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Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of requirements for the degree of Master of Science 

 

EFFECTS OF DIFFERENT SYNTHESIS METHODS ON PHYSICAL 

PROPERTIES OF La0.85K0.15MnO3  

 

By 

PAN KAI YAP 

March 2013 

Chair  : Abdul Halim Shaari, PhD 

Faculty : Science 

 

The structure, microstructure, magnetic and electrical properties of La0.85K0.15MnO3 

polycrystalline manganites synthesized via three methods: solid state (SS), sol-gel 

(SG) and co-precipitation (CP) and then sintered with various sintering temperature 

and synthesized were investigated and reported. XRD patterns of all SS and SG 

sintered samples showed a pure perovskite phase of hexagonal structure while CP 

samples that sintered at 1000˚C and 1100˚C showed the appearance of secondary 

phases. SG samples showed pure phase at the calcination temperature of 700˚C 

while SS and CP methods showed same structure at 800˚C. SEM micrographs 

displayed an increase of average grain size with sintering temperature. Nevertheless, 

formation of melt-like structure grains was occurred at 1100˚C, for all methods. The 

room temperature magnetization curves of all SS and SG samples showed 

ferromagnetic ordering behavior. The magnetization was increased with the 

increasing of average grain sizes. Conversely, CP samples sintered at 1000˚C and 

1100˚C showed paramagnetic behavior due to the presence of secondary phases and 

exhibited less content of potassium. By comparing the magnetization through 
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synthesized techniques, SS sample had the highest magnetization while CP 

synthesized sample obtained lowest magnetization. The Curie temperature (Tc) 

decreased with the increase of sintering temperature. This might associated with the 

elongation of Mn-O bond length and narrowed of Mn-O-Mn bond angle that had the 

responsibility in double exchange mechanism. The electrical transport properties at 

zero field of SS and SG samples showed that the metal-insulator transition 

temperature (Tp) increased with the increase of sintering temperature. The grain 

growth promotion and decrease of grain boundaries caused these phenomena 

because grain connectivity was improved when the sintering temperature was 

increased. Abnormal electrical curve was observed in CP samples with sintering 

temperature of 1000˚C and 1100˚C. This might affected by the vaporization of K and 

the occurrence secondary phases on the structure. By comparing Tc and Tp through 

synthesized techniques, SS method exhibits highest Tc and Tp while CP sample 

shows lowest Tc and Tp. This may due to the shortest Mn-O bond length, widest Mn-

O-Mn bond angle and largest average grain size that possessed by SS samples. All 

samples exhibited MR effect at room temperature with the raised of field from 0 to 

1T.  The lack of DE mechanism in CP samples sintered at 1000˚C and 1100˚C due to 

the vaporization of potassium content causing low MR effect on that both samples. 

Pure LKMO system exhibited ferromagnetic-insulator (FI) phase at room 

temperature. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains. 

 

KESAN TEKNIK-TEKNIK SINTESIS BERLAINAN KE ATAS SIFAT FIZIK 

La0.85K0.15MnO3  

 

Oleh 

PAN KAI YAP 

Mac 2013 

Penyelia : Abdul Halim Shaari, PhD 

Fakulti : Sains 

 

Struktur, mikrostruktur, sifat magnet dan elektrik bagi polihabluran La0.85K0.15MnO3 

yang disintesis melalui tiga teknik, iaitu tindak balas keadaaan pepejal (SS), sol-gel 

(SG) dan ko-pemendakan (CP) dengan suhu pensinteran yang berlainan dikaji dan 

dilaporkan. Corak XRD bagi semua sampel yang disintesiskan oleh teknik SS dan 

SG membentuk fasa tulen dengan struktur heksagon manakala fasa campuran telah 

diperhatikan pada sampel CP dengan suhu pensinteran 1000˚C dan 1100˚C. Teknik 

SG memperoleh fasa tulen pada suhu pengkalsinan 700˚C manakala teknik SS dan 

CP memperoleh fasa yang sama pada suhu pengkalsinan 800˚C. Mikrograf SEM 

memaparkan peningkatkan purata saiz butiran berkadar langung dengan peningkatan 

suhu pensinteran. Namun, pembentukan butiran yang tanpa sempadan dengan 

stuktur serupa peleburan telah berlaku bagi semua sampel yang disinter pada suhu 

1100˚C. Teknik SG menghasilkan polihablur LKMO yang mempunyai saiz butiran 

purata terkecil dan skala nano, iaitu sampel SG750 dan SG800. Ini adalah kerana 

teknik SG memperoleh suhu pengkalsinan dan pensinteran yang terendah jika 

berbanding dengan ketiga-tiga teknik tersebut. Semua sampel yang disintesiskan 
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oleh teknik SS dan SG memaparkan sifat ferromagnet. Nilai pemagnetan berkadar 

lansung dengan peningkatan saiz butiran purata. Sebaliknya, sampel CP yang 

disinter pada suhu 1000˚C dan 1100˚C mempunyai sifat paramagnet dengan 

kehadiran fasa campuran dan kekurangan kandungan K. Dengan membandingkan 

nilai pemagnetan melalui ketiga-tiga teknik tersebut, teknik SS memperoleh nilai 

pemagnetan yang tertinggi manakala teknik CP memperoleh nilai pemagnetan yang 

terendah. Penurunan suhu Curie (Tc) berkadar terus dengan peningkatan suhu 

pensinteran. Fenomena ini berkaitan dengan pemanjangan ikatan Mn-O dan 

penyempitan sudut Mn-O-Mn yang bertanggungjawab dalam mekanisme pertukaran 

ganda. Bagi SS dan SG sampel, sifat pengangkutan elektrik dalam medan sifar 

memaparkan peningkatan suhu peralihan logam-penebat (Tp) dengan peningktan 

suhu pensinteran. Ini adalah kerana pertumbuhan butiran digalakkan dan 

pengurangan sempadan butiran semasa suhu pensinteran dinaikkan. Oleh itu, sifat 

konduksi elektrik butiran ditingkatkan. Lengkungan elektrik yang luar biasa telah 

diperhatikan pada CP sampel yang disintesis dalam suhu 1000˚C dan 1100˚C. Hal ini 

mungkin disebabkan oleh pengewapan kandungan K dan kehadiran fasa campuran 

dalam struktur sampel tersebut. Dengan membandingkan Tc  dan Tp melalui ketiga-

tiga teknik tersebut, teknik SS memperoleh Tc dan Tp yang tertinggi manakala teknik 

CP memperoleh Tc dan Tp yang terendah. Ini disebabkan oleh sampel SS mempunyai 

ikatan Mn-O yang terpendek, sudut Mn-O-Mn dan saiz butiran purata yang terbesar. 

Semua sampel menunjukkan kesan MR pada suhu bilik dengan peningkatan medan 

dari 0 kepada 1T. Kekurangan mekanisme petukaran ganda pada sampel yang 

disintesiskan pada suhu 1000˚C dan 1100˚C (disebabkan kekurangan pengewapan 

kandungan K pada suhu tersebut) menyebabkan kesan MR yang rendah. Sistem 

LKMO yang tulen mempamerkan fasa ferromagnet-penebat pada suhu bilik. 
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SS1000 LKMO synthesized by solid state with sintering 

temperature of 1000˚C 
- 

SS1100 LKMO synthesized by solid state with sintering 

temperature of 1100˚C 
- 

SGC500  LKMO synthesized by sol-gel with calcination 

temperature of 500˚C 
- 

SGC600 LKMO synthesized by sol-gel with calcination 

temperature of 600˚C 
- 

SGC700 LKMO synthesized by sol-gel with calcination 

temperature of 700˚C 
- 

SG750 LKMO synthesized by sol-gel with sintering - 
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temperature of 750˚C 

SG800 LKMO synthesized by sol-gel with sintering 

temperature of 800˚C 
- 

SG900 LKMO synthesized by sol-gel with sintering 

temperature of 900˚C 
- 

SG1000 LKMO synthesized by sol-gel with sintering 

temperature of 1000˚C 
- 

SG1100 LKMO synthesized by sol-gel with sintering 

temperature of 1000˚C 
- 

CPC700 LKMO synthesized by co-precipitation with 

calcination temperature of 700˚C 
- 

CPC750 LKMO synthesized by co-precipitation with 

calcination temperature of 750˚C 
- 

CPC800 LKMO synthesized by co-precipitation with 

calcination temperature of 800˚C 
- 

CP900 LKMO synthesized by co-precipitation with sintering 

temperature of 900˚C 
- 

CP1000 LKMO synthesized by co-precipitation with sintering 

temperature of 1000˚C 
- 

CP1100 LKMO synthesized by co-precipitation with sintering 

temperature of 1100˚C 
- 

MRAM Magnetoresistive random access memory - 

SOFC Solid oxide fuel cells - 

R, RE Rare earths ions - 

A Doped cations - 

IMR Intrinsic magnetoresistance - 

EMR Extrinsic magnetoresistance - 

XRD X-ray diffraction - 

FWHM Full-width half maxima - 

SEM Scanning Electron Microscope - 

EDAX Energy Dispersive X-ray Spectroscopy - 

VSM Vibration Sample Magnetometer - 

DC Direct current - 
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AC Alternate current - 

ACS AC susceptometer - 

FM Ferromagnetic metal - 

FI Ferromagnetic insulator - 

PI Paramagnetic insulator - 

CO Charge ordering - 

CAF Canted antiferromagnetic - 

FESEM Field Emission Scanning Electron Microscope - 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Brief History of Mixed Valence Manganites 

Mixed valence manganites are compounds with chemical composition of RE1-

xAxMnO3 where RE = rare earth elements such as La, Pr and Nd while A = alkali 

metals or alkali earth metals such as Ca, Sr, and K. The manganese ions exhibited in 

mixed valence states of Mn
3+

 and Mn
4+

 upon the doping process of A into RE. These 

materials were first reported by Jonker and Santen (1950) who found out that the 

manganites exhibit metallic properties and a transition temperature of ferromagnetic 

to paramagnetic (Tc) as the finite doping of LaMnO3 by Ca, Ba and Sr. Then in 1951, 

Clarence Zener, an American scientist, explained this correlation of electrical and 

magnetic properties by a brand new concept, called “double exchange mechanism”. 

His work was then further studies in theorectical part by Anderson and Hasegawa in 

1955. Besides, Volger (1954) found out that La0.8Sr0.2MnO3 has a resistivity drop in 

ferromagnetic state when external field is applied. 

In 1955, Wollan and Koehler study the magnetic structure of La1-xCaxMnO3 (x = 0 to 

1) by using neutron diffraction techniques. They found out that LaMnO3 exhibited 

ferromagnetic phase at ab-plane and antiferromagnetic at c-axis which they defined 

as A-type antiferromagnetism; while CaMnO3 exhibited a G-type 

antiferromagnetism. The intermediate doping shows variety type of 

antiferromagnetism and at x=0.33, the manganites are fully ferromagnetism. 
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Manganites received a wide attention since 1990’s due to the discovery of a very 

large magnetoresistance in bulk Nd0.5Pb0.5MnO3 (Kusters et al., 1989),  

La2/3Ba1/3MnO3 thin films (Helmolt et al., 1993) and La3/4Ca1/4MnO3 thin films 

(Chahara et al., 1993). The latter two have observed large MR at room temperature (-

60% and -53%, respectively). In 1994, Jin et al. observed a negative ~1500% MR 

value at 200K and ~100,000% at 77K for La2/3Ca1/3MnO3. Since that time, this large 

negative MR is named as colossal magnetoresistance (CMR). However, this CMR 

values required a high field to appear (6T) so it is not suitable for technology 

application. Hwang et al. (1996) studied the MR in ferromagnetic phase, and found 

out the different of MR behavior for single crystal and polycrystalline of 

La2/3Sr1/3MnO3. He observed high negative MR values occur at low temperature 

even in low magnetic field (0.1 T) for polycrystalline manganites, due to the effect of 

spin-polarized electron tunneling between the grains. This property is latter named as 

extrinsic CMR. 

In 21
st
 century, researchers are interested in nano-scale materials including 

manganites. Manganites in nanoparticles or nanocrystallines exhibit different 

properties in magnetism, magnetoresistance, Curie temperature and metal-insulator 

transition temperature with their bulk counterparts. Sol-gel method is a very famous 

process to prepare nanoscale manganites by lowering the calcination and sintering 

temperature (Venkataiah et al., 2012).  

 

1.2 Monovalent Doped Manganites 

Monovalent cations (Li
+
, Na

+
, K

+
, Cs

+
 and Ag

+
) are also good candidates for doping 

with manganites (LaMnO3), and possessed similar trend of electrical and magnetic 

properties with the manganites that doped with divalent cations. However, the 



© C
OPYRIG

HT U
PM

3 
 

monovalent elements are only possessing one valence electron. Hence, every x 

amount of monovalent doping to the trivalent (La) site will create an amount of 2x 

Mn
4+

 and double up the double exchange mechanism. As a result, a small amount of 

monovalent doping results in a large number of charge carriers and enhanced the 

conductivity (Shaikh and Varshney, 2012). Furthermore, the solid solubility of 

monovalent cations in manganites are very narrow. Coey et al. (1999) stated that the 

solubility range is up to x =0.2. Besides, Teraoka et al. (2001) found that the 

solubility limit of potassium ion, K
+
 in La-K-Mn-O is lies between x = 0.2 and 0.25 

and K2MnO4 appeared to be the byproduct beyond the solubility limit. Furthermore, 

in the investigation of Shen et al. (2009), the XRD results of the La0.8Sr0.2MnO3 

gives a single phase while La0.8K0.2MnO3 and La0.8Na0.2MnO3 shows the additional 

secondary phase which is defined as K4MnO4 and Na4MnO4 through analysis, 

respectively. This results indicating that the solid solubility of divalent cations are 

higher than the monovalent cations and the solubility limit of monovalent cations is 

lower than x = 0.20. 

 

1.3 Application of Mixed Valence Manganites 

The discovery of CMR effect in manganites since 1994 has made this materials 

become potential to apply in MR type devices such as magnetic recording, data 

storage technique on computer hard discs and magnetoresistive random access 

memory (MRAM). This large MR effect produced can increase the data storage 

densities of hard drive. However, manganites only show CMR effect at low 

temperature and high applied field, which is contradict with the practical application 

that need MR near room temperature and low applied field (Jin, 1997). Furthermore, 

the discovery of extrinsic CMR in polycrystalline manganites may fulfill the 



© C
OPYRIG

HT U
PM

4 
 

requirement of low field and widen the temperature range of MR effect but the high 

MR values only produced at low temperature (Hwang et. al., 1996). Currently, many 

researchers are trying to find the CMR materials that can operate in low field and 

having high MR values at room temperature. 

Manganites are potential candidates for making sensors. In 2002, polycrystalline of 

La2/3Sr1/3MnO3 thick film has been investigated and the results has shown the 

feasible use of this material in making low-cost contactless potentiometer (Balcells 

et. al., 2002) manganites can also be used in making microwaves sensors and 

bolometric uncooled infrared sensors (Venkatesan et al., 1998). 

Lanthanum strontium manganites are suitable to use as the cathode of solid oxide 

fuel cells (SOFC) due to its high electrical conductivity at higher temperature 

(Stambouli and Traversa, 2000). The advantages of SOFC include high effiency, 

long-term stability, environmental friendly and low emissions of NOx, dust and noise 

(Joo and Choi, 2008). Manganites can also be employed in the magnetic refrigeration 

technology due to the exhibition of magnetocaloric effect (Dhahri et al., 2008). 

Spintronics is the new technology emerged nowadays which utilizes the electronic’s 

spin of electron to carry the information. Manganites doped at x = 1/3, is half-metal 

ferromagnets. The high spin polarization of conduction electron is potential for 

spintronics devices (Felser et al., 2007). 
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1.4 Problem Statement and Objectives 

There are several techniques to fabricate perovskite manganites, including solid state 

reaction, sol-gel and co-precipitation. Solid state is the most common and a 

traditional way to produce the homogenous ceramic by multiple grindings and 

extended heat treatment (Rao et al., 1993). Thus, the grain size of powders or 

polycrystalline samples obtained usually is large (subnano- or micro- range).  

Sol-gel and co-precipitation methods have been developed to achieve better mixing 

of the initial product. The homogenous mixing of cations is attained on the atomic 

scale in the solution and enhanced the reaction during the heat treatment process 

(lowering the heat treatment temperature) and results a more homogenous powder 

(Rao et al, 1993; Hamadneh et al., 2006; Hamadneh et al, 2010). Grain size in 

nanometer range can achieve. 

Therefore, in this project, polycrystalline La0.85K0.15MnO3 was prepared by 3 

synthesis method, i.e. solid state reaction, sol-gel and co-precipitation. The duration 

and rate of change of heat treatment (calcination and sintering) is fixed. The lowest 

calcination temperature of each synthesis techniques was investigated. The technique 

with the lowest calcination temperature indicates the lowest sintering temperature it 

can produce, and exhibits smallest grain size of polycrystalline sample. 

In this work, the main objectives are list down as follow: 

 To synthesize polycrystalline lanthanum potassium manganites, 

La0.85K0.15MnO3 via three different methods: solid state reaction, sol-gel and 

co-precipitation. 
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 To investigate the effect of different synthesis methods with the difference of 

initial particles to the structure, microstructure, electrical and magnetic 

properties of polycrystalline La0.85K0.15MnO3. 

 To investigate the effect of sintering temperature to the structure, 

microstructure, electrical and magnetic properties of polycrystalline 

La0.85K0.15MnO3. 

 To study the relationship between the electrical and magnetic properties of 

polycrystalline La0.85K0.15MnO3. 
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Appendix A 

Ratio of Samples 

 

Atomic Mass of Starting Materials 

Element Atomic Mass (g/mol) 

La 138.906 

K 39.098 

Mn 54.938 

O 15.999 

H 1.008 

N 14.007 

C 12.001 

 

(i) Solid State (SS) 

Standard Equation 

0.425 La2O3 + MnO2 + 0.075 K2CO3 → La0.85K0.15MnO3 

Materials Atomic Mass (g/mol) 

0.425 La2O3 138.469 

0.075 K2CO3 10.364 

MnO2 86.936 

Total 235.769 

 

To form a 15g sample powder, 8.810g of La2O3, 0.659g of K2CO3 and 5.531g of 

MnO2 were needed. 
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(ii) Sol-gel 

Standard Equation 

0.425 La2O3 + MnCO3 + 0.15 KNO3 → La0.85K0.15MnO3 

Materials Atomic Mass (g/mol) 

0.425 La2O3 138.469 

0.15 KNO3 15.165 

MnCO3 114.936 

Total 268.570 

 

To form a 15g sample powder, 7.734g of La2O3, 0.847g of KNO3 and 6.419g of 

MnCO3 were needed. 

Calculation of Weight of Citric Acid and Ethylene Gylcol Used 

The weight ratio of metal ions (MI), citric acid (CA) and ethylene glycol (EG) used: 

MI : CA : EG = 1 : 4 : 2 

Molecular weight of MI, CA and EG were 268.57 g/mol, 192.12 g/mol and 62.07 

g/mol, respectively. Hence, the mass of CA used was 42.94g and EG used was 6.933 

ml. 

 

(iii) Co-precipitation 

Standard Equation 

0.85 La(CH3COO)3.1.5H2O + 0.15 KNO3 + Mn(CH3COO)2.4H2O → 

La0.85K0.15MnO3 
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Materials Atomic Mass (g/mol) 

0.85 La(CH3COO)3.1.5H2O 

291.601 

268.632 (without H2O) 

0.15 KNO3 15.165 

Mn(CH3COO)2.4H2O 

245.086 

173.026 (without H2O) 

Total 

603.312 

456.823 (without H2O) 

 

In the calculation steps of co-precipitation, we need to consider the presence of H2O 

in the starting materials. Thus, to prepare 20g of La0.85K0.15MnO3, 12.766g of 

La(CH3COO)3.1.5H2O, 0.664g of KNO3 and 10.730g of Mn(CH3COO)2.4H2O were 

needed. 
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Appendix B 

X-ray Diffraction Pattern (XRD) for the standard peak LKMO 

 

Name and formula 
 
Reference code: 98-005-3701  
 
Chemical name: Lanthanum Potassium Manganese Oxide (0.85/0.15/1/3)  
Common name: Lanthanum Potassium Manganese Oxide (0.85/0.15/1/3)  
ICSD name: Lanthanum Potassium Manganese Oxide (0.85/0.15/1/3)  
 
Chemical formula: K0.15La0.85Mn1O3  
Second chemical formula: (La0.85K0.15) MnO3  
 
 
Crystallographic parameters 
 
Crystal system: Hexagonal  
Space group: R -3 c  
Space group number: 167 
 
a (?):   5.5040  
b (?):   5.5040  
c (?):  13.3950  
Alpha (°):  90.0000  
Beta (°):  90.0000  
Gamma (°): 120.0000  
 
Calculated density (g/cm^3):   6.43  
Volume of cell (10^6 pm^3): 351.42  
Z:   6.00  
 
RIR:   5.65  
 
 
Subfiles and Quality 
 
Subfiles: Inorganic 
 ICSD Pattern 
Quality: Calculated (C) 
 
Comments 
 
Structure: NdAlO3  
ICSD collection code: 88441  
Original ICSD space group: R3-CH 
X-ray diffraction (powder) 
Structure type : NdAlO3 
Rietveld profile refinement applied 
The structure has been assigned a PDF number (calculated powder 
diffraction data): 01-089-8127 
Structure type: NdAlO3 
Recording date: 7/16/2001 
ANX formula: ABX3 
Z: 6 
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Calculated density: 6.43 
R value: 0.014 
Pearson code: hR10 
Wyckoff code: e b a 
Publ. title: Low temperature synthesis, structure and magnetic 
properties of La0.85 (Na1-x Kx)0.15 Mn O3 perovskites: the role of A 
cation size disparity in the electronic properties of mixed-valence 
manganates 
 
 
References 
 
Primary reference: Lloret, F. Beltran, D. Beltran, A. Martinez, E. Sapina, F. 

Coret, E. El-Fadli, Z., Journal of Materials Chemistry, 9, 
1793, (1999) 

 

Peak list 
 
No.    h    k    l      d [A]     2Theta[deg] I [%]    

  1    0    1    2      3.88349    22.881      19.5 

  2    1    1    0      2.75200    32.509      95.9 

  3    1    0    4      2.74012    32.654     100.0 

  4    1    1    3      2.34275    38.392       1.1 

  5    2    0    2      2.24537    40.127      25.2 

  6    0    0    6      2.23250    40.368       8.7 

  7    0    2    4      1.94175    46.745      64.0 

  8    2    1    1      1.78553    51.114       0.3 

  9    1    2    2      1.73976    52.560       5.5 

 10    1    1    6      1.73375    52.757       4.9 

 11    0    3    0      1.58887    58.000      26.4 

 12    2    1    4      1.58657    58.092      40.7 

 13    0    1    8      1.57975    58.367      17.5 

 14    1    2    5      1.49500    62.029       0.1 

 15    2    2    0      1.37600    68.085      17.0 

 16    2    0    8      1.37006    68.421      17.0 

 17    1    3    1      1.31563    71.677       0.3 

 18    2    2    3      1.31497    71.718       0.2 

 19    2    1    7      1.31173    71.923       0.1 

 20    1    1    9      1.30914    72.087       0.1 

 21    3    1    2      1.29699    72.870       2.1 

 22    0    3    6      1.29450    73.033       2.8 

 23    1    0   10      1.28955    73.359       1.2 

 24    1    3    4      1.22966    77.575      14.0 

 25    1    2    8      1.22648    77.814      14.5 

 26    3    1    5      1.18553    81.046       0.2 

 27    0    4    2      1.17323    82.077       2.1 

 28    2    2    6      1.17138    82.234       4.5 

 29    0    2   10      1.16771    82.549       2.4 

 30    4    0    4      1.12269    86.648       8.3 

 31    0    0   12      1.11625    87.273       2.9 

 32    3    2    1      1.08991    89.943       0.0 
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Structure 
 
No.  Name  Elem.  X         Y         Z         Biso     sof     

Wyck. 

1    O1    O      0.46250   0.00000   0.25000   0.7000   1.0000   

18e      

2    MN1   Mn     0.00000   0.00000   0.00000   0.3000   1.0000   6b       

3    K1    K      0.00000   0.00000   0.25000   0.3000   0.1500   6a       

4    LA1   La     0.00000   0.00000   0.25000   0.3000   0.8500   6a       

    
    

Stick Pattern 
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Appendix C 

EDAX Patterns of all Sintered LKMO 
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