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ABSTRACT

Dispersibility of nanoparticles is the key problem in nanotechnology industries, and thus warrants 
attention on the techniques of dispersion. This review paper presents dispersibility of treated nanoparticles 
in polymer resin. Dispersibility of nanoparticles in polymer media is crucial in order to enhance the 
mechanical and thermal properties of nanocomposite. This paper concentrates on several preparations 
on how to incorporate nanoparticles in polymer to overcome the problem described in this review. A 
few techniques are discussed in this paper such as by using ultra sonication or even directly mixing 
nanoparticles into polymer matrix. 
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INTRODUCTION

Over the years, there has been a dramatic 
increase in the manufacturing of polymer 
composites for many applications such as 
aerospace (Mangalgiri, 1999), automobile 
(Tseng & Kuo, 2011; Hung et al., 2011), 
electronics packaging (Davidovits, 2002), 
food packaging (Mallakpour & Madani, 
2015), medical (Ahn et al., 2013), etc. Hussain 
et al. (2006) claimed that the use of organic 
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and inorganic fillers has become pervasive in polymeric systems. The purpose of adding 
synthetic or natural inorganic fillers in polymer matrix is to improve composite properties 
and subsequently reduce production costs (Pavlidou & Papaspyrides, 2008). In addition, the 
presence of nanoparticles that act as reinforcing fillers can affect changes in polymer matrix 
in term of flow ability, viscosity, colour, density and subsequently it also tend to improve the 
optical, electrical, catalytic, magnetic and thermal properties of the composite (More et al., 
2015).

Transfer of nanocomposite technology requires the development of more fundamental 
understanding of reinforcement mechanisms due to the difficulty in characterising the state 
or nature of nanostructured materials in a polymer. Interestingly, nanomaterials have good 
properties even without being use as reinforcing materials in polymer composite. However, 
inclusion of nanostructured fillers without good preparation tends to produce composite with 
poor nanofiller dispersion. It is crucial to understand that nanofillers have high attraction among 
the neighbouring particles as they have a high tendency to agglomerate or clump during mixing 
process. Thus, the mixing process of attractive nanofillers in polymer matrix is a problematic 
issue. Therefore, investigations or studies on the techniques of dispersibility of nanoparticles 
are important to produce nanocomposites with good interfacial bonding between nanofillers 
and polymer matrix and isolate single nanoparticle in the polymer media.

There have been many techniques studied and applied in producing good dispersion of 
nanoparticles in polymer matrix. It is also important to know the original nature of nanoparticle 
surface (Chen et al., 2010; Chen et al., 2009). For example, if the origin surface is hydrophilic, 
while the polymer media is nonpolar, changing the nanoparticle surface into hydrophobic is 
therefore important to improve the dispersibility of nanoparticles in the non-polar media. This 
paper focuses on different types of surface treatment which have been done on nanoparticles 
including the effects of silanisation on dispersibility of the treated nanoparticles in polymer 
matrix and their morphology structure after the treatment process. 

Techniques Used to Disperse Nanoparticles

Transferring nanocomposite technology requires development of more fundamental 
understanding of the reinforcement mechanisms as nanostructured materials are quite difficult to 
characterise. With the emergence of nanotechnology, researchers have become more interested 
in studying the unique properties of nanoscale materials (More et al., 2015). In addition, the 
dispersibility of nanoparticles in polymer medium is one of the main concerns. This is due to 
the high interaction among nanoparticles as their compatibility with polymer matrix which 
can affect the performance of the final composite produced. Interestingly, nanoparticles have 
a very fine particle size. Due to the high surface area, it is favourable to be embedded in a 
polymer matrix so as to enhance the properties of polymer (Fan et al., 2013; Fan et al., 2006; 
Gorga et al., 2004; Luo & Daniel, 2003). However, difficulties in mixing nanoparticles make 
them easier to mix in the matrix although the process of dispersing the nanoparticles in matrix 
has to be perfectly incorporated. Thus, the methods to ensure that the nanoparticles are evenly 
distributed must be comprehensive. The recommended methods for solid thermosetting reactive 
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prepolymers or thermoplastic polymers with solid nanoparticles are solution intercalation, melt 
intercalation and roll milling (Koo, 2006).

However, the disadvantage of melt intercalation is related to the low thermal stability 
of the organic modifiers used because the melt intercalation process usually takes up in 
180°C to 200°C (Tjong, 2006). Whereas, for liquid thermosetting reactive prepolymers or 
thermoplastic polymers with solid nanoparticles, the recommended processing methods are 
in-situ polymerisation, emulsion polymerisation and high shear mixing (Koo, 2006) (Hai et al., 
2014) (Herrera & Gonzalez, 2005). A research done by Canché-Escamilla et al. (2014) mixed 
silica or hybrid nanoparticles manually with resin until the powder was homogenously mixed 
with the resin, and the produced paste was smeared over a glass surface with a spatula to yield 
a semi-transparent film and ensure optimal particle dispersion (Canché-Escamilla et al., 2014).

In another research by El Saeed et al. (2015), ZnO polyurethane nanocomposite (ZPN) 
coating films were prepared by dispersing the ZnO nanoparticles by sonicated in xylene solvent 
and ultrasonic waves using sonicator model, and the dispersed ZnO NPs were directly mixed 
with polyurethane base through manual stirring (El Saeed et al., 2015).

Phoo-ngernkham et al. (2014) used 1 to 3 wt. % of nano-SiO2 and nano-Al2O3 to be 
embedded in inorganic polymer matrix. Initially, they combined the dry material (fly ash) and 
nanoparticles (nano-SiO2 and nano-Al2O3) together until the mixture became homogeneous. 
This was followed by adding liquid alkaline solution into the dry mixture, while stirring 
was continued until the paste become homogeneous. The dispersibility of the nanoparticles 
in inorganic polymer matrix tends to improve the compressive strength of composite up to 
approximately 56 MPa. However, the authors observed that adding of 3wt% of nanoparticles 
was excessive due to the low amount of inorganic polymer to bind and interact with the high 
amount of nanoparticles. This is in comparison to the work of Rees et al. (2008) who mixed 
the 0.1g of Al2O3 nanoparticles with activation solution first before adding the dry components 
for the formation of inorganic polymer nanocomposite.

Another work by Nyugen et al. (2014) studied nanoparticle dispersion by ultrasonication in 
which Transducer Digital Sonifier Model 450 (Branson Ultrasonic Corporation, USA) was used 
to disperse the nanoparticles. For the ultrasonication, the maximum power input and frequency 
used were 400W and 20 kHz, respectively, whereas the ultrasonic horn that immersed into the 
suspension had a tip diameter of 13 mm and the sonication amplitude is in the range of 10–65 
lm. In order to reduce the heating up of suspensions during sonication, the ultrasonic mode was 
set with a pulse ratio on/off 0.1/0.1 (s/s), followed by cooling the vessel of suspension using 
an ice-water bath. Nyugen et al. (2014) also believe that nanoparticle concentration could give 
impact on cluster size, as well as the viscosity of suspension. 

Lee et al. (2005) claimed that introducing surfactant to the clay surface enabled a 
good compatibility between inorganic clay and organic polymer or monomer for good clay 
exfoliation, which is also a fire hazard material. However, without surface modification, natural 
clay can only disperse well in water-soluble polymers. Lee et al. (2005) stated that using water 
as nanoclays carrier could yield surfactant-free nanocomposites with a good clay dispersion 
in hydrophobic polymers.
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Chemical agents can be used to improve nanoparticle surface and its interfacial properties 
with polymer matric and also function as stabiliser against coagulation or aggregation by 
conserving the charge on nanoparticle surface. The Van der Waals force theory is useful to 
understand the interaction between nanoparticles and polymer matrix. This theory defines 
attractive and repulsive forces between molecules and explains that weaker forces, stronger 
polar and electrostatic interactions, or covalent interactions, can influence the interactions of 
particle-particle. 

In fact, to enable well dispersal of nanoparticles, it is convenient to conduct pre-
processing of the nanoparticles which includes purification steps to eliminate the impurities, 
deagglomeration for dispersing individual nanoparticles and chemical functionalisation so as to 
improve the nanoparticle-polymer interaction and enhance the properties (Peponi et al., 2014).

Mokhena (2012) conducted surface treatment on sisal nano-whiskers using alkaline 
solution, while Vasiliev et al. (2009) conducted a research on highly dispersible polymer-coated 
silver nanoparticles, whereby the silver was prewashed with deionized water and treated with 
piranha solution for an hour. Factually, the piranha solution is used to clean organic residues 
off silver.

Silane Treatment of Nanoparticles

As for the silane treatment of nanoparticles, Wang et al. (2011) used silane coupling agent to 
graft on the titanium dioxide (TiO2) surface. The grafted modification of TiO2 was performed 
in liquid phase, where silane coupling agent was added into deionised water before mixing it 
with TiO2. Wang et al. (2011) also suggested that the pH value of the mixture could be control 
by adding ammonium hydroxide (NH3H2O) and hydrochloric acid (HCL) solutions into the 
mixture. The slurry then underwent ultrasonic treatment for a range of time before centrifuging 
it at 4000 rpm for 20 minutes.

Most mixtures, in combination with nanoparticles, need some sort of forces to break the 
bonds within the particles so that the latter can be dispersed homogeneously into the matrix. 
The dispersibility of nanoparticles in organic medium is shown through the size of Lipophilic 
Degree (LD). The primitive TiO2 has some hydroxide radicals on its surface, causing it to 
become hydrophilic and thus sinks in deionised water. On the other hand, modified TiO2 floated 
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Figure 1. Effect of modifier dosage on the lipophilic degree (LD) (Wang et al., 2011)
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on the surface of deionised water. This reveals that the surface of TiO2 changed drastically 
after modification.

Another research by Yang et al. (2013) improved the surface properties of calcium carbonate 
(CaCO3) nanoparticles to react with (styrene-butadiene rubber) SBR latex by modifying the 
surface of CaCO3 nanoparticles with silane coupling agents. Meanwhile, Monfared et al. (2014) 
produced glass nanoparticles through wet milling process and they modified the surface of glass 
nanoparticles using mercaptopropyltrimethoxysilane (MPTMS). The composite was prepared 
by mixing these Silane-treated nanoparticles with monomers.

There are two methods used in preparing these composites. The first was by dispersion in 
solvent method, whereby glass nanoparticles were sonically dispersed in acetone, before adding 
to resin and then acetone was evaporated. The other method was done by directly adding glass 
nanoparticles into resin. For each method, 3 different groups of composites were produced, 
with inclusion of 5, 7.5 and 10 wt. % of glass particles, respectively. They noted D samples 
as in dispersion in solvent method and N samples as in non-dispersion in solvent method. As 
shown in Table 1, there is a significant pattern of results among the samples. Flexural strength in 
group D shows better mechanical properties in term of flexural strength and modulus compared 
to group N. Moreover, increasing the nanoparticle content tends to improve the mechanical 
properties as well for both D and N.  

Table 1 
Mean value of flexural strength, flexural modulus and micro hardness among the groups (Monfared et al., 
2014)  

Composites D1 D2 D3 N1 N2 N3
Flexural strength (Mpa) 63.98 69.07 75.22 55.83 58.38 59.99
Flexural modulus (Mpa) 1259.53 1295.08 1388.83 1210.78 1280.49 1334.26
Microhardness (VHN) 20.73 21.35 24.56 17.22 19.47 23.23

Dantas et al. (2012) studied the effects of fibre post surface after plasma and the common 
treatments and also evaluated the adhesion between treated fibre posts and Rely X Unicem 
resin cement. They conducted six types of treatments, which are silane, hydrofluoric acid, 
hydrofluoric acid plus silane (these are the most common treatments used in research works), 
plasma polymerisation with argon and ethylenediamine plasma (EDA). In order to compare 
the plasma and other common treatment methods, results after silane, hydrofluoric acid and 
hydrofluoric acid with silane treatments were evaluated. As a result, they observed that the 
most hydrophilic surface was seen in the samples treated with silane, followed by the treatment 
with hydrofluoric acid and finally hydrofluoric acid with silane.

The Morphology of Nanoparticles Dispersion 

Dispersion of the silica nanoparticles and hybrid silica/PMMA nanoparticles could be observed 
in the SEM images (Figure 2). Figure 2 shows the results obtained on the fractured zone of the 
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composites from the flexural test. Both the fractured zones have similar amount of nanoparticle 
content. However, it was found that the dispersion of hybrid silica/PMMA is better than that 
of the composite with only silica content. It is therefore likely that well dispersed hybrid 
nanoparticles can result in higher modulus for composite material (Canche-Escamilla et al., 
2014) (Tamon et al., 1998) (Šupová et al., 2011). The low flexural strength observed from the 
analysis in Figure 2 above, especially for the composite filled with only silica nanoparticles, 
indicates a poor dispersion of nanoparticles into the polymer matrix.
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Figure 2. SEM images of the fracture zone of composites. Type of Filler 
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Escamilla et al., 2014, pp. 161-167) 
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Figure 3. The SEM images of ZPN coated films containing ZnO NPs at 

different loading levels (El Saeed et al., 2015, pp. 282-289) 
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increasing in amount. This finding presents that even though the 

nanoparticles are uniformly dispersed regardless of the amounts of 

nanoparticles used, the low loading of nanoparticles still indicates surface 

roughness compared to the higher loading of nanoparticles which also 

improved in crack resistance. This also accords with earlier observations, 
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the mechanical performance for the composite (El Saeed et al., 2015, pp. 
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Figure 3 presents the SEM images obtained from the fractured surface of polyurethane 
coating containing zinc oxide nanoparticles. The dispersibility of the nanoparticles was found to 
be uniform throughout the coating film. From left, the bright particle indicating the nanoparticles 
is increasing in amount. This finding presents that even though the nanoparticles are uniformly 
dispersed regardless of the amounts of nanoparticles used, the low loading of nanoparticles 
still indicates surface roughness compared to the higher loading of nanoparticles which also 
improved in crack resistance. This also accords with earlier observations, which showed that 
evenly dispersion of the nanoparticles gave impacts on the mechanical performance for the 
composite (El Saeed et al., 2015).

The amount of nanoparticles can contribute to the distribution of the nanoparticles in 
the polymer matrix. Some of the composites can be prepared by inclusion of large volume 
of nanoparticles and interestingly, the nanoparticles can uniformly distribute throughout the 
whole matrix. However, there are some produced composites which have limitation on the 
amount of nanoparticles used (El Saeed et al., 2015; Canche-Escamilla et al., 2014; Khare 
& Burris, 2010; Nobile et al., 2015). In certain cases, as the loads of nanoparticles increase, 
the viscosity of the polymer resins increase, which likely turn the nanocomposite into paste 
(Canche-Escamilla et al., 2014; Monfared et al., 2014; Oriakhi, 1998). Therefore, selection of 
suitable polymer and nanoparticle needs to be thoroughly done in order to have a good filler-
polymer interactions and composition.

In a research by Rangari et al. (2009), the high resolution TEM micrographs showed 
that tungsten trioxide (WO3) nanoparticles are porous and well dispersed in the epoxy resin 
(Figure 4).
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Figure 4. The TEM micrograph of (a) 1 wt. % WO3/SC-15 epoxy at 100 nm 
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SC-15 epoxy at 50 nm scale (Rangari et al., 2009)
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The dispersion of Al2O3 and ZnO nanoparticles at different concentrations in organic 
solvent and polymer solutions is shown in Figure 5 (Nyugen et al., 2014). The findings 
revealed that with optimum ultrasonic parameters, the stabilised nanoparticles exhibited the 
same final cluster size in aqueous, organic and polymer suspensions. Over the tested range, 
the solid concentration had very low effects on the cluster size. This finding further supports 
the idea that the dispersion results in low concentration suspensions could be transferred to 
highly concentrated suspensions or even to a polymer solutions (Nyugen et al., 2014; Rouxel 
& Vincent, 2014). The SEM photo in Figure 6 shows that the agglomeration of glass particles 
was removed by silanization process.
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The research by Yang et al. (2013), showed that CaCO3 was dispersed evenly in ethanol 
using the ultrasonication process. As a result, Transmission Electron Microscopy (TEM) images 
of CaCO3 in Figure 7 reveal that before the modification, CaCO3 nanoparticles were aggregated 
in aqueous solution with irregular shape due to the high surface energy and surface polarity. 
After the modification, it could be seen that CaCO3 dispersed notably. This might be caused by 
the reduction of surface free energy and the increase of steric hindrance effects due to grafting 
of macromolecular chains of silane coupling agent onto the surface of CaCO3 nanoparticles. 
Figure 7 shows the TEM images of CaCO3 nanoparticles before and after the modification.

CONCLUSION

The trend of using of nanoparticles is based on their unique properties, which meet a wide range 
of applications and market needs. The selected nanoparticles need to be compatible with the 
polymer matrix in order to obtain the desired results, while the dispersion technique should be 
selected properly to uniformly disperse and distribute nanoparticles within the polymer matrix. 
Surface treatment or functionalisation on nanoparticles tends to improve the dispersibility of 
nanomaterials in the polymer matrix. The improved properties of the nanoparticles not only 
depend on the distribution of the nanoparticles but also their size, shape, concentration of 
nanoparticles used, type of nanoparticles and compatibility with the polymer matrix.
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