UNIVERSITI PUTRA MALAYSIA

CASE SLICING TECHNIQUE FOR FEATURE SELECTION

OMAR A.A. SHIBA.

FSKTM 2004 6
CASE SLICING TECHNIQUE FOR FEATURE SELECTION

By

OMAR A. A. SHIBA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2004
This thesis is dedicated to my parents and my family.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

CASE SLICING TECHNIQUE FOR FEATURE SELECTION

By

OMAR A. A. SHIBA

June 2004

Chairman: Associate Professor Hj. Md. Nasir Sulaiman, Ph.D.
Faculty: Computer Science and Information Technology

One of the problems addressed by machine learning is data classification. Finding a good classification algorithm is an important component of many data mining projects. Since the 1960s, many algorithms for data classification have been proposed. Data mining researchers often use classifiers to identify important classes of objects within a data repository.

This research undertakes two main tasks. The first task is to introduce slicing technique for feature subset selection. The second task is to enhance classification accuracy based on the first task, so that it can be used to classify objects or cases based on selected relevant features only. This new approach called Case Slicing Technique (CST). Applying to this technique on classification task can result in further enhancing case
classification accuracy. Case Slicing Technique (CST) helps in identifying the subset of features used in computing the similarity measures needed by classification algorithms.

CST was tested on nine datasets from UCI machine learning repositories and domain theories. The maximum and minimum accuracy obtained is 99% and 96% respectively, based on the evaluation approach. The most commonly used evaluation technique is called k-cross validation technique. This technique with $k = 10$ has been used in this thesis to evaluate the proposed approach.

CST was compared to other selected classification methods based on feature subset selection such as Induction of Decision Tree Algorithm (ID3), Base Learning Algorithm K-Nearest Neighbour Algorithm (k-NN) and Naïve Bayes Algorithm (NB). All these approaches are implemented with RELIEF feature selection approach.

The classification accuracy obtained from the CST method is compared to other selected classification methods such as Value Difference Metric (VDM), Pre–Category Feature Importance (PCF), Cross-Category Feature Importance (CCF), Instance-Based Algorithm (IB4), Decision Tree Algorithms such as Induction of Decision Tree Algorithm (ID3) and Base Learning Algorithm (C4.5), Rough Set methods such as Standard Integer Programming (SIP) and Decision Related Integer Programming (DRIP) and Neural Network methods such as the Multilayer method.
Based on the results of the experiments, the best performance could be achieved using the slicing technique. It also gave promising results across other commonly used classifiers such as machine learning, neural network and statistical methods. Likewise, the technique is able to enhance the classification accuracy.
Salah satu masalah yang dibincangkan oleh pembelajaran mesin adalah pengklasifikasian data. Mencari satu algoritma klasifikasi yang baik adalah komponen penting dalam banyak projek perlombongan data. Sejak tahun 1960-an, pelbagai algoritma pengklasifikasian data telah dikemukakan. Penyelidik perlombongan data biasanya menggunakan pengkelas untuk mengenal pasti kelas penting bagi objek dalam satu simpanan data.

CST berupaya mengenal pasti subset kepada fitur yang digunakan untuk membilang ukuran kesamaan yang diperlukan oleh algoritma klasifikasi.

CST telah diuji ke atas tujuh set data daripada teori domain dan simpanan pembelajaran mesin UCI. Kejuitan maksimum dan minimum yang diperoleh berdasarkan pendekatan penilaian ini adalah masing-masing 99% dan 96%. Teknik penilaian yang paling biasa digunakan adalah teknik pengesahsahian silang-k. Teknik ini dengan k =10 telah digunakan dalam tesis ini untuk menilai pendekatan yang telah dicadangkan.

CST juga dibandingkan dengan kaedah-kaedah klasifikasi yang lain berdasarkan subset pemilihan fitur seperti induksi Algoritma Pokok keputusan, Algoritma Pembelajaran Dasar, Algoritma k-jiran terdekat dan Algoritma Naïve Bayes. Kesemua kaedah ini telah dimplementasikan dengan pendekatan pemilihan fitur RELIEF.

Kejuitan pengklasifikasian yang diperoleh daripada kaedah CST dibandingkan dengan kaedah pengklasifikasian yang lain seperti Metrik Perbezaan Nilai (Value Difference Metric-VDM), Kepentingan Fitur Pra-Kategori (Pre-Category Feature Importance-PCF), Kepentingan Fitur Kategori-Silang (Cross-Category Feature Importance-CCF), Algoritma Berdasarkan-Contoh (Instance-Based Algorithm-IB4), Algoritma Pepohon Keputusan (Decision Tree Algorithms) seperti Aruhan Algoritma Pepohon Keputusan (Induction of Decision Tree Algorithm-ID3) dan Algoritma Pembelajaran Asas (Base Learning Algorithm-C4.5), kaedah Set Kasar (Rough Set Methods) seperti Pengaturcaraan Integer Piawai (Standard Integer Programming-SIP) dan Pengaturcaraan Integer Berkaitan Keputusan (Decision Related Integer Programming-
DRIP) serta kaedah Rangkaian Neural (Neural Network) seperti kaedah Berbilang Lapisan (Multilayer).

Berdasarkan keputusan eksperimen, prestasi terbaik boleh diperoleh menggunakan teknik hirisan ini. Ia juga memberikan keputusan yang lebih baik berbanding pengkelas lain yang biasa digunakan seperti pembelajaran mesin, rangkaian neural dan kaedah statistik. Teknik ini mampu meningkatkan kejituan klasifikasian.
ACKNOWLEDGEMENTS

All praise is due to Almighty Allah as He is all Merciful, Most Gracious and Most Compassionate and it is He who has gathered all knowledge in His Essence and who is the Creator of all knowledge for eternity. We beg for peace and blessings upon our Master the beloved Prophet Muhammad (Peace and Blessings be Upon Him) and his progeny, companions and followers. All grace and thanks belong to Almighty Allah.

I wish to extend my deepest appreciation and gratitude to the supervisory committee led by Assoc. Prof. Dr. Hj. Md. Nasir Sulaiman and committee members, Assoc. Prof. Dr. Hj. Ali Mamat and Assoc. Prof. Dr. Hjh. Fatimah Dato’ Ahmad for their virtuous guidance, sharing of intellectual experiences and in giving me the vital to undertake the numerous aspects of this study.

I acknowledge with deep gratitude my parents for their love and prayers. They have always encouraged me and guided me to seek knowledge and never limited my aspirations at any time.

My wife deserves my unending gratitude for her assistance in looking after our children and making our home quiet and a suitable place for study.

My thanks are also extended to colleagues for sharing experiences over the years.

My heartfelt thanks to all.

Omar A. A. Shiba
January 2004
I certify that an Examination Committee met on 16th June 2004 to conduct the final examination of Omar A. A. Shiba on his Doctor of Philosophy thesis entitled “Case Slicing Technique for Feature Selection” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

ABDUL AZIM ABD GHANI, Ph.D.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

RAMLAN MAHMOD, Ph.D.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

HAMIDAH IBRAHIM, Ph.D.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

SAFAAI DERIS, Ph.D.
Professor
Faculty of Computer Science and Information System
Universiti Teknologi Malaysia
(Independent Examiner)

\[Signature\]

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: \textbf{26 AUG 2004}
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

MD. NASIR SULAIMAN, Ph. D.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

ALI MAMAT, Ph. D.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

FATIMAH DATO’ AHMAD, Ph.D.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

签名

AINI IDRIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 AUG 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

OMAR A. A. SHIBA

Date: 27 AUG 2004
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENT ix
APPROVAL x
DECLARATION xii
LIST OF TABLES xvi
LIST OF FIGURES xvii
LIST OF ABBREVIATIONS xix

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 4
1.3 Objectives of the Research 5
1.4 Scope of the Research 5
1.5 Research Methodology 6
1.6 Contributions of the Research 7
1.7 Overview of Thesis 8

2 DATA MINING

2.1 Introduction 11
2.2 Data Mining 12
2.3 Data Mining Tasks 14
 2.3.1 Classification 14
 2.3.2 Dependence Modelling 15
 2.3.3 Clustering 16
 2.3.4 Discovery of Association Rules 17
2.4 Data Mining Process 18
2.5 Aspects of Data Mining 20
2.6 Summary 24
3 CLASSIFICATION TASK

3.1 Introduction 25
3.2 Classification Problem 26
3.3 Classification Task in Data Mining 27
 3.3.1 Statistical Approaches 28
 3.3.2 Neural Networks 28
 3.3.3 Case-Based Methods 30
3.4 Class Definitions 31
3.5 Accuracy 32
3.6 Selected Classification Algorithms 33
 3.6.1 Induction of Decision Tree Algorithm (ID3) 33
 3.6.2 The Base Learning Algorithm C4.5 34
 3.6.3 Naive Bayes (NB) 35
 3.6.4 K-Nearest Neighbour (K-NN) 36
 3.6.5 The Value Difference Metric (VDM) 37
 3.6.6 Per/Cross – Category Feature Importance (PCF/CCF) 38
 3.6.7 The Instance Based Algorithm (IB4) 40
 3.6.8 Standard Integer Programming/Decision Related Integer Programming (SIP/DRIP) 41
3.7 Summary 43

4 FEATURES SELECTION METHODS

4.1 Introduction 44
4.2 Relevance to the Concept: Weak and Strong Relevance 45
4.3 Categorization Scheme of Feature Selection Methods 45
 4.3.1 Filter Selection Approach 47
 4.3.2 Wrapper Selection Approach 51
 4.3.3 Embedded Selection Approach 54
4.4 Feature Selection for Classification 55
4.5 Summary 57

5 THE PROPOSED METHOD

5.1 Introduction 58
5.2 Definitions and Related Terms 58
5.3 K-Cross Validation 61
5.4 Knowledge Representation 63
 5.4.1 Representation of Knowledge in Machines 63
 5.4.2 Case and Case Representation 65
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Summary of Different Filter Approaches to Feature Selection</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of Different Wrapper Approaches to Feature Selection</td>
</tr>
<tr>
<td>5.1</td>
<td>The “Golf” Dataset</td>
</tr>
<tr>
<td>5.2</td>
<td>Attributes and Possible Pairs</td>
</tr>
<tr>
<td>5.3</td>
<td>Example of Case Representation in Data File Structure from the Iris Plants Database</td>
</tr>
<tr>
<td>5.4</td>
<td>Classification Accuracy of CST against DVDM Based on Discretization Approach</td>
</tr>
<tr>
<td>6.1</td>
<td>Characteristics of the Selected Datasets</td>
</tr>
<tr>
<td>6.2</td>
<td>Classification Accuracy of CST against Statistical Classifiers</td>
</tr>
<tr>
<td>6.3</td>
<td>Characteristics of the Selected Datasets</td>
</tr>
<tr>
<td>6.4</td>
<td>Classification Accuracy of CST against Decision Tree Classifiers</td>
</tr>
<tr>
<td>6.5</td>
<td>Characteristics of the Selected Datasets</td>
</tr>
<tr>
<td>6.6</td>
<td>Classification Accuracy of CST against Neural, Multiple Regression (MR) and Rough Set (SIP/DRIP) Classifiers</td>
</tr>
<tr>
<td>6.7</td>
<td>Characteristics of the DNA Dataset</td>
</tr>
<tr>
<td>6.8</td>
<td>Classification Accuracy of CST against Selected Approaches with Feature Selection Using RELIEF</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research Methodology Steps</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>The Data Mining Process</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>Filter Control Strategy</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>The Original Algorithm of RELIEF</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Wrapper Control Strategy</td>
<td>53</td>
</tr>
<tr>
<td>5.1</td>
<td>The Venn Diagrams</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>K-Cross Validation Processes</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>Example of k-CV, 3-Fold Cross Validation</td>
<td>62</td>
</tr>
<tr>
<td>5.4</td>
<td>The Proposed Approach Process</td>
<td>72</td>
</tr>
<tr>
<td>5.5</td>
<td>Pseudocode for Finding Discrete Values for Continuous Values</td>
<td>78</td>
</tr>
<tr>
<td>5.6</td>
<td>Difference in Classification Accuracy of CST Against DVDM</td>
<td>80</td>
</tr>
<tr>
<td>5.7</td>
<td>Pseudocode for Finding $P(C</td>
<td>l_o)$</td>
</tr>
<tr>
<td>5.8</td>
<td>Slicing Approach for Features Selection</td>
<td>83</td>
</tr>
<tr>
<td>5.9</td>
<td>Pseudocode for Finding the Distance Between Two Cases (x, y)</td>
<td>85</td>
</tr>
<tr>
<td>5.10</td>
<td>A Formal Description of the Case Slicing Technique</td>
<td>89</td>
</tr>
<tr>
<td>5.11</td>
<td>Data Flow of Case Slicing Technique</td>
<td>91</td>
</tr>
</tbody>
</table>
5.12 Slicing-based Case Classification Algorithm

6.1 Difference in Classification Accuracy for All Selected Approaches

6.2 Difference in Classification Accuracy of CST Against Decision Tree Classifiers

6.3 Difference in Classification Accuracy for All Selected Algorithms

6.4 Difference in Classification Accuracy of CST Against Features Selection Approaches Using RELIEF
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>AUS</td>
<td>Australian Credit Card</td>
</tr>
<tr>
<td>BCO</td>
<td>Breast Cancer of Ontology Institute</td>
</tr>
<tr>
<td>C4.5</td>
<td>Base Learning Algorithm</td>
</tr>
<tr>
<td>CB</td>
<td>Case Base</td>
</tr>
<tr>
<td>CBR</td>
<td>Case-Based Reasoning</td>
</tr>
<tr>
<td>CCF</td>
<td>Cross-Category Features</td>
</tr>
<tr>
<td>CLEVEL</td>
<td>Cleveland Heart Disease</td>
</tr>
<tr>
<td>CNF</td>
<td>Conjunctive Normal Form</td>
</tr>
<tr>
<td>CRX</td>
<td>Credit Card Application</td>
</tr>
<tr>
<td>CST</td>
<td>Case Slicing Technique</td>
</tr>
<tr>
<td>DBMS</td>
<td>Database Management Systems</td>
</tr>
<tr>
<td>DNA</td>
<td>Primate Slice-Junction Gene Sequences</td>
</tr>
<tr>
<td>DRIP</td>
<td>Decision Related Integer Programming</td>
</tr>
<tr>
<td>DS</td>
<td>Decision Systems</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithms</td>
</tr>
<tr>
<td>GERM</td>
<td>German Credit</td>
</tr>
<tr>
<td>HEPA</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>IB4</td>
<td>Instance Based Algorithm</td>
</tr>
<tr>
<td>ID3</td>
<td>Induction of Decision Tree</td>
</tr>
<tr>
<td>IP</td>
<td>Integer Programming</td>
</tr>
<tr>
<td>IRIS</td>
<td>Iris Plants Dataset</td>
</tr>
<tr>
<td>IS</td>
<td>Information System</td>
</tr>
<tr>
<td>K-CV</td>
<td>K-Cross Validation</td>
</tr>
<tr>
<td>KDD</td>
<td>Knowledge Discovery in Database</td>
</tr>
<tr>
<td>K-NN</td>
<td>K-Nearest Neighbour</td>
</tr>
<tr>
<td>LYMP</td>
<td>Lymphography</td>
</tr>
<tr>
<td>MAP</td>
<td>Maximum A Priori</td>
</tr>
<tr>
<td>ML</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>MLP</td>
<td>Multilayer Perceptron</td>
</tr>
<tr>
<td>MR</td>
<td>Multiple Regression</td>
</tr>
<tr>
<td>NB</td>
<td>Naive Bayes</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Networks</td>
</tr>
<tr>
<td>PCF</td>
<td>Pre-Category Features</td>
</tr>
<tr>
<td>RS</td>
<td>Rough Set</td>
</tr>
<tr>
<td>SDG</td>
<td>System Dependence Graph</td>
</tr>
<tr>
<td>SIP</td>
<td>Standard Integer Programming</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>VDM</td>
<td>Value Difference Metric</td>
</tr>
<tr>
<td>VOTING</td>
<td>Voting Records Database</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Advances in database technologies and data collection techniques including barcode reading, remote sensing, satellite telemetry, etc. have accumulated huge amounts of data in large databases. This explosive growth in data creates the necessity of knowledge/information discovery from data which has led to the promising emergence of a new field called data mining or knowledge discovery in databases (KDD) (Fayyad et al., 1996(a); 1996(b); Holsheimer and Siebes, 1994; Piatetsky-Shapiro and Frawley, 1991). Knowledge discovery in databases can be defined as the discovery of interesting, implicit, and previously unknown knowledge from large databases (Frawley et al., 1991). Data mining represents the integration of several fields, including machine learning, database systems, data visualization, statistics, and information theory.

The concept of knowledge discovery has of late gained the attention of the business community. One main reason for this is the general recognition of the need to perform the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The term data mining is used to denominate the process of automatic extraction of information in the knowledge discovery process. In this work, the extracted knowledge is represented as a set of cases or records that can be formally defined as a relationship between a set of attributes and a decision.
The main task carried out in this research is classification, which is the process of ascertaining common properties among different objects and classifying the objects into classes.

Classifying particular situations and/or events as belonging to a certain class is probably the most common data mining problem faced by people in real life applications. Diagnosing diseases, predicting stock market evolution, profiling higher-priced houses or assessing risk in insurance policies are all examples that can be viewed as classification problems. In order to solve these problems, accurate classifier systems or models must be built.

The problem of classification has been widely studied by researchers in the artificial intelligence (AI) field. Several computational intelligence methodologies have been applied to construct such a classifier from particular cases or data. Difficulties include how to represent and work with different types of data, dealing with missing or unknown values and ensuring efficiency.

The database community focuses on searching for effective and efficient classification algorithms. Their work involves either developing new and efficient classification algorithms or further advancing the existing AI techniques, for example extracting rules in “if ... then ...” form that can be applied to large databases (Agrawal et al., 1992; 1993(a); 1993(b); Ling and Zhang, 2002).

As real life classification applications usually have several features, it increases the complexity of the classification task. It is common for a class label of an object to
depend only on the values of a few features. Knowledge extraction in the classification context is the process of selecting the most important features or attributes from the information systems or a dataset (Shiba et al., 2003(c)). Choosing a subset of the features may increase accuracy and reduce complexity of the acquired knowledge.

Selecting an optimal set of features for a given task is a problem which plays an important role in a wide variety of contexts including pattern recognition, adaptive control, and machine learning. Our experience with traditional feature selection algorithms in the domain of machine learning has led to an appreciation of their computational efficiency and a concern for their brittleness. In this research, the features selection task is based on slicing. This new approach assists in identifying the subset of features used in computing the similarity measures needed by classification algorithms.
1.2 Problem Statement

Analysing and mining a real or artificially generated large database are well-known problems in data mining. In managing large databases that may contain thousands of cases or objects and large attribute or features size, most machine learning algorithms extract massive amount of knowledge in the form of decision tree, rules or set of weight in neural network. The case classification is the most important task in managing this large database. All classification approaches depend critically on the availability of a predefined set of classes or categories that may be used to classify the cases. The main problem to solve then is to select the most appropriate class for the problem situation under examination.

This is a classical problem. It is therefore not surprising that different solutions have emerged based on distinct computational intelligence methodologies such as the Statistical Approach, Case-Based Reasoning, Evolutionary Computation, Neural Networks and Fuzzy Logic. At an abstract level, they all produce a set of rules and it will be interesting to compare their performance and analyse the possibilities for hybridization.

The performance of most practical classifiers improved when correlated or irrelevant features of case are removed (Dong and Kothari, 2003). Based on this fact, and the previous classification accuracy results obtained by other researchers, which are not good enough, it is interesting to investigate the optimal way to improve the classification accuracy. The result of the investigation produces a new
classification approach based on slicing to reduce the number of features that will improve the classification accuracy.

1.3 Objectives of the Research

The main objective of this research is to propose an accurate new feature selection approach based on slicing. The secondary objectives include:

- Improving the discretization equation proposed by Randall and Tony (1996) and extended by Payne and Edwards (1998) to convert continuous attribute values into discrete values.
- Proving that feature selection based slicing can improve classification accuracy.

1.4 Scope of the Research

This study focuses on obtaining new feature selection approach based on slicing technique. The research focuses on using this new slicing technique in data mining especially in the classification task- in essence, how to build a classifier system that is able to classify unseen objectives correctly using the slicing technique. The classification algorithms intend to classify objects better both in terms of accuracy and speed. However, in most of the cases, accuracy is the most important factor to consider (Saykol, 2000; Thamar and Olac, 2002). For this reason, improving the classification accuracy has been set as the major aim of the proposed slicing technique.