UNIVERSITI PUTRA MALAYSIA

CAPITAL ADEQUACY, DEFAULT RISK AND MACROECONOMIC SHOCKS IN COMMERCIAL BANKS IN EAST ASIAN EMERGING COUNTRIES

MOHAMMADREZA ALIZADEH JANVISLOO

FEP 2015 12
CAPITAL ADEQUACY, DEFAULT RISK AND MACROECONOMIC
SHOCKS IN COMMERCIAL BANKS IN EAST ASIAN EMERGING
COUNTRIES

By

MOHAMMADREZA ALIZADEH JANVISLOO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATIONS

To my wife, Haleh
My lovely son, Amir
Father and mother
For their support and never-ending love.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

CAPITAL ADEQUACY, DEFAULT RISK AND MACROECONOMIC SHOCKS IN COMMERCIAL BANKS IN EAST ASIAN EMERGING COUNTRIES

By

MOHAMMADREZA ALIZADEH JANVISLOO

September 2015

Chair : Junaina Muhammad, PhD
Faculty : Economics and Management

Evidence from bank failures due to different types of crises over the past decade has led to banks' capital metrics process to be challenging. One of the most challenging processes is to measure default risk and optimum capital. Market asset value is used to measure default risk and optimum capital to test the health of the banking system. The effect of economic shocks on banks’ default risk is the other issue related to the health of banks, which has been strongly considered in developed countries. In the literature related to these topics, there is a gap in East Asian emerging countries.

In this study, the probability of default is primarily estimated based on market information with a Merton’s Option Pricing Model for commercial banks in five emerging countries (Malaysia, Singapore, Korea, Thailand, and Indonesia) for the period of 1995-2013. The estimated default risk varies according to economic conditions and increases noticeably in the disaster time. It also consists of asset qualities such as non-performing loans. The default risk in Indonesia and Korea are always more than the other countries while Singapore has the lowest risk.

To meet the second objective, a Global Vector Auto Regressive (GVAR) Model has been used to measure the effects of macroeconomic internal and external shocks on domestic macroeconomic risk factors. The shocks up to 3 standard deviations of variables have been imposed to GVAR Model. Bootstrap median estimation of generalized impulse response functions show that weak exogenous foreign country-specific variables have significant effects on their domestic corresponding variable. Meanwhile the equity price, real GDP, and real exchange rate are the main transmission channel of shocks’ effects on the domestic macro risk factors.

Finally, this study estimates the relationship between the probability of default and macroeconomic risk factors using a dynamic panel data model with a Least Square Dummy Variable Bias Correction (LSDVBC) estimator. The empirical outcome shows that the default risk is explained with different combinations of variables in each country. Meanwhile the equity piece, real exchange rate, real output, and oil price are
the most effective variables on the probability of default. The bank size and asset return ratio is the other effectual bank-specific variables on default risk.

Based on the impulse response functions, the default risk has been affected by macroeconomic shocks in Malaysian banks more than the other countries. The banks in Indonesia, Korea, Thailand, and Singapore have less been influenced respectively. The banks’ capital conditions is different in these countries and the impact of shocks on the probability of default definitely depends on the initial conditions in terms of capital and market value of their assets as well as their equity volatility, bank size, and asset return ratio.

Banks in Singapore have the best condition as the suggested adequate capital ratio is 18.5 percent, which requires a 14 percent increase in capital. In Indonesia, the banks’ capital is not in well status and the capital ratio has to be 24.2 percent due to 51.4 percent increasing in the capital. Korea, Malaysia, and Thailand have relatively been in better and somewhat similar conditions. Hence, they need to improve their adequate capital ratio to 20.6, 20.1, and 21.2 percent while the required capital increase equals 34, 37 and 39.7 percent in average respectively. Therefore following the macroprudential policy and forward-looking approach, it is suggested that the banks' capital to be strengthened before a sudden shock leads to a financial crisis.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

NISBAH KECUKUPAN MODAL, KEBARANGKALIAN KEMUNGKIRAN DAN KEJUTAN EKONOMI MAKRO DI BANK PERDAGANGAN DI RANTAU NEGARA MEMBANGUN ASIA TIMUR

Oleh

MOHAMMADREZA ALIZADEH JANVISLOO

September 2015

Pengerusi : Junaina Muhammad, PhD
Fakulti : Ekonomi dan Pengurusan

Bukti daripada kegagalan bank disebabkan oleh beberapa jenis krisis sepanjang dekad yang lalu telah membawa kepada proses metrik modal bank yang mencabar. Satu daripada proses yang paling mencabar ialah mengukur risiko kemungkiran dan modal optimum. Nilai pasaran asset digunakan untuk menilai risiko kemungkiran dan modal optimum untuk menguji kesiapan sistem bank. Salah satu isu lain yang berkaitan dengan peringkat kesiapan perbankan, adalah kesan kejutan ekonomi pada risiko kemungkiran bank. Ini telah diberikan pertimbangan yang agak penting di negara-negara maju. Dalam sorotan literatur yang berkaitan dengan topik-topik ini, terdapat jurang di negara-negara baru Asia Timur.

Kejutan sehingga 3 sisihan piawai pembolehubah telah dikenakan ke atas GVAR Model. Bootstrap anggaran median umum fungsi tindak balas impuls menunjukkan bahawa pembolehubah negara asing luaran yang lemah, mempunyai kesan yang amat penting dan ketara ke atas pembolehubah domestik mereka. Sementara itu harga ekuiti, KDNK benar dan kadar pertukaran sebenar adalah saluran penghantaran utama kesan kejutan ke atas faktor-faktor risiko makro domestik.
Akhir sekali, kajian ini menganggarkan hubungan antara kebarangkalian lalai dan faktor-faktor risiko makroekonomi dengan menggunakan model data panel dinamik dengan Dataran Dummy Pembetulan Bias ubah (LSDVBC) penganggar yang paling kurang.

Hasil empirikal menunjukkan bahawa risiko mungkir dijelaskan dengan kombinasi pembolehubah yang berbeza di setiap negara. Sementara itu, ekuiti, kadar pertukaran sebenar, pengeluaran sebenar dan harga minyak adalah pembolehubah yang paling berkesan pada kebarangkalian kemungkinan. Saiz bank dan nisbah pulangan aset adalah antara pembolehubah yang berkesan ke atas risiko mungkir. Bank-bank di Singapura mempunyai keadaan yang terbaik Nisbah modal memadai yang mencukupi, berdasarkan nisbah 18.5 peratus, yang memerlukan peningkatan modal sebanyak 14 peratus. Di Indonesia, modal bank tidak berada dalam status yang baik berdasarkan nisbah modalnya yang menjadi 24.2 peratus, disebabkan oleh 51.4 peratus peningkatan modal di ibu negara. Korea, Malaysia, dan Thailand berada dalam keadaan yang lebih baik dan agak serupa. Oleh itu, mereka perlu mempertingkatkan nisbah kecukupan modal kepada 20.6, 20.1 dan 21.2 peratus; manakala peningkatan modal yang diperlukan adalah sama dengan 34, 37 dan 39.7 peratus dalam purata masing-masing. Oleh itu, berdasarkan kepada polisi kehematan makro dan bagi pendekatan masa hadapan, adalah dicadangkan supaya modal bank diperkukuhkan sebelum kejutan secara tiba-tiba yang membawa kepada krisis kewangan.
ACKNOWLEDGEMENTS

This dissertation would not have been complete without the help of many people. I would like to express my gratitude to my supervisor, Dr. Junaina Muhammad, for her encouragement, guidance, and support in each and every manner throughout my graduate studies.

I am also indebted to committee members of this dissertation, Professor Dr. Muzafar Shah Habibulah and Associate Professor Dr. Taufiq Hassan. I want to thank them for their assistance, support, and valuable comments.

In the process of writing this thesis, I received help from other scholars in the field to whom I am greatly indebted, Dr. L. Vanessa Smith, Dr. Alessandro Galesi, and Mark Whirdy.

Finally, I would like to thank my wife and my son who were my patient companions on this journey.
I certify that a Thesis Examination Committee has met on 14 September 2015 to conduct the final examination of Mohammad Reza Alizadeh Janvislooo on his thesis entitled "Capital Adequacy, Default Risk and Macroeconomic Shocks in Commercial Banks in East Asian Emerging Countries" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Zaleha binti Mohd Noor, PhD
Associate Professor
Faculty of Economics and Management
Universiti Putra Malaysia
(Chairman)

Bany Ariffin bin Amin Noordin, PhD
Associate Professor
Faculty of Economics and Management
Universiti Putra Malaysia
(Internal Examiner)

Normaz Wana binti Ismail, PhD
Associate Professor
Faculty of Economics and Management
Universiti Putra Malaysia
(Internal Examiner)

M. Kabir Hassan, PhD
Professor
University of New Orleans
United States
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 November 2015
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Junaina Muhammad, PhD
Senior Lecturer
Faculty of Economics and Management
Universiti Putra Malaysia
(Chairman)

Muzafar Shah Habibullah, PhD
Professor
Faculty of Economics and Management
Universiti Putra Malaysia
(Member)

Taufiq Hassan, PhD
Associate Professor
Faculty of Economics and Management
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
(Date)
Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: ________________________

Name and Matric No.: Mohammadreza Alizadeh Janvisloo GS31284
Declaration by Members of Supervisory Committee

This is to confirm that:
- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___ Signature: __________________________
Name of Chairman of Supervisory Committee: Junaina Muhammad, PhD Name of Member of Supervisory Committee: Taufiq Hassan, PhD

Signature: ___
Name of Member of Supervisory Committee: Muzafar Shah Habibullah, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of the study 1
1.2 Default Risk, Capital and Health of the Banking System 2
1.3 Credit Risk and Banks Loan Portfolio 3
1.4 Banks’ Asset and Liability After 1997 Crisis 5
1.5 Capital Adequacy and BASEL III 8
1.6 Statement of the Problem 10
1.7 Objective of the Study 12
1.8 Research Scope 12
1.9 The Significant and Contribution of the Study 13

2 LITERATURE REVIEW

2.1 Introduction 14
2.2 Theoretical Studies of Credit Risk Models 14
 2.2.1 Traditional Methods of Credit Risk Measurement 15
 2.2.2 Capital Market Credit Risk Models 16
 2.2.3 Banks’ Capital and Credit Risk 18
 2.2.4 Macroeconomic Approach 21
 2.2.5 The Role of External Factors 22
2.3 Stress Test Modeling 24
 2.3.1 Macroeconomics and Generating Risk Factor 25
 2.3.2 Historical Stress Test 26
2.4 Empirical Studies 27
 2.4.1 Macroeconomic Model and Stress Scenario 27
 2.4.2 Credit Risk Models and Stress Test Implementation 27
 2.4.3 Case Studies 28
2.5 Summary 34

3 METHODOLOGY

3.1 Introduction 41
3.2 Risk Indicator Estimation 41
 3.2.1 Brief Review of Structural Risk Models 41
 3.2.2 Default Risk Model Setup 42
3.3 The Interaction Among Macroeconomic Risk Factors 46
 3.3.1 GVAR Model Setup 48
3.3.2 GVAR Model’s Assumptions 50
3.3.3 Model Specification and Data 51
3.4 Macroeconomic Shocks and Optimum Capital Adequacy 54
3.4.1 Mapping from Macroeconomic Shocks to Banks’ Portfolios (Risk) 54
3.4.2 Shock Calibration and Capital Adjustment 59
3.5 Summary 60

4 RESULT AND DISCUSSION 62
4.1 Overview of the Chapter 62
4.2 Analysis and Findings of the First Objective 62
4.2.1 Summary Statistics 62
4.2.2 Estimating of the Probability of Default 63
4.3 The Analysis of Second Objective (Forecasting the Macroeconomic risk factors) 73
4.3.1 GVAR Model 74
4.3.2 Trade Matrix 74
4.3.3 Unit Root Test 74
4.3.4 Weak Exogeneity Test 77
4.3.5 Test for Structural Break 83
4.3.6 Estimation of GVAR Model 84
4.3.7 Impulse Response Functions 85
4.4 Third Objective (Default risk, Shocks, and Capital Ratio) 95
4.4.1 Analysis of Macroeconomic Factors of Default Risk 95
4.4.2 Effects of Macroeconomic Shocks 105
4.4.3 Default Risk and Capital Adjustment 108

5 SUMMARY AND CONCLUDING REMARKS 116
5.1 Introduction 116
5.2 Summary of Results 117
5.3 Policy Implications 122
5.4 Recommendations for Future studies 123

REFERENCES 125
APPENDICES 138
BIODATA OF STUDENT 156
LIST OF PUBLICATIONS 157
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Some Financial Features in Studied Countries.</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Sample and Methodologies used in selected macro stress test studies.</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>General form of Bank’s Balance Sheet.</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>The Data Used in Banks’ Credit Risk Model Based on Compound Option Pricing Approach.</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Number of Banks and Observation.</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>The Symbols to Show the Countries and Groups in GVAR Model.</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>The Statistical Summary of Input Data in Merton Model for the Listed Banks for the Period 1995-2013.</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Average Default Risk in Listed Commercial Banks in Studied Countries (1995-2013)</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of Non-Performing Loan Ratio and Market Value of Asset on Probability of Default</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Descriptive Statistics of Domestic Macroeconomic Variables.</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Trade Weights Based on Direction of Trade Statistics.</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Unit Root Tests for the Global Variables at the 5% Significance Level.</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>Unit Root Tests for the Domestic Variables at the 5% Significance Level.</td>
<td>78</td>
</tr>
<tr>
<td>4.8</td>
<td>Unit Root Tests for the Foreign Variables at the 5% Significance Level.</td>
<td>80</td>
</tr>
<tr>
<td>4.9</td>
<td>Test for Weak Exogeneity for Foreign Country-Specific Variables.</td>
<td>82</td>
</tr>
<tr>
<td>4.10</td>
<td>Structural Break Tests’ for Domestic Variables (Number and Percentage of Rejection of Null Hypothesis of Stability Coefficients).</td>
<td>83</td>
</tr>
<tr>
<td>4.11</td>
<td>Contemporaneous Effects of Foreign Variables on Domestic Variables in Targeting Countries.</td>
<td>86</td>
</tr>
<tr>
<td>4.12</td>
<td>Average and Maximum Effects Within one Year after Different Type of Shocks Based on Generalized Impulse Response Function (Median Bootstrap Estimation with 90% Confidence Bounds).</td>
<td>88</td>
</tr>
<tr>
<td>4.13</td>
<td>Pairwise Correlation Matrix for Macroeconomic, Bank Specific and Global Variables.</td>
<td>96</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>4.14 Statistical Summary of Variables in the LSDVC Models.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>4.15 Analysis for Effect of Domestic Macroeconomic Risk Factors on Probability of Default (p^*) with a Dynamic Panel Estimation.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4.16 Top 10 Effective Shocks (Domestic or Foreign) on Probability of Default (p^*) of Commercial Banks in Studied Countries in Average.</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>4.17 Capital Adjustment of One Selected Bank in Studied Countries Against Default Risk Arising from Top Ten Effective Shocks.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>4.18 Capital Adjustment in Banks against Default Risk Raise from the Most Effective Shocks in Studied Countries.</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>A.1 The share of SMEs in real economy and financial system.</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>A.2 Payoffs and Securities Values in a Compound Option Models.</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>A.3 Probability of Default/Survival in Compound Option Pricing Model.</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>A.4 List of Commercial Banks in Studied Countries.</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>A.5 Lag Orders, Cointegration Relation and Serial Correlation Test of VECMX* Residuals.</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Portfolio Risk (expected (EL) and unexpected (UL) loss)</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>The Share of Personal and Non-Industrial Loans in Commercial bank (1990-2014).</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>The Share of Foreign Funds from Total Liability in Commercial Bank (2000-2014).</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>The Process of Capital Adjustment against the Macroeconomic Shocks</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Compression Probability of Default with Risk Based and Market Value Capital Ratio and Growth Rate of Market Value of Equity and Asset in Listed Banks of Target Countries (1995-2013)(All in %)</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Compression Logarithm of Probability of Default (P*) with Non-Performing Loan (NPL) to Total Loan Ratio in Listed Banks of Target Countries (1995-2013).</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Generalized Impulse Responses of Domestic Risk Factors in Studied Countries Against Different Type of Shocks on Macroeconomic Variables.</td>
<td>87</td>
</tr>
<tr>
<td>A.1</td>
<td>Combination of SME and household loans in commercial banks (trillion won).</td>
<td>138</td>
</tr>
<tr>
<td>A.2</td>
<td>Household Debt in Malaysia.</td>
<td>138</td>
</tr>
<tr>
<td>A.3</td>
<td>Size of Corporate Bond Market (% GDP), (1995-2013).</td>
<td>140</td>
</tr>
<tr>
<td>A.4</td>
<td>Volume of Financial Markets and GDP in Studied Countries</td>
<td>141</td>
</tr>
<tr>
<td>A.5</td>
<td>The Relationship between market values of equity and asset.</td>
<td>142</td>
</tr>
<tr>
<td>A.6</td>
<td>Background of Merton’s Model (asset value changes during the time)</td>
<td>143</td>
</tr>
<tr>
<td>A.7</td>
<td>Payoffs and Securities Values in a Compound Option Models.</td>
<td>144</td>
</tr>
<tr>
<td>A.8</td>
<td>Asset Weighted Average of Probability of Default (P) and itsLogarithm (P*) in Commercial Unlisted Banks of Five Studied.Countries (1995-2013).</td>
<td>149</td>
</tr>
<tr>
<td>A.9</td>
<td>Generalized Impulse Response of Domestic Risk Factors in Studied Countries Against Different Type of Shocks on Macroeconomic Variables.</td>
<td>151</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a SMEs and Households in studied countries</td>
<td>138</td>
</tr>
<tr>
<td>1.b New Financial Markets and Banks’ Position in Studied Countries</td>
<td>139</td>
</tr>
<tr>
<td>2 Merton Model Framework</td>
<td>142</td>
</tr>
<tr>
<td>3 Geske (1979; 1977) Compound Option Pricing Model</td>
<td>144</td>
</tr>
<tr>
<td>4 Estimation the GVAR Model</td>
<td>147</td>
</tr>
<tr>
<td>5 Tables and Figures about Results</td>
<td>148</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>Akaike Information Criterion</td>
</tr>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
</tr>
<tr>
<td>ADF</td>
<td>Augmented Dickey–Fuller</td>
</tr>
<tr>
<td>APW</td>
<td>Andrews and Ploberger (1994) Wald</td>
</tr>
<tr>
<td>AR</td>
<td>Auto Regressive</td>
</tr>
<tr>
<td>BCBS</td>
<td>Basel Committee of Banking Supervisors</td>
</tr>
<tr>
<td>BSM</td>
<td>Black & Schole (1973) and Merton (1974)</td>
</tr>
<tr>
<td>CPI</td>
<td>Consumer Price Index</td>
</tr>
<tr>
<td>CRD</td>
<td>Capital Requirements Directive</td>
</tr>
<tr>
<td>Cs</td>
<td>Five important factors, including Character, Capital, Capacity, Collateral and Cycle condition</td>
</tr>
<tr>
<td>CUSUM</td>
<td>Cumulative sum</td>
</tr>
<tr>
<td>CV</td>
<td>Covariance Estimator</td>
</tr>
<tr>
<td>DD</td>
<td>Distance to Default</td>
</tr>
<tr>
<td>DSGE</td>
<td>Dynamic Stochastic General Equilibrium</td>
</tr>
<tr>
<td>DWB</td>
<td>Data base of World Bank</td>
</tr>
<tr>
<td>EaD</td>
<td>Exposure at Default</td>
</tr>
<tr>
<td>EDF</td>
<td>Expected Default Frequencies</td>
</tr>
<tr>
<td>EDG</td>
<td>Ratio of External Debt to GDP</td>
</tr>
<tr>
<td>EL</td>
<td>Expected Loss</td>
</tr>
<tr>
<td>EMEAP</td>
<td>Executives’ Meeting of East Asia Pacific Central Banks</td>
</tr>
<tr>
<td>FAVAR</td>
<td>Factor Augmented Vector Autoregressive</td>
</tr>
<tr>
<td>FLFA</td>
<td>Ratio of Foreign Liability to Foreign Asset</td>
</tr>
<tr>
<td>FR</td>
<td>Ratio of Foreign Reserve to GDP</td>
</tr>
<tr>
<td>FSAP</td>
<td>Financial Sector Assessment Program</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Production</td>
</tr>
<tr>
<td>GIRF</td>
<td>Generalized Impulse-response function</td>
</tr>
<tr>
<td>GMM</td>
<td>Generalized Method of Moments</td>
</tr>
<tr>
<td>GVAR</td>
<td>Global Vector Auto Regressive</td>
</tr>
<tr>
<td>I(1)</td>
<td>Integrated with order one</td>
</tr>
<tr>
<td>IDR</td>
<td>Indonesian Rupie</td>
</tr>
<tr>
<td>IFS</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>IMF</td>
<td>International Monetary Fund</td>
</tr>
<tr>
<td>IRB</td>
<td>Internal Rating Based</td>
</tr>
<tr>
<td>IRF</td>
<td>Impulse Response function</td>
</tr>
<tr>
<td>IV</td>
<td>Instrument Variables</td>
</tr>
<tr>
<td>KMV</td>
<td>Model has been developed by Kealhofer, John Andrew McQuown, and Oldrich Vasicek in 1989</td>
</tr>
<tr>
<td>KRW</td>
<td>Korean Wang</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>LGD</td>
<td>Loss Given Default</td>
</tr>
<tr>
<td>Ln</td>
<td>Logarithm of Neperian</td>
</tr>
<tr>
<td>LSDV</td>
<td>Least-Squares Dummy Variables</td>
</tr>
<tr>
<td>LSDVC</td>
<td>bias corrected Least Square Dummy Variable</td>
</tr>
<tr>
<td>MR</td>
<td>Malaysian Ringet</td>
</tr>
<tr>
<td>MSCI</td>
<td>Morgan Stanley Capital International</td>
</tr>
<tr>
<td>MTM</td>
<td>Mark-to-Market</td>
</tr>
<tr>
<td>MVC</td>
<td>Market Value Capital</td>
</tr>
<tr>
<td>MW</td>
<td>Mean Wald</td>
</tr>
<tr>
<td>NAIC</td>
<td>National Association of Insurance Commissioners</td>
</tr>
<tr>
<td>NPL</td>
<td>Non-Performing Loans</td>
</tr>
<tr>
<td>OCC</td>
<td>Office of Comptroller of the Currency</td>
</tr>
<tr>
<td>OLS</td>
<td>Ordinary Least Square</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PD</td>
<td>Probability of Default</td>
</tr>
<tr>
<td>PKms</td>
<td>Ploberger and Krämer’s (1992) Mean Square</td>
</tr>
<tr>
<td>PKsup</td>
<td>Ploberger and Krämer’s (1992) maximal OLS cumulative sum</td>
</tr>
<tr>
<td>PMG</td>
<td>Pooled Mean Groups</td>
</tr>
<tr>
<td>PPP</td>
<td>Purchasing Power Parity</td>
</tr>
<tr>
<td>QLR</td>
<td>Quandt’s (1960) likelihood ratio</td>
</tr>
<tr>
<td>QR</td>
<td>quintile regression</td>
</tr>
<tr>
<td>RBC</td>
<td>Risk Based Capital</td>
</tr>
<tr>
<td>RNDP</td>
<td>Risk Neutral Default Probability</td>
</tr>
<tr>
<td>SBC</td>
<td>Schwartz Bayesian Criterion</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SEDR</td>
<td>Ratio of Short-term External Debt to Reserves</td>
</tr>
<tr>
<td>SGS</td>
<td>Singapore Dollar</td>
</tr>
<tr>
<td>SMEs</td>
<td>Small size Entrepreneurs</td>
</tr>
<tr>
<td>SMM</td>
<td>Small Macroeconomic Model</td>
</tr>
<tr>
<td>SRM</td>
<td>Systematic Risk Monitor</td>
</tr>
<tr>
<td>THB</td>
<td>Thai Bath</td>
</tr>
<tr>
<td>UL</td>
<td>Unexpected Loss anism</td>
</tr>
<tr>
<td>VaR</td>
<td>Value at Risk</td>
</tr>
<tr>
<td>VAR</td>
<td>Vector Auto Regressive</td>
</tr>
<tr>
<td>VECM</td>
<td>Vector Error Correction Model</td>
</tr>
<tr>
<td>WS</td>
<td>Weighted Symmetric</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the study

Banking industry is one of the most effective and important sectors in each economy. Strong and stable banking sector can play an important role in a implementation of fiscal and monetary policies. On the other hand, the weak and shaky banking systems could lead to recession and even financial deterioration in distress conditions like what occurred in Asian 1997 financial crisis. The latter was more important for economists due to the heavy costs imposed on the economies. Because of this dual feature of banks, the health and safety of the banking system has become one of the topics of interest to economists. One of the main criterions for assessing the health of banks is the accurate measurement of adequate capital to deal with bankruptcy in critical conditions.

For almost a decade, most banks have used the Basel II standards in order to measure the adequate capital. However, well capitalized banks failed due to the recent global financial crises in Europe and the U.S.A. This event led to the widespread criticism of the Basel II, and many central banks focused on the other new methods for measuring the bank’s capital. The findings of these empirical studies resulted in the statement of Basel III. According to Basel III, the minimum total capital adequacy ratio in banks has to increase from 8% to 10.25%. In addition, based on economic conditions, each bank can keep more capital according to internal risk models in order to prevent bankruptcy. Hence, in order to measure the optimum capital, it was suggested to do the stress tests on the banks periodically.

Default risk is one of the most important indexes to regulate banks’ portfolios and determine the adequate capital. Whenever the bank is unable to fulfill its obligations, it will be faced with default risk. Since deposits are the main sources of financing in a bank, the main obligations of the bank are the financial security of deposits. On the other hand, the bank’s ability to make the repayment of its obligations depends on its asset value. Loans are the major parts of assets which their values are always affected by credit risk. Hence the default risk is directly related to the quality and combination of assets and liabilities in a bank and focusing on particular sectors of the economy cause the banks’ credit to concentrate on these sectors. In such a condition, sudden diverse financial and macroeconomic shocks can lead to high credit risk in banks, and the losses arising from bank loans lead to a decline in the asset values and consequently an increase in the probability of default.

This feature can be seen in the banking system of Southeast Asian emerging countries. The emerging markets were initially defined by Antoine W. van Agtmael in 1981 to identify economics with rapid economic growth and industrialization. The other criterions to classify the emerging market by the IMF are the share of foreign income, external financial sources, and the degree of debt services. The emerging markets always have been changed from close to open economy and the structure of financial and capital market have been changed due to this transmission. These countries are the
high return investment opportunity for foreign investment. However the risk for investors is higher than others developed countries. Economy Watch has shown the multiple arrangements of these countries by various organizations, beside the IMF’s classification of emerging economies.\(^1\)

After the Asian crisis, the structure of financial system changed significantly in suffered countries.\(^2\) This restructuring in financial systems led to fundamental changes in commercial banks’ position in the financial sector and their liabilities and asset portfolios. Over one decade after the implementation of these policies, a significant portion of banks’ assets has moved to the non-industrial sector, households and small and medium size entrepreneurs (SMEs), and the share of corporate loans has been reduced. Table and figures in appendix A.1.a show some information about SMEs and households in studied countries. An increase in the leverage ratio in these sectors leads to high vulnerability against economic shocks. It can become a serious threat to the bankruptcy of commercial banks in crisis.

The openness of economies and development of international financial markets have exacerbated this vulnerability. Thus, it is necessary to ensure the health of banking system in the face of adverse economic shocks. The bankruptcy experience in significant proportion of banks during the costly financial crisis of 1997 made it more important to pay attention to this issue in East Asian emerging countries. Reviewing the existing literature revealed that there were some gaps regarding this issue in these countries. This research was an attempt to measure the commercial banks’ default risk in selected East Asian emerging countries (including Malaysia, Singapore, Korea, Thailand, and Indonesia)\(^3\), and it estimated the sensitivity of the probability of default to macroeconomic shocks. Then, the amount of required capital has been forecasted to deal with the default risks raised from economic shocks.

Before addressing the problem concerning the studied countries, it is necessary to have a brief reference to the concept of risk and its components. Understanding the origin of default risk and its relationship with banks’ assets and liabilities makes it easy to understand the vulnerability of banks against economic shocks.

1.2 Default Risk, Capital and Health of the Banking System

According to Cihk and Schaeck (2007); Demirgüç-Kunt and Detragiache (1998); and Navajas and Thegeya (2013), capital adequacy is one of the most important financial sound indicators in banks. Because of funding with deposits, banks often face high

\(^1\) See: http://www.economywatch.com/world_economy/emerging-markets

\(^2\) The most important parts of this mutation are the implementation of Financial Sector Assessment Program (FSAP) and development of new financial markets such as stock and bond markets. The recapitalization of damaged banks, bank mergers and the participation of foreign banks in domestic banking sectors were the other supportive programs to revive the banking system (See, Domanski, 2005; Jeon et al. 2011; Santoso, 2009).

\(^3\) It is noticeable that South Korea is assumed the emerging country according to MSCI Barra’s, The Economist’s, and the Next Eleven classification lists. The Singapore also is the emerging country based on The Economist’s list. The other three countries are emerging country based on IMF and some other classification organization. See http://www.economywatch.com/world_economy/emerging-markets.
leverage ratio (the ratio of deposit to asset). This feature makes banks extremely vulnerable to any macroeconomic shocks in a way they face the risk of bankruptcy. This is one of the reasons that forces banks to keep a minimum capital. In addition, the capital of a bank plays a fundamental role as a buffer against the loss risen from loans and an instrument to decrease the probability of default.

The related literature (see section 2.2.3) also shows that calculating banks’ optimal capital has shifted over time toward the credit risk-based methods. Focal points of these studies such as Altman and Saunders (2001), Herring (2005), Jarrow (2007) and Kashyap and Stein (2004) are related to the criticism on Basel II standard risk-based methods such as procyclical effects of banks’ capital limitation. It has also been pointed out that Basel II fails to adjust the weights of assets (assigned based on risk) due to the changes in economic conditions (Kashyap & Stein, 2004). And finally, the role of market information has been emphasized for determining and controlling banks’ capital (Bliss & Flannery, 2001; Flannery, 1998; Flannery, 2001; Krainer & Lopez, 2004). Therefore, using leverage ratio based on market value of asset and liability has taken more attention than accounting based on this ratio. Forgoing will be more apparent with a brief reference to the effects of market value on credit risk in bank loan portfolios.

1.3 Credit Risk and Banks Loan Portfolio

According to the classification made by Delamaire (2012), risks in banks are classified into four major groups including financial risks, operational risks, business risks, and events risks. As the most important business of commercial banks is funding (borrowing) and lending financial resources; hence, the credit risk is the original source of financial risk in banks. The definition of credit risk makes this dominant feature clearer. Credit risk is indeed the loss due to unwillingness or inability of one party in a financial contract to fulfill the obligation at the time of commitment that damages the opposite party.

The credit risk is comprised of three main components: Probability of Default (PD)\(^4\) that is probability of failure to perform the obligation by the debtor due to the contract; Exposure at Default (EaD) which is the amount of the debt that borrower is unable to pay at the time of default, and Loss Given Default (LGD) that is the amount of final loss after the deduction of covered loss (recovery rate or RR) by creditor from EaD (Saunders & Allen, 2002).

Based on the regulatory definition of risk, multiplication of PD and LGD is the Expected Loss (EL) that is anticipated to incur under normal market conditions. In other words, EL is the loss rate or price of particular exposure at the beginning of the contract. The volatility from EL (difference between whole loss and EL at default time) is in fact the risk or Unexpected Loss (UL) in relation to one individual credit. The

\(^4\) Note that there are different concepts about probability default in relation to bank and bank’s borrowers. In the case of bank borrowers, it means the failure to repay the loans. However, the bank’s probability of default refers to bank's inability to repay its obligation (funds to depositors).
The main objective of risk management is, on the one hand, to minimize the unexpected loss, and on the other hand, to keep the adequate capital to prevent bankruptcy.

To access the bank’s total portfolio credit risk, the individual portfolio credit risks are combined together based on a credit risk model. Figure 1.1 shows a simple shape of the modeling of the portfolio risk in bank. Based on the frequency of EL, the probability of default can be estimated.

![Figure 1.1. Portfolio Risk (expected (EL) and unexpected (UL) loss)](source)

Note: DM and MTM refer to two different approaches: Default mode and Mark-to-Mark model.

In this regard, two different attitudes are expressed: the first one which is called default mode or DM model is that the calculation of the expected loss is confined just to the economic value of the loan in default. In the next approach, the loss arising from changes in credit rate or market value of loans (due to increased default) is also taken into account in measuring loan loss. This is called mark-to-market or MTM models (Saunders & Allen, 2002). This simple example shows the relationship between the market value of loan and probability of default for creditors.

The distinction between these two approaches is the main factor of difference between traditional and structural risk models. In the traditional models as discussed in Bank for International Settlements (2004), the loss rate or EL does not change during the maturity time; in other words, unlike the structural models, the volatility of real market value of remaining exposure at default time is not considered in calculating the actual amount of expected loss. This issue has been widely argued among risk analysts after the recent global financial crisis, which showed most of the well capitalized banks experienced failure based on Basel II regulation. Due to the essential weakness of the Basel II in measuring capital regulatory, the analysts have concentrated on two fundamental points; first, the approach to credit risk models based on the market value of assets (loans), and the second, the impact of business cycle and macroeconomic shocks on the assets market value.

As mentioned earlier, the credit risk as a source of default risk is affected by market value of assets and has a significant role in specifying the amount of the required capital based on the risk. The market value of assets is not easily available and can be
measured as a function of equity price and amount of liability based on option pricing model. This is the foundation of structural models that links the assets value to liability in the process of estimating the probability of default. The relationship between probability of default and market value of assets is an appropriate tool to calculate the capital requirement consisting of each level of the probability of default (Chacko et al., 2006; Imerman, 2011).

The countries studied in this thesis have attempted to implement the financial restructuring policies after the Asian financial crisis. This restructuring in financial systems has led to a change in the combination of commercial banks’ liabilities and assets. Now, after over one decade of the implementation of these policies, a review of the current status of commercial banks will present a clearer picture of the credit risk exposure of banks loan portfolio and the probability of default.

1.4 Banks’ Asset and Liability After 1997 Crisis

Up until 1997, almost the main part of banks’ credit was held by big firms and corporations. The concentration of banks’ credits on this sector beside the weaknesses in risk management led to the bankruptcy of a large number of banks following the financial crisis. The development of new financial markets such as stock and bond markets was one of the policies after the crisis in East Asian emerging countries. The main objective of this policy was to provide a convenient tool to obtain long-run capital for investors and reduce the mismatch between the banks’ short-term deposits and long-term loans.5

The expansion of these markets has affected the performance of banks. Some of banks’ credit customers have moved to these markets and banks encountered a gradual accumulation of funds; therefore, in order to maintain their profitability, non-industrial sectors including SMEs and households have been targeted as new credit customers. It has to be noted that the structural weakness in Indonesia and Thailand has led to less development of bond market. So, in these two countries, in addition to an increase in household debt, the banks still are the important sources to the finance of a corporate. As is shown in Figure 1.2, over the last decade, the share of credit for personal uses and non-industrial purposes has increased substantially and almost tripled compared with the previous decade.

The household debts to GDP ratio for Korea, Malaysia, Singapore, and Indonesia reached to 85%, 79%, 75%, and 68% respectively by the end of 2012 (Mann et al., 2013). Also based on a study done by Shinozaki (2012), SMEs were less affected by 1997 crisis than those big firms because of their independence from bank loans and reliance on their own capitals.

5 For more information about the performance of these markets, see Appendix 1. Also you can directly visit some information in Asian Bond Market website.
According to this study, the share of domestic loans to SMEs has increased during the last decade noticeably in some emerging Asian countries. On the other hand, the government’s support for this sector has increased during recent years. It is documented that the financial sector has paid more funds to SMEs following the government pressures. Hence, SMEs and households are both more dependent on the banking system and more at the risk of internal and external economic shocks. Also, the uncertainty associated with governmental monetary and fiscal policies as internal shocks will affect the assets and the financial ability of households and SMEs in repaying bank debts. All these evidences show that the concentration of bank loan on household and SMEs is another treatment for banks. Büyükkarabacak and Valev (2010) in a study on 37 developed and developing countries have documented that the expansion of household’s debt is the best predictor of systematic banking crisis. Hence, just a one-percent increase in household debt to GDP ratio could lead to a 7.56 percent increase in the expectation of a banking crisis. In this condition, any shock on macroeconomic risk factors can lead to a reduction in the ability of debt repayment of this group of customers. Finally, the probability of default in banking system will also increase due to the increase in credit risk.

Along with the economic stability, the rapid return of foreign capital- which was quickly withdrawn during the global crisis- caused inflation and a strong increase in real asset price. In this situation, any reverse macroeconomic shock can lead to a rapid decrease in asset value and household debt repayment. This condition could lead to a bank’s asset value decrease and more probability of default in the bank (Tillmann, 2013). Gai et al. (2008) also refer to the possibility of more bank fragility under the conditions of high macroeconomic stability and financial innovation.

One other important change in banks could be related to the combination of liabilities. The dependency of banks liability on foreign funds was one of the important issues resulting in the 1997 bankruptcy. The rapid withdrawal of short-term foreign funds which had allocated to long-term loans led banks to face with default risk. After the crisis, those affected banks tried to replace the liabilities with domestic funds. As it is...
shown in Figure 1.3, the share of foreign funds in total liability has been sharply decreased after the crisis.

![Figure 1.3. The Share of Foreign Funds from Total Liability in Commercial Bank (1994-2013).](source)

In contrast, the share of demand and saving deposits increased. These kinds of liabilities are removed very quickly from a bank in critical conditions. Furthermore, the share of fixed deposits as a stable financial resource in banks has decreased. Thus, under critical situations not only the non-performing loan will be increased, but also the depositors will rush to withdraw their money from the banks. Therefore the banks will face a shortage of resources leading to a possible bankruptcy. In other words, the default risk in the bank will be increased.

At the same time the banks’ capital is an important hindrance against bankruptcy. As it is illustrated in Figure 1.4, the capital ratio for Malaysia, Thailand, and Indonesia has reached around 14% that is more than Basel III standards. In Korea and Singapore, this ratio is approximately equal to Basel II standard Ratio. But given the current composition of banks' assets and liabilities, it is not clear whether this amount of capital can prevent the banks from failure in critical conditions or not.

![Figure 1.4. The Capital Ratio in Commercial banks (1994-2014).](source)
The particular importance of banks' capital in dealing with bankruptcy has led the financial analysts in developed countries to focus on banks' capital metrics under shocked conditions of macroeconomic risk factors (see section 2.4.3). The results from these studies have also led the scope of decisions about banks' capital adequacy to go beyond the Basel standards, and a variety of risk models to be applied beside them. There has been an extensive literature on the development of these models over the past two decades (see section 2.2.2).

The effect of business cycle on credit risk studies was started by Fama and French (1989). Then Wilson (1997) showed a link between credit risk and macroeconomic variables. After that, there were a lot of theoretical (see section 2.2.4) and empirical (see section 2.4.3) studies found in literature in this regard. Given the diversity of the macroeconomic factors affecting the risk, extracting systematic interactions among these variables deemed necessary to predict the shocked risk factors. Therefore, vector autoregressive models were used in different shapes in order to generate the risk factors based on different stress scenario (see section 2.4.1). Following the extensive results obtained from recent studies on risk, the Basel Committee guidelines and standards have been updated with regard to risk.

1.5 Capital Adequacy and BASEL III

Due to the recent global financial crisis, Basel Committee of Banking Supervisors (BCBS) has announced a series of initiatives in different areas from 2006 to 2009 to improve the banks' ability to absorb shocks arising from financial and economic stress. Finally, in December 2010, the comprehensive international framework of liquidity risk measurements, standards and monitoring, called Basel III was issued.

Basel III, referring to the relationship between risk sensitivity to economic conditions and capital requirements, prefers to use the probability of default that is estimated on economic downturn to adjust the capital requirement. To this end, Basel III suggested the countries all over the world to use the macro and micro prudential regulations. This method is called “Stress Test” that is seriously considered by financial experts after the recent global crisis. As explained in Basel Committee (2010a), “Banks must have a comprehensive stress testing program for counterparty credit risk” (p. 46) which must be inclusive of a number of elements:

Banks must identify exposures that give rise to a greater degree of general wrong-way risk. Stress testing and scenario analyses must be designed to identify risk factors that are positively correlated with counterparty credit worthiness. Such testing needs to address the possibility of severe shocks occurring when relationships between risk factors have changed. (p. 37)

Stress test has been used by Basel II while the global financial crisis as well as the recent problems of European banks in repaying debts showed that stress test experiences before the crisis could not find any noticeable factor of vulnerabilities. Consequently, it led to structural changes in stress tests and using their results (Haldane, 2009). Thus, Basel III has especially concentrated on this subject and emphasized that banks should perform stress test, particularly those which use internal models to measure the risk. According to global agreement on implementation
timeline, Basel III regulation has to be applied from 2013 until 2019 (see Bank for International Settlements, 2009; 2010; Cecchetti, 2010).

The stress test technique has been used by large international banks from 1990s. Since 1996, banks have been required to develop stress tests as part of their internal models for the calculation of capital requirements. There are many empirical studies which have been done in this area in developed countries (see section 2.3 and 2.4.3). In Southeast Asian countries, after Asian 1997 crises, significant changes have taken place in financial system, and monetary and foreign currency policies. But the test of banks’ status and their reaction to potential macroeconomic shocks has received less attention within last decades.

A brief look into the financial system of these countries in the international arena shows its vulnerability to internal and external shocks. Table 1.1 shows some financial indexes about the studied countries, and compares them with China and Japan as two powerful economies in the region.

<table>
<thead>
<tr>
<th></th>
<th>FLFA</th>
<th>FR</th>
<th>EDG</th>
<th>SEDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>37.9</td>
<td>23.2</td>
<td>6.3</td>
<td>11.9</td>
</tr>
<tr>
<td>Japan</td>
<td>-</td>
<td>15</td>
<td>48.76</td>
<td>-</td>
</tr>
<tr>
<td>Malaysia</td>
<td>92.6</td>
<td>8.6</td>
<td>28.6</td>
<td>32</td>
</tr>
<tr>
<td>Singapore</td>
<td>106.8</td>
<td>8.3</td>
<td>237.6</td>
<td>73.2</td>
</tr>
<tr>
<td>Korea</td>
<td>203.9</td>
<td>7.2</td>
<td>28.8</td>
<td>60.3</td>
</tr>
<tr>
<td>Thailand</td>
<td>128.4</td>
<td>9.4</td>
<td>15.8</td>
<td>11.1</td>
</tr>
<tr>
<td>Indonesia</td>
<td>156</td>
<td>7.8</td>
<td>17.2</td>
<td>46.5</td>
</tr>
</tbody>
</table>

Note: FLFA is ratio of foreign liability to foreign asset, FR is ratio of foreign reserve to GDP, EDG is ratio of external debt to GDP and SEDR is ratio of short-term external debt to reserves.

Obviously, the economy in these countries depends on foreign investments and the ratio of foreign liability to foreign asset is much higher than that of China and Japan. In contrast, the foreign reserves ratio in these countries is less than China and Japan. The external debt to GDP ratio is also higher in these countries. All these indices show the vulnerability of these countries against the external shocks. But the test of banks’ status and their reaction to potential macroeconomic shocks has received less attention within last decades. Wong et al. (2010) made an attempt to identify the leading effective factors in banking crisis in EMEAP6 countries.

Ahmad and Ariff (2007) found some key determinants of commercial banks’ credit risk in emerging economies. These indicators were taken from the banks specific features. Bentan (2011), on the other hand, had a case study on Maybank Automobile Financial Services non-performing loans problems. In Hong Kong, Wong and Lam (2008) pointed to data limitation in the application of econometric models, and run

6 The Executives’ Meeting of East Asia Pacific Central Banks (EMEAP) has 11 members including: Hong Kong, China, Australia, Japan, Singapore, New Zealand, Korea, Malaysia, Indonesia, Thailand, and the Philippines.
stress test with a history-based model. In Korea, Chang and Kim (2010) did a joint stress testing on Korean financial industries including banking, Non-Life Insurance and Securities Industries by using the Principal Component Analysis (PCA) methods to extract the risk index for all financial industries. They, then, linked this index to macroeconomics and financial variables to do the stress test.

A stress test has been done on Korean household debt by Karasulu (2008) as a working paper in IMF. This study has used a household level panel data model based on family unit balance sheet data in order to show the sources of risks coming from household debts. The author, then, used the Non-Performing Loan ration in household sector as a risk indicator, and interest rate and real estate price as shocked risk factors in this model. Obviously, there is not much study done in this area in East Asian countries with a special focus on credit risk in banking system. Most of the research has focused on internal shocks and has not used the forward looking approach to credit risk. Only few studies such as Pesaran et al. (2006) included the limited number of commercial banks from Asian countries and examined the effects of external shocks on credit risks. Given the history of the financial crisis on this region with a new structure of banking system, it is necessary to check the health of the banking systems in these countries.

1.6 Statement of the Problem

Banks have two contradictory features which are highly effective in the economy. A strong and stable banking system can play an important role in the implementation of fiscal and monetary policies. On the other hand, a weak and shaky banking system could lead to recession and even financial deterioration in distress conditions. Due to this dual feature of banks, the health and safety of the banking system has become one of the topics of interest to economists. The adequate capital is one of the important criteria for assessing the health in commercial banks. The optimum amount of this index is strongly dependent on risk, and particularly default risk. Meanwhile, the probability of default is affected by macroeconomic risk factors and is directly related to the bank’s asset value and liability.

For example, the collapse of many banks in aftermath of the Asian financial crisis led to some fundamental changes in the financial structure of the East Asian emerging countries. Following this restructuring, and especially the development of new financial markets such as stock and bond markets, the liability and asset portfolio in commercial banks have noticeably been affected.

The expansion of new financial markets has caused a reduction in the dependency of large companies on banks’ credits as one of the reasons for bank failures in 1997 crisis. The effects of these policies which are most palpable in Korea, Malaysia, and Singapore have led non-industrial sectors including small size entrepreneurs (SMEs) and households to be targeted by commercial banks as new credit customers. The credits for personal uses and non-industrial purposes have almost tripled compared with the previous decade. As a result, the household debts to GDP ratio for Korea, Malaysia, Singapore, and Indonesia have reached to 85%, 79%, 75%, and 68% respectively by the end of 2012, and the credits to SMEs noticeably increased. This concentration of banks’ loan on household and SMEs has led to an increase in the leverage in these sectors which could be a threat to banking system. It should be
mentioned that the less development of bond market in Indonesia and Thailand; however, has led the banks to be still the main source of corporate finance. In fact, the banks in these countries are at risk, and asset depreciation risk is more than before.

On the other hand, after the Asian crisis, the dependency of banks’ liability on foreign funds (one of the other reasons of bankruptcy in most banks due to this crisis) has declined. This reduction in foreign funding was compensated by capturing domestic deposits. In the meantime, the share of short-term funds including the demand and saving deposits increased in the same period. In contrast, the share of fixed deposits in 2013 has decreased in comparison with the year 1997. This means that the share of short-term funds is higher than that of long-terms.

Taking all these conditions into consideration, any uncertainty caused by internal economic shocks due to monetary and fiscal policies can affect (decrease) the assets and the financial ability of households and SMEs in paying back the debt of banks. In addition to the devaluation of assets, banks will also be faced with the fast withdrawal of a substantial portion of the deposits. Consequently, the probability of default in banking system will increase. Default risk is not only affected by the internal economic shocks, but also threatened by external shocks in the explored counties. The heavy dependence on exports and existing globalized financial markets in these countries leads to an acceleration in the spread effects of any external shock from foreign lands on these countries. This could have impact on many domestic macroeconomic risk factors and lead to more default risk.

After over one decade of the implementation of financial restructuring policies, and based on the current status of the banks’ Portfolio and liability, it is now necessary to assess the health of banks in these countries. To this end, the ability of banks (the capital adequacy) to deal with the potential failures caused by any shocks need to be tested. The average capital ratio in the studied countries’ banking systems has reached around 14% in Malaysia, Thailand, and Indonesia, that is more than Basel III standards. In Korea and Singapore, this ratio is approximately equal to Basel II standard Ratio. The important point in this regard is the less attention to market value of assets in current capital measurement. Given the current composition of banks’ loan portfolio and liabilities, it is not clear if the amount of the capital can prevent banks from failure in critical conditions.

This issue is one of the particular interests in Basel III, as well. The guideline suggests all countries to use the macro and micro prudential regulations or stress test to adjust the capital requirements. Using the bank leverage ratio and the measurement of probability of default based on market information has resulted in the development of very vast structural credit risk models in recent years. However, reviewing the existing literature reveals that this subject has been given less attention by East Asian emerging countries, and some gaps still exist in this regard.

Therefore, the main issue of this study is to depict the behavior of banks default risk against any shock to macroeconomic risk factors in the studied countries. Furthermore, it will show the amount of bank’s capital adaption as a preventive measure of bankruptcy. To this end, the probability of default and the capital adequacy have been considered as risk indicators in commercial banks. Also, the macro stress test model is used to analyze and to examine the systematic effects of shocked macroeconomic
variables on risk parameters, and finally forecast the risk indicators in stress condition. This model enhances the decision-making ability of economists and supports them in identifying and recovering from financial vulnerabilities arising from economic shocks.

1.7 Objective of the Study

The general objective of this study is to estimate the default risk and analyze its behavior to respond to internal and external economic shocks in order to estimate the optimum required capital in the banking system of East Asian emerging countries. In fact, this study aimed to answer the question if banking system can be resilient against external and internal macroeconomic shocked variables. In other words, it wants to ascertain if there is sufficient capital to prevent banks failure in stress time. In addition, this research is an attempt to investigate the relationship between internal/external macro financial scenario and micro-level information of banks default risk indicators such as default probability and capital adequacy. At the same time, the effect of features of a bank such as size, deposit combination (short and long run), and their leverage ratio on these relationships are examined. Thus, the following specific objectives are expected to be addressed throughout this study:

1. To measure the risk indicators (default risk) based on market value of assets for the major banks in selected emerging countries;
2. To analyze the spillover impact of internal and external shocks to macro and finance variables on domestic risk factors;
3. To estimate the optimum capital adequacy in response to any shock to macroeconomic variable.

1.8 Research Scope

In this study, the commercial banks of five emerging countries from South East Asia including Singapore, Korea, Thailand, Indonesia, and Malaysia were selected to investigate the health of their banking system in stress conditions. These countries are also influenced by the flow of foreign funds due to open economy and high export dependency. On the other hand, the financial markets in these countries have structurally changed after the 1997 crisis; such as through the development of equity and bond markets. The banking systems in these economies have been influenced by this structural change and bank lending has been shifted to households and SMEs. One other feature of these countries after the crisis has been concentrating on exchange rate and price stability by adopting a highly flexible exchange rate regime. The monetary policy in these countries is always affected by exchange rate policy and foreign capitals. Hence, the financial systems and especially banks are always at the risk of external and internal shocks. Because of this similarity, the credit risk of the selected countries in their banking systems were analyzed from different aspects in this study.
1.9 The Significant and Contribution of the Study

This thesis provided practical and theoretical criteria for default risk management of commercial banks in Southeast Asian emerging countries. In addition, a significant share of this dissertation was the development of efficient regulatory rules for the banking systems especially in adequate capital measurement for individual commercial banks in these countries. A dynamic, forward-looking approach was used to extract the default risk indicator as a new approach in Southeast Asian countries banking system. Also, the GVAR model provided by Pesaran et al. (2006) was expanded to estimate the systematic interaction among the macroeconomic risk factors. However, restriction on access to data is one of the determining factors in the choice of variables to depict effects of any internal and external shocks. According to the survey results, the financial vulnerability of the selected countries, and particularly the commercial banking systems which are faced with internal and external macroeconomic shocks was examined and their strengths and weaknesses were identified. Hence, certain appropriate fiscal and monetary policy tools were suggested in this research which could be selected by the governments in order to intervene and prevent any potential future financial problems in the region.

Also the central banks according to the results can monitor and control the operation of commercial banks based on their risk management and suggest the best adequate capital ratio regarding to forecasted default risk. The results of this study can also help to Capital and stock market participants to correct decision in order to investment.
REFERENCES

Fleming, J. M. (1962). Domestic financial policies under fixed and under floating exchange rates (politiques financieres interieures avec un systeme de taux de change fixe et avec un systeme de taux de change fluctuant/politica financiera interna bajo sistemas de tipos de cambio fijos o de tipos de cambio fluctuantes). *Staff Papers-International Monetary Fund*, 369-380.

L. F. Lee & M. H. Pesaran (Eds.), *Analysis of panels and limited dependent variables*. Cambridge: Cambridge University Press.

