EFFECTS OF PACLOBUTRAZOL, BIOCHAR AND WATER STRESS ON GROWTH OF OIL PALM (Elaeis guineensis Jacq.) SEEDLINGS

TAUFIQ CAESAR HIDAYAT

FP 2015 52
EFFECTS OF PACLOBUTRAZOL, BIOCHAR AND WATER STRESS ON GROWTH OF OIL PALM (Elaeis guineensis Jacq.) SEEDLINGS

By

TAUFIQ CAESAR HIDAYAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
Drought promotes water stress on oil palm seedlings in the main nursery or field. Biochar (BC) could improve soil moisture retention while paclobutrazol (PBZ) could protect plants against water stress during drought period. There is a lack of information on utilization of PBZ and BC and their rates on growth of oil palm seedlings. Experiment 1 was conducted to determine effect of BC and PBZ on growth of oil palm seedlings in main-nursery at the IOPRI Marihat substation, Indonesia. Three months olds DxP-Simalungun seedlings from pre-nursery were transplanted into polybags filled with soil containing 0, 50 or 100 g BC. After 3 months, seedlings were treated with 95% PBZ at 0, 100, 200 and 300 mg/seedling. At harvest, seedling height, rachis length and frond number were measured monthly. Leaf area, dry shoot and dry root weight, gibberellin (GA) contents and PBZ residue were measured at 12 months. Combination of BC and PBZ increased seedling high significantly by seedling ages, but the rate of increment was not as high as compared to treatment of BC alone. Seedling height increased gradually at 6 to 9 months, followed by a rapid increase from 9 to 12 months. Combination of 50 g BC + 100 mg PBZ produced desired seedling height of 120 cm. PBZ decreased rachis length after it was applied, the effect was reversed over time. The combination of BC and PBZ showed a synergistic effect, promoting or reducing root dry weight. The 50 g BC + 100 mg PBZ promoted seedling dry root weight. BC at 50 g/seedling combined with PBZ at 200-300 mg/seedling decreased root dry weight. GA contents decreased as PBZ application rates were increased. PBZ had a reversed effect on GA. The 50 g BC + 100 mg PBZ combination was selected for Experiment 2.

Experiment 2 was conducted to determine the effect of water stress on growth performances of oil palm seedling transplants from selected BC and PBZ treatments under simulated field condition. Twelve months old seedlings with 50 g BC + 100 mg PBZ and control were transplanted into polybags. Then, the seedlings were placed under a rain-shelter and exposed to three water stress treatments: 50, 75 and 100 of field capacity (FC). Seedling height, leaf area, leaf chlorophyll contents, photosynthetic and transpiration rates, shoot and root
dry weights and leaf proline contents were determined on 13, 14 15 and 16 months old seedlings. The 50 g BC + 100 mg PBZ treated seedlings had smaller leaf area, increasing chlorophyll contents, increased photosynthesis and stimulated transpiration rate compared to control seedlings. Higher proline contents of control seedlings indicated seedlings stress compared to those of treated seedlings.

In conclusion, BC produced better seedlings condition while PBZ retards seedling growth by blocking GA synthesis, thus producing compact seedlings. Compact seedlings were easy to maintain and transplant, requiring less transportation space. Thus, it recommended applying seedling with 50 g of BC and 100 mg PBZ per seedling to make it compact and prevent it from drought in the field.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KESAN PACLOBUTRAZOL, BIOCHAR DAN TEKANAN AIR KE ATAS PERTUMBUHAN ANAK POKOK KELAPA SAWIT
(Elaeis guineensis Jacq.)*

Oleh

TAUFIQ CAESAR HIDAYAT

September 2015

Pengerusi : Siti Hajar Binti Ahmad, Ph.D
Faculti : Pertanian

Kemarau menyebabkan tekanan air terhadap anak pokok kelapa sawit di nurseri utama atau di lapangan. Biochar (BC) didapati mampu mengekalkan kelembapan tanah sementara, paklobutrazol (PBZ) dapat melindungi tumbuhan daripada tekanan air semasa tempoh kemarau. Terdapat kekurangan maklumat mengenai penggunaan PBZ dan BC dan kadarnya terhadap pertumbuhan anak benih kelapa sawit. Eksperimen pertama telah dijalankan untuk menentukan kesan BC dan PBZ kepada pertumbuhan anak benih kelapa sawit di nurseri utama di IOPRI Marihat. Dalam kajian ini, variati *DxP-Simalungun* yang berumur tiga bulan dari pra-nurseri telah digunakan dan dipindahkan ke dalam beg poli yang mengandungi 0,50 atau 100 g BC. Tiga bulan selepas diubah, benih anak pokok dirawat dengan 95% PBZ (PP333-TC) pada 0, 100, 200 dan 300 mg/anak benih. Pada masa penuaan, ketinggian anak pokok, panjang batang pelepah, dan bilangan pelepah diukur pada bulan ke-12. Gabungan BC dan PBZ meningkatkan ketinggian anak pokok dengan peringkat umur secara ketara, tetapi kadar kenaikan tidak setinggi berbanding rawatan BC sahaja. Ketinggian anak pokok tinggi meningkat secara berperingkat pada 6 hingga 9 bulan, diikuti oleh peningkatan yang pesat dari 9 hingga 12 bulan. Gabungan 50 g BC + 100 mg PBZ memberikan ketinggian anak benih yang disasarkan iaitu pada 120 cm. PBZ mengurangkan panjang batang pelepah secara langsung selepas ia digunakan dan kenaikan yang telah bertukar dari masa ke masa. Gabungan BC dan PBZ menunjukkan kesan sinergi dalam menggalakkan atau mengurangkan berat kering akar. Campuran 50 g BC + 100 mg PBZ telah meningkatkan berat akar kering anak pokok kelapa sawit. Kombinasi rawatan BC pada 50 g/anak pokok dengan PBZ pada 200-300 mg/anak pokok didapati menurunkan berat akar kering. Kandungan GA didapati menurun apabila kadar PBZ meningkat. Ini menunjukkan PBZ memberi kesan kebalikan terhadap GA. Oleh itu, campuran BC 50 + PBZ 100 dipilih sebagai kombinasi yang terbaik untuk Eksperimen 2.

Percubaan kedua telah dijalankan untuk menentukan kesan tekanan air pada prestasi pertumbuhan anak pokok kelapa sawit yang dipindahkan daripada rawatan PBZ dan BC yang terpilih di bawah keadaan simulasi lapangan. Anak
pokok berusia 12 bulan dengan 50 g BC + 100 mg PBZ dan kawalan telah dipindahkan ke dalam beg poli. Anak pokok ditempatkan dibawah lindungan hujan dengan tiga rawatan tekanan air Selepas: 50, 75 dan 100 kapasiti lapangan (KL). Parameter seperti ketinggian anak benih, luas daun, kandungan klorofil daun, fotosintesis dan kadar transpirasi, berat kering pucuk dan akar dan daun dan kandungan prolina ditentukan pada anak benih berusia 13, 14, 15 dan 16 bulan. Anak pokok yang dirawat dengan PBZ100 mg + BC 50 g menunjukkan prestasi pertumbuhan yang lebih baik dalam keadaan tekanan air berbanding dengan kawalan. Anak pokok yang dirawat dengan PBZ 100 mg + BC 50 g mempunyai keluasan daun yang lebih kecil, peningkatan kandungan klorofil dan fotosintesis dan merangsang kadar transpirasi berbanding dengan anak pokok kawalan. Kandungan prolina yang lebih tinggi pada anak pokok kawalan menunjukkan anak pokok berada dalam keadaan tekanan berbanding anak pokok yang dirawat.

Kesimpulannya, BC menghasilkan keadaan anak benih yang lebih baik manakala PBZ merencat pertumbuhan anak benih dengan menyekat penghasilan GA seterusnya menghasilkan anak pokok yang padat. Anak pokok yang padat adalah mudah untuk diselenggara dan pemindahan memerlukan ruang yang kurang semasa pengangkutan. Oleh itu, anak pokok patut dirawat dengan 50 g BC dan 100 mg PBZ bagi setiap anak pokok.
ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study.

First and foremost, my utmost gratitude to my lovely supervisor, Assoc. Prof. Dr. Siti Hajar Ahmad for her enlightening suggestions, patience and guidance from the preliminary to the end of this study. She has been my inspiration as I hurdle through all the obstacles in completing this work. I am also grateful to Prof. Datin Dr. Rosenani Abu Bakar and Dr. Siti Zaharah Sakimin for being the committee members and for their generous, patience and steadfast support to complete this study. Furthermore, I am also grateful to the Indonesian Oil Palm Research Institute Managements for their supports on fund, nursery, laboratory and technical assistance.

I am deeply indebted to my dear family (Mrs. Hamidah Tambusai and Mr. M. Sadi), who deserve special mention for their inseparable support. To my brothers Zumrah Hadi and Amir Miftah, sisters Deliana Sari, sister in law Siti Fatimah and nephews (Faryd Al Farizi Hadi, Nazwa Aulia Hadi and Muhammad Hisyam Al Hadi), thank you for being supportive and caring siblings.

It is my utmost pleasure to thank Mr. Sumaryanto and Mr. Wan Rizki Fauzi, who always was ready to lend a hand during my lab work. I owe deepest gratitude to Mrs. Nur Indah Abdul Shukor, Mrs. Nor Elliza Binti Tajidin, Miss Bunga Raya Ketaren, Mr. Mohammad Zakwan, Mrs. Munirah Mohamad, Miss Azimah Hamidon, Miss Esther Yap, Miss Surisa Phornvillay and all my laboratory friends for all those advices, guidance, comments and explanation, thank you very much.

I am also grateful to all my friends especially for my home-mate 719 whose help and camaraderie are so much appreciated. Last but not least, the one above all of us, the omnipresent ALLAH SWT, for answering my prays for giving me the strength to plod on despite my constitution wanting to give up and throw in the towel, thank you so much ALLAH SWT and my salawat and salam to His messenger, Prophet Muhammad SAW.

I would like to dedicate this thesis to my role model Dr. Iman Yani Harahap, who kindly raised me with his attention, patience and caring.

Taufiq Caesar Hidayat
I certify that a Thesis Examination Committee has met on 29 September 2015 to conduct the final examination of Taufiq Caesar Hidayat on his thesis entitled "Effects of Paclobutrazol, Biochar and Water Stress on Growth of Oil Palm (Elaeis guineensis Jacq.) Seedlings" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Adam bin Puteh, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mahmud bin Tengku Muda Mohamed, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mohd Haniff Harun, PhD
Senior Lecturer
Malaysian Palm Oil Board
Malaysia
(External Examiner)

[Signature]

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 December 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree Master of Science. The members of Supervisory Committee were as follows:

Siti Hajar Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Rosenani Abu Bakar, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Siti Zaharah Sakimin, PhD
Senior Lecture
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ___________________________

Name and Matric No.: Taufiq Caesar Hidayat, GS 34743
Declaration by Members of Supervisor Committee

This is to confirm that:

- the research conducted and the writing of the thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________
Name of Chairman of Supervisor Committee: Siti Hajar Ahmad, PhD

Signature: ______________________
Name of Member of Supervisor Committee: Prof. Datin Rosenani Abu Bakar,

Signature: ______________________
Name of Member of Supervisor Committee: Siti Zaharah Sakimin, PhD

ix
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION

1

2 LITERATURE REVIEW

2

2.1 Oil Palm

2.1

1. **Botany**

1.1 Seed and seedlings

1.2 Fronds

1.3 Trunk

1.4 Root

1.5 Flowering and fruiting

2.1.2 **Climate and Soil**

2.1.2.1 Temperature

2.1.2.2 Rainfall and evapotranspiration

2.1.2.3 Solar radiation

2.1.2.4 Air humidity

2.1.2.5 Soil type

2.1.3 **Main nursery technical agriculture**

2.1.4 **Transportation seedlings to the field**

2.1.5 **Water stress and drought on oil palm transplanted seedling**

2.2 Paclobutrazol

2.2

1. **Role of paclobutrazol in plant metabolism**

2. **Effect of paclobutrazol in perennial crops**

3. **Application paclobutrazol in perennial crops**

2.3 Biochar

2.3

1. **Biochar types and characteristics**

2. **Rates and application method of biochar**

3 EFFECTS OF PACLOBUTRAZOL AND BIOCHAR ON THE GROWTH PERFORMANCE OF OIL PALM SEEDLINGS IN MAIN-NURSERY

3.1 **Introduction**

3.2 **Material and Methods**

1. **Planting materials**

2. **Experiment site and soil type**

16
3.2.3 Transplanting procedure, biochar and PBZ treatments

3.2.4 Parameter evaluations
 3.2.4.1 Determination of seedling height, rachis length and frond number
 3.2.4.2 Determination of leaf area
 3.2.4.3 Determination of shoot and root dry weight
 3.2.4.4 Determination of GA content in leaflet
 3.2.4.5 Determination of PBZ residue in soil

3.2.5 Experimental design and statistical analysis

3.3 Results and discussion
 3.3.1 Seedling height, rachis length and frond number
 3.3.2 Leaf area
 3.3.3 Shoot and root dry weight
 3.3.4 GA contents and PBZ residue

3.4 Conclusion

4 GROWTH AND PHYSIOLOGIES PERFORMANCE OF OIL PALM SEEDLING THAT WAS TREATED WITH PBZ AND BIOCHAR UNDER FIELD WATER STRESS SIMULATED CONDITION

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Planting materials
 4.2.2 Experimental site
 4.2.3 Transplanting procedure and water stress treatments
 4.2.4 Parameters evaluation
 4.2.4.1 Determination of seedling height and leaf area
 4.2.4.2 Determination of leaf chlorophyll, photosynthetic and transpiration rates
 4.2.4.3 Determination of leaf proline contents
 4.2.4.4 Determination of shoot and root dry weight
 4.2.5 Experimental design and statistical analysis

4.3 Results and discussion
 4.3.1 Seedling height and leaf area
 4.3.2 Chlorophyll contents, photosynthesis and transpiration rate
 4.3.3 Proline contents
 4.3.4 Dry shoot and dry root weight

4.4 Conclusion

5 SUMMARY, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Main and interaction effects of biochar, PBZ and seedling ages on plant height, rachis length and frond number of oil palm seedlings grown in main-nursery.</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Main and interaction effects of biochar and PBZ on leaf area of 12-months oil palm seedlings grown in main-nursery.</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Main and interaction effects of biochar and PBZ on dry shoot and dry root of 12-months oil palm seedlings grown in main-nursery.</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Main and interaction effects of biochar and PBZ on gibberellin and PBZ residue of 12-months oil palm seedlings grown in the main-nursery.</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Main and interaction effects of seedling transplant, water stress and seedling age on seedling height and leaf area of oil palm seedlings grown under rain-shelter.</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Main and interaction effects of treated seedling, water stress and seedling age on leaf chlorophyll, photosynthesis and transpiration rate of oil palm seedling grown under rain-shelter.</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Main and interaction effects between seedling transplant and water stress on proline contents of 16 months old oil palm seedlings grown under rain-shelter.</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Main and interaction effects between seedling transplant x water stress on dry shoot and dry root weight of 16 months old oil palm seedlings grown under rain-shelter.</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The chromatogram profile of GA in oil palm leaflet methanolic extract by HPLC.</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>The calibration curve of standard GA given as regression equation and coefficient determination.</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>The chromatogram profile of PBZ in the soil methanolic extract by HPLC.</td>
<td>23</td>
</tr>
<tr>
<td>3.4</td>
<td>The calibration curve of standard PBZ given as regression equation and coefficient determination.</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>The three way interaction effects between BC rates x PBZ rates x seedling ages on plant height of oil palm seedlings grown in the main-nursery.</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>The two way interaction effects between rates of BC x rates of PBZ on rachis length of oil palm seedlings grown in the main-nursery.</td>
<td>27</td>
</tr>
<tr>
<td>3.7</td>
<td>The relationships between rachis length and seedling age of oil palm seedling grown in the main-nursery and treated with four rates of PBZ.</td>
<td>28</td>
</tr>
<tr>
<td>3.8</td>
<td>Two way interaction effects between biochar x PBZ on dry shoot of 12-month oil palm seedlings grown in main-nursery.</td>
<td>34</td>
</tr>
<tr>
<td>3.9</td>
<td>Relationships between gibberellin contents and rates of PBZ of 12-month oil palm seedling grown in main-nursery at three rates of biochar.</td>
<td>36</td>
</tr>
<tr>
<td>3.10</td>
<td>Relationships between PBZ residue and rates of PBZ of 12-month oil palm seedling grown in main-nursery at three rates of biochar (0, 50 and 100 g/seedling).</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Interaction effects between seedling transplants x water stress x seedling age on seedling height of oil palm.</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Interaction effects between seedling transplant x water stress x seedling age on leaf chlorophyll contents of oil palm seedlings.</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Interaction effects between seedling transplant x water stress x seedling age on photosynthetic rates of oil palm seedlings.</td>
<td>50</td>
</tr>
</tbody>
</table>
4.4 Interaction effects between seedling transplant x water stress x seedling age on transpiration rates of oil palm seedlings.

4.5 Relationship between dry shoot weight and water stress of 16 months old oil palm seedlings.
LIST OF APPENDICES

Appendix	Description	Page
1 | Experiment 1 Lay-Out | 69
2 | Experiment 2 Lay-Out | 70
3 | ANOVA table showing the main and interaction effects of rate of biochar, PBZ and seedling age on seedling height of oil palm seedling grown in main-nursery | 71
4 | ANOVA table showing the main and interaction effects of rate of biochar, PBZ and seedling age on rachis length of oil palm seedling grown in main-nursery | 72
5 | ANOVA table showing the main and interaction effects of rate of biochar, PBZ and seedling age on frond number of oil palm seedling grown in main-nursery | 73
6 | ANOVA table showing the main and interaction effects of rate of biochar, PBZ and seedling age on leaf area of 12-month oil palm seedling grown in main-nursery | 74
7 | ANOVA table showing the main and interaction effects of rate of biochar, PBZ and seedling age on dry shoot of 12-month oil palm seedling grown in main-nursery | 75
8 | ANOVA table showing the main and interaction effects of rate of biochar, PBZ and seedling age on dry root of 12-month oil palm seedling grown in main-nursery | 76
9 | ANOVA table showing the main and interaction effects of rate of biochar, PBZ and seedling age on gibberellin content of 12-month oil palm seedling grown in main-nursery | 77
10 | ANOVA table showing the main and interaction effects of rate of biochar, PBZ and seedling age on PBZ-residue of 12-month oil palm seedling grown in main-nursery | 78
ANOVA table showing the main and interaction effects of treated seedlings, water stress and seedling age on seedling height of oil palm seedling grown under rain-shelter

ANOVA table showing the main and interaction effects of treated seedlings, water stress and seedling age on leaf area of oil palm seedling grown under rain-shelter

ANOVA table showing the main and interaction effects of treated seedlings, water stress and seedling age on chlorophyll contents of oil palm seedling grown under rain-shelter

ANOVA table showing the main and interaction effects of treated seedlings, water stress and seedling age on photosynthesis rate of oil palm seedling grown under rain-shelter

ANOVA table showing the main and interaction effects of treated seedlings, water stress and seedling age on transpiration rate of oil palm seedling grown under rain-shelter

ANOVA table showing the main and interaction effects of treated seedlings, water stress and seedling age on dry shoot rate of oil palm seedling grown under rain-shelter

ANOVA table showing the main and interaction effects of treated seedlings, water stress and seedling age on dry root rate of oil palm seedling grown under rain-shelter
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABA</td>
<td>Abscisic acid</td>
</tr>
<tr>
<td>APM</td>
<td>Advance planting material</td>
</tr>
<tr>
<td>a.i.</td>
<td>Active ingredient</td>
</tr>
<tr>
<td>BC</td>
<td>Biochar</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>C/N</td>
<td>Carbon/nitrogen</td>
</tr>
<tr>
<td>d⁻¹</td>
<td>Per day</td>
</tr>
<tr>
<td>Ec</td>
<td>Crop evapotranspiration potential</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty fruit bunch</td>
</tr>
<tr>
<td>Eo</td>
<td>Standard evapotranspiration potential</td>
</tr>
<tr>
<td>FC</td>
<td>Field capacity</td>
</tr>
<tr>
<td>fw</td>
<td>Fresh weight</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GA</td>
<td>Gibberellin</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IOPRI</td>
<td>Indonesian oil palm research institute</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf area index</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant different</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mEq.g⁻¹</td>
<td>Mass Equivalence per gram</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>NPK</td>
<td>Nitrogen phosphate kalium</td>
</tr>
<tr>
<td>ns</td>
<td>Non significant</td>
</tr>
<tr>
<td>P</td>
<td>Probability</td>
</tr>
<tr>
<td>PP333</td>
<td>Paclobutrazol</td>
</tr>
<tr>
<td>PBZ</td>
<td>Paclobutrazol</td>
</tr>
<tr>
<td>pH</td>
<td>Potential of hydrogen</td>
</tr>
<tr>
<td>PKS</td>
<td>Palm kernel shell</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>RHB</td>
<td>Rice hush biochar</td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient determination</td>
</tr>
<tr>
<td>SA</td>
<td>Seedling age</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical analysis system</td>
</tr>
<tr>
<td>ST</td>
<td>Seedling transplant</td>
</tr>
<tr>
<td>TC</td>
<td>Talcum concentrate</td>
</tr>
<tr>
<td>t/ha</td>
<td>Ton per hectare</td>
</tr>
<tr>
<td>WB</td>
<td>Wood biochar</td>
</tr>
<tr>
<td>WS</td>
<td>Water stress</td>
</tr>
<tr>
<td>WP</td>
<td>Wet powder</td>
</tr>
<tr>
<td>yr⁻¹</td>
<td>Per year</td>
</tr>
</tbody>
</table>
Oil palm or scientifically known as *Elaeis guineensis* Jacq., is a species of a palm tree which is commonly recognized as African oil palm or macaw-fat. Related to its name, oil palm is native to the west and the southwest of Africa, found between Angola and Gambia. The species *guineensis* was originated from Guinea (Lubis, 2011; Paterson, 2007). From Africa, oil palm had been distributed throughout the world and becomes a major commodity in term of producing vegetables oil.

Oil palm is a highly efficient vegetable oil producer compared to other oil-bearing crops (Basiron, 2007). It occupies less land, only 0.26 ha of land to produce a ton of vegetables oil compared to soybean, sunflower and rape seed which requires 2.2, 2.0 and 1.5 ha of land, respectively (Oil World, 2013; Wahid, 2011). Thus, oil palm efficiencies are 2.5 and 3 times higher as compared to soybean and rapeseed, respectively. Due to its highly efficient vegetable oil producers, oil palm enterprise has been the most important business in the world for more than two decades (Harahap, 2009).

Many countries in Southeast Asia especially Indonesia and Malaysia chose oil palm to play a vital role in economy (Amalia, 2012; Hidayat, 2007). Nowadays, 10.2 million hectares (about 2 million hectares under immature period) of land in Indonesia is under oil palm cultivation, while 5.3 million hectares is in Malaysia (Amalia, 2015). In 2013, Indonesia and Malaysia produced 33,500,000 and 21,250,000 metric ton crude palm oil (CPO), respectively (Oil World, 2014). More than 50% of those oil palm productions have been exported. The main countries that import CPO are Japan, China, India, Europe, and the United States. CPO is used in cooking oil, vegetables oil, baking, medical care, industry and biodiesel. In fact, Netherland has started to utilize CPO as source of green electricity (Ibrahim, 2008). In conjunction with the CPO application in various field, the amount of demand was progressively increase with time.

To meet up the demand of this vegetable oil, many companies has started scaling up their plantation. However, suitable land for oil palm plantation is limited. It pushes up the development of oil palm plantation to marginal and dry land, such as in south of Sumatera, Borneo and Sulawesi in Indonesia, and Perlis in Malaysia. In consequences of this development, the supplies of plant material from nursery need to be increased. Approximately, planters have to add an average 40% of seedling for each hectare of planting area. Those extra seedling are used to cover seedling selection around 20-35% (Fairhurst and Hardter, 2010), damage during transportation 10-15% and transplanting shock 5-15 % (Turner, 2003; Yusof et al., 2000). Fairhurst and Harder (2010) suggested that in a well-maintained nursery, culling should not be more than 20%. However, if the planting material is poor or taken from a poor maintenances nursery, it is necessary to cull more than 35%. Indeed, seedlings damages during transportation become serious problem and affect overall...
planting cost. It could be worse for seedlings with more than 1.6 m high. However, in the search for a superior plant material, many plant breeders are working on the advance-planting material (APM). Consequently, the seedling size produced from APM is bigger than common seedling. With these seedlings, transportation could be made at only one-third capacity compared to normal seedling. Frond pruning is also required to reduce seedling transpiration during transportation. This technique is practiced to decrease seedling transportation shock. Intensity of the transplanting shock varies with planting technique and weather conditions. According to Turner (2003), a good planting material should not be damaged more than 3% during transportation, except damages caused from pest, weather and other problem. However, palm trees that are planted in ideal weather conditions will be affected by transplanting shock and will get worse by uncertainty drought season which stimulates the incidence of water stress in plants (Fairhurst and Hardter, 2010). Severe transplanting shock will result in growth setback for more than six months and up to a year, or even palm death. A lot of efforts have been taken to face these problems. The right techniques of seedling handling and planting should be adopted to avoid any unnecessary growth setback to the palm. Frond pruning, pre-transportation watering, field watering, caring at loading and unloading during transportation are some of techniques that have been practiced. Consequently, the production cost rise linearly with all of those special techniques.

Plant hormones, have also been referred to as phytohormones, are a group of organic substances, naturally occurring which influence physiological processes at low concentrations (Davies, 2004). It plays a key role as a mediator between environmental signals and adaptive plant response (Ebofin, 2003). The effects of phytohormones are commonly demonstrated either by their exogenous application to a growing plant, retard plant growth or by the inhibition or exaggeration of their influence in mutant plants (Teale, 2005). One of the plant hormones that could retard growth and leaf expansion is paclobutrazol (PBZ). PBZ is a triazole that has been reported to protect plants against several environmental stresses such as drought and extreme temperature (Asare-Boamah, 1986; Fletcher, 2000; Marshall, 2000). PBZ interferes gibberellin biosynthesis by inhibiting the oxidation of ent-kaurene to ent-kaurenoic acid through inactivating cytochrome p450-dependent oxygenases (Graebe, 1987). It is also reported that PBZ stimulate the accumulation of proline in the leaves (Asare-Boamah, 1986) and responsible in controlling the stomata closure and stability of cell during drought period. The response varies depending on the type of application, doses, concentrations and plant species (Corbineau et al., 1990; Sambanthamurthi et al., 2000; Sawan, 1993; Tabur, 2009). They are several research indicated that a plant could be compacted by using PBZ such as cocoa, apple, peach, plum and mango trees (Abou et al., 1997; Blaikie et al., 2004; Kasran, 1994; Wieland and Wample, 1985). Compact plants which produced by using PBZ showed a positive result to overcome drought season (Ali and Shawn, 2010; Anonymous, 2007; Carvajal, 1998; Hashim, 1991; Latimer, 1992; Wang and Steffens, 1985). With compact seedlings, it is easy to maintain and transplant to the field (Hashim, 1991). Indeed, the function of PBZ in inducing proline would be an indication in drought tolerant effect.
Biochar is a charcoal or carbon rich by-product produced by biomass (e.g. agricultural crop residues, wood, waste, etc.) which is heated through the process of pyrolysis in an oxygen-depleted environment (Bruun et al., 2012; Denyes et al., 2012; Galinato et al., 2011; Karhu et al., 2011; Kookana et al., 2011). Attention has been received from the environmentalist to biochar because of its ability in sequestration of carbon in the soil for a long time and mitigate greenhouse gases (Galinato et al., 2011; Laird, 2010). In addition, some research has found that applying biochar to soil can increase crop yield, reduce the leaching of nutrients and stimulate soil microbial activity (Kolb et al., 2009). Some of benefits of applying biochar to agricultural soil are increasing soil pH, stabilizing solutes and nutrient ions, improved soil structure and the retention of soil moisture (Brodowski, 2006; Clough, 2010; Laird et al., 2010; Lehmann et al., 2011). Consequently, the intrinsic properties of biochar and its complex interaction with different soil types would give impact on soil–plant–microbe interactions and changes in nutrient cycle and improving crop growth. Biochar has also been reported to produce drought resistant plants (Anonymous, 2009; Barrow, 2011; Downie et al., 2009; Galinato et al., 2011; Karhu et al., 2011; Kookana et al., 2011; Lehmann et al., 2011).

Information on utilization of PBZ and biochar and their rates on growth of oil palm seedlings in the field are still lacking, especially on plant vegetative, physiological aspects, and water stress. Thus, the main objective of this study is to investigate the effects of PBZ, biochar and water stress on growth of oil palm seedlings. The specific objectives are to examine the effects of PBZ and biochar on the growth performance of oil palm seedlings in main-nursery, and to investigate growth and physiologies performance of oil palm seedling that was treated with PBZ and biochar under field water stress simulated condition.
REFERENCES

Sangkot (2013). "Transported marihat klon from Marihat Research Station to Rengat Estate PT.PN5 Riau." Internal report of Indonesian Oil Palm Research Institute, Medan.

