to be 
contaminated are also investigated. The effect of outliers of experimental 
designs for fitting response surface models, optimization method and the 
performance of response surface in our proposed measures, namely MM-
estimation are studied. The performance of the Optimum-MM is compared with 
the existing method, Optimum-OLS.  
 
Chapter Five: The augmented desirability function approach is proposed to 
tackle multiple responses optimization problems which are discussed by 
Harrington (1965) and Derringer and Suich (1980). The newly proposed 
augmented desirability function (AADF) incorporated variability in each 
predicted responses and combined an overall desirability function using 
median. The method is formulated by adapting the MM estimator and logarithm 
of median. The effect of outliers on the AADF performance of optimization is 
investigated.  
 
Chapter Six: This chapter involves two situations in regression parameters 
where heteroscedasticity errors come together with the existence of outliers in 
the data. The proposed method is called the Two-Stage Robust estimator 
based on MM-estimator (TSR-MM based) which can handle both the outliers 
and heteroscedasticity problem. The new proposed robust method is compared 
with some existing methods such as reweighted least squares based on OLS 
denoted as RLS. The comparison results of the performance of optimization 
based on our proposed method and classical method is discussed. 
 
Chapter Seven: Incorporating the outlier-resistant estimators into robust 
design, namely the median and MAD or IQR is proposed in this chapter. The 
newly proposed estimators, TSR-MM based and MM-based estimator which is 
less sensitive to outliers in dual-response surface model employ the locations 
and scales measures. 

 
Chapter Eight: This chapter provides summary and detailed discussions of the 
thesis conclusions. Areas for future research are also recommended.           
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