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IMAGING SYSTEM

By

MARIANIE BINTI MUSARUDIN

June 2015

Chair: M. Iqbal Bin Saripan, Ph.D.
Faculty: Engineering

Internal scattering in patient’s body is one of the key factors that leads to PET image
quality degradation. This interaction affects the imaging performance in the sense of
mispositioning of the annihilation position and coincidence data lost. One of the factors
that determines the probability of this interaction is the patient’s body weight. In
practice, the impact of scattering is worse with the increment of the patient’s body
weight. Thus, optimization of scatter events contribution in the raw data prior to image
reconstruction is vital as it determines the quality of PET image generated. The quality
of the image, which eventually help to determine the tumor detection rate, will improve
the survival rate of the cancer patient.

Various methods were proposed and identified by the previous studies to minimize the
contribution of both patient and detector’s scatter to the raw data. This study, was
nonetheless achieved the above target through the analysis of signal processing. The aim
of this study is to define the optimal energy threshold level for the different groups of
patient’s body. The definition was done based on the phantom’s modeling. Various
patient’s sizes in the range of 44.0 kg to 99.0 kg which yield diameters of 20 cm to 30
cm were modeled using Monte Carlo N-Particle code version 5 (MCNP5). The impact of
phantom’s masses to the several measurement parameters like scatter fraction, tumor
visibility and signal to noise ratio (SNR) also was tested in order to define the optimal
energy threshold level for each phantom size. Various energy threshold levels were
implemented on the simulated data.

Evaluation of tumor SNR on the reconstructed image was the core measure used in this
study. The optimal energy threshold value was defined when the maximum SNR was
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yielded at the respective energy window used. At the end of this study, we managed to
propose an optimal energy window for the underweight, normal and obese patient. The
obese phantom which lost more photons via photon scattering and attenuation thus
required up to 20.00% and 27.27% larger energy window than the underweight and
normal phantom respectively. These threshold values, which are 2.30% to 13.79% varies
from the default energy window that commonly practiced, improves the SNR up to
1.24%.

At the end of this study, we managed to propose an equation that gave correlations among
the body weight, the tumor to background ratio (TBR) and the optimal energy threshold
level. The derivation of this equation was done based on the data obtained in this study.
The proposed equation, therefore allows definition of the optimal energy window for any
condition of imaging, particularly those related to the weight of the patient’s body and
TBR or standard uptake values (SUV) of the tumor.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah.

PENGOPTIMUMAN TETINGKAP TENAGA UNTUK INDEKS JISIM BADAN
YANG BERBEZA DALAM SISTEM PENGIMEJAN TOMOGRAFI PANCARAN

POSITRON BIOGRAPH TRUEPOINT

Oleh

MARIANIE BINTI MUSARUDIN

Jun 2015

Pengerusi: M. Iqbal Bin Saripan, Ph.D.
Fakulti: Kejuruteraan

Serakan di dalam badan pesakit adalah salah satu faktor utama yang membawa kepada
kemerosotan kualiti imej PET. Interaksi ini memberi kesan kepada prestasi pengimejan
dari segi kesalahan posisi penghapusan dan kehilangan data kesekenaan. Salah satu
faktor yang menentukan kebarangkalian interaksi ini adalah berat badan pesakit. Dalam
praktikal, impak serakan pesakit bertambah buruk dengan peningkatan berat badan
pesakit. Oleh itu, pengoptimuman sumbangan data serakan dalam data mentah sebelum
pembinaan semula imej adalah penting kerana ia menentukan kualiti imej PET yang
dihasilkan. Kualiti imej, yang akhirnya membantu menentukan kadar pengesanan tumor,
akan meningkatkan kadar kelangsungan hidup pesakit kanser.

Pelbagai kaedah telah dicadangkan dan dikenalpasti oleh kajian-kajian sebelum ini untuk
meminimakan sumbangan kedua-dua serakan pesakit dan pengesan terhadap data.
Kajian ini walaubagaimanapun dilaksanakan melalui analisa pemprosesan isyarat.
Matlamat kajian ini adalah untuk mendefinisikan had tenaga optimum untuk kumpulan
badan manusia yang berbeza. Definisi ini adalah berdasarkan kepada permodelan
fantom. Pelbagai saiz pesakit dalam lingkungan 44.0 kg hingga 99.0 kg yang
menghasilkan diameter fantom 20 cm hingga 30 cm telah dimodelkan dengan
menggunakan kod Monte Carlo N-Particle versi ke-5 (MCNP5). Kesan jisim fantom
terhadap beberapa parameter pengukuran seperti pecahan serakan, kebolehlihatan
ketumbuhan dan nisbah hingar kepada isyarat (SNR) telah diuji untuk mendefinisikan
tahap had tenaga yang optimum untuk setiap saiz fantom. Pelbagai peringkat had tenaga
telah dilaksanakan kepada data simulasi.

Penilaian SNR ketumbuhan pada imej yang dibina semula adalah langkah utama yang
digunakan dalam kajian ini. Nilai had tenaga yang optimum ditakrifkan apabila SNR
yang maksimum dihasilkan pada tetingkap tenaga yang digunakan. Di akhir kajian ini,
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kami berjaya mencadangkan tetingkap tenaga optimum bagi pesakit yang kekurangan
berat badan, normal dan obes. Fantom obes yang kehilangan lebih banyak foton melalui
penyerakan foton dan pengecilan foton maka memerlukan tetingkap tenaga yang
sehingga 20.00% dan 27.27% lebih besar berbanding fantom yang masing-masing
kekurangan berat badan dan normal. Nilai-nilai ambang ini, yang 2.30% hingga 13.79%
berbeza daripada tetingkap tenaga tetap yang biasa dipraktikkan, meningkatkan SNR
sehingga 1.24%.

Di akhir kajian ini, kami berjaya mencadangkan satu persamaan yang menghubung
kaitkan antara berat badan, nisbah tumor kepada latar belakang (TBR) dan nilai had
tenaga yang optimum. Penerbitan persamaan ini dilakukan berdasarkan kepada data
yang diperolehi dalam kajian ini. Persamaan yang dicadangkan, dengan itu
membolehkan tetingkap tenaga yang optimum didefinisikan untuk sebarang situasi
pengimejan, terutamanya yang berkaitan dengan berat badan pesakit dan TBR atau nilai
serapan piawai (SUV) tumor.

iv
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CHAPTER 1

INTRODUCTION

This chapter provides the introduction to the concerning issues of this research. The
chapter is sub-sectioned into five sections: the background, problem statement,
objectives, the scope and limitations of the research and research contribution.

1.1 The Background of the Study

For more than 10 decades, imaging technology has been used as an aiding tool in the
clinical diagnosis, specifically in the areas of neurology and oncology. This technology
has started since the discovery of X-rays by Wilhelm Conrad Roentgen in 1895 [1]. At
first, the imaging technology focus was on the image formation by focusing X-rays
through the patient’s body. Since then, technological developments in medical imaging
have continue to improve and grow. The two-dimensional (2D) X-ray imaging that
provides a flat X-ray image thus limit the depth information and image contrast [2]. This
limitation let to an introduction of Computed Tomography (CT) that offers
three-dimensional (3D) cross-sectional image reconstruction from the 2D projection data
[3]. In addition to the structural-based imaging, medical imaging is now moving towards
functional-based imaging or also known as nuclear imaging. Today, functional-based
imaging scanner like positron emission tomography (PET) and single photon emission
computed tomography (SPECT) are widely practiced in clinical applications.

In this thesis, we concentrate on PET imaging with the detector material of interest of
Lutetium Oxyorthosilicate (LSO). PET imaging is a nuclear medicine technique that
produces images of body function began in 1950. Meanwhile, the first commercial
positron imaging device was developed in 1980 [4]. At first, this device was specifically
designed for the brain imaging. However, the high sensitivity of PET expands the
application of this technology, particularly to the whole body imaging. The basis of
photon detection in PET is principally similar to the other nuclear imaging technique like
SPECT. The difference is PET works by detecting two coincidence photons that are
emitted in opposite direction. PET radiotracer is initially injected into the patient’s blood
vessels. The decay and interaction processes within the patient’s body, thus emits
photons that are eventually detected by the scintillation detector. The PET image shows
the distribution of the injected radiotracer within the patient’s body as a function of the
metabolic rate of each area. The higher metabolic rates of the tumor cells thus absorb
more activity compared to the normal cells [5, 6].

The current morbidity and mortality rate of cancer in the world, particularly Malaysia
makes such high sensitivity imaging tools needed in clinical practices. Several types of
cancer are listed among the most reported causes of death, for instance, lung, breast and
liver cancers in Malaysia. In 2003 to 2005, 116 per 100000 populations of cancer

1



© C
OPYRIG

HT U
PM

incidence were reported in Peninsular Malaysia [7]. The value increased to 109.8 per
100000 populations in 2006 [8]. One of the reasons leading to the high cancer mortality
rate is due to the late diagnosis of the disease. Therefore, early detection of the disease
can increase the probability to cure the disease. This is in turn highly dependent on the
performance of the imaging tools, specifically the quality of the reconstructed image.
The high sensitivity PET imaging is now reported as the most accurate tool for cancer
diagnosis and monitoring [9, 10]. Nevertheless, the performance of a PET imaging is
influenced by multiple factors, that could be classified as physical, technical and
biological factors [11–18].

The noisy nature of the PET image thus requires each single factor possible for the
image quality enhancement to be considered. The processes of image processing start by
the image acquisition, whereby the data are acquired either via one-dimensional (1D),
2D or 3D acquisition method. The step continues into the processing step that could be
initialized by the pre-processing steps. Further post-processing steps are commonly
implemented to enhance the quality of the image. The components of image processing
are illustrated in Figure 1.1. The works present in this thesis are based on the technical
aspect of the image acquisition, wherewith the optimal energy threshold level for
different sizes of the patient’s body was defined.

Image 
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Figure 1.1: The image processing components, emphasizes on the focus of the study
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1.1.1 Imaging modalities

(c) (d)(b)(a)

Figure 1.2: Examples of whole body images acquired using various imaging
modalities (a) PET [19] (b) CT [19] (c) SPECT [20] (d) MRI [21]

Currently, many medical imaging modalities are available in the market. Some of the
modalities are invented for the specific aims of usage. For instance, mammography is
specifically invented for the breast imaging and magnetic resonance imaging (MRI) for
bones, joints and soft tissue imaging. Figure 1.2 shows examples of the whole body
images acquired using different imaging modalities [19–21].

In general, each modality has advantages and disadvantages over the others. The
attachment of the PET radioisotope with the glucose analog material (which is
fluorodeoxyglucose, FDG) makes sensitivity of PET imaging in detecting the onset of a
tumor superior to the other medical and nuclear imaging modalities. Ability of PET to
detect the molecular changes offers earlier detection of cancer compares to the CT and
MRI diagnosis which rely on the anatomical changes of the patient’s body [22]. It is
worth noting that the physical or anatomical changes in the patient’s body, usually could
be observed after a time frame following the onset of a disease. This characteristic
makes PET imaging as the best modality for diagnosis, monitoring and staging of cancer
[9, 10]. It is well known that the relationship between photon sensitivity and spatial
resolution in medical imaging is always reciprocal [23, 24]. Thus, a good sensitivity PET
scanner will have a trade-off of its spatial resolution. Yet, this disadvantage had been
resolved by the introduction of the dual modality imaging, for instance, PET/CT and
PET/MRI [25].

The other nuclear imaging modality available in clinical practices is the gamma camera.
The camera works by detecting single gamma photon emitted from the patient’s body. It
differs from the PET imaging in the sense that the photon emitter’s radioisotope is used.
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In comparison to the PET scanner, gamma camera has a lower sensitivity and spatial
resolution [26]. The big slab of Sodium Iodide (NaI) scintillation detector in gamma
camera limits the spatial resolution of this modality. Fortunately, there is a study on a
new collimator called wire mesh collimator that could increase both the sensitivity and
spatial resolution of a gamma camera [27]. In addition, there is also a hybrid imaging
technique that incorporates SPECT and CT in a gantry [28]. Other than that, the SPECT
radioisotopes are cheaper compared to the PET radioisotopes. They also have a longer
half-life, i.e. several hours to days compares to several minutes to hours for PET
radioisotopes. Availability of on-site generators at a reasonable cost for SPECT
radioisotopes also gives another additional advantage of SPECT over PET. However, for
a whole-body imaging, SPECT imaging requires longer acquisition time and may cause
the patient to feel uncomfortable.

Aside from nuclear imaging modalities, there are other imaging modalities like X-ray,
mammography, fluoroscopy and CT scanner. Being different from the nuclear imaging
modalities, these modalities work by X-ray transmission from the target material to the
patient’s body. While conventional X-ray is restricted to the static image acquisition,
fluoroscopy offers advantages in dynamic studies. The CT scanner is the best choice to
be considered when imaging the structure based, like the bone and blood vessels. Some
of the imaging modalities for medical purposes are invented based on the usage of the
non-ionizing radiation, for instance, MRI and ultrasound. This radiation, which has less
energy than the ionizing radiation is thus less risky to the patient. In summary, each
modality might give advantages over the others depending on the purpose of usage. The
summary on the characteristics of each imaging technique is listed in Table 1.1 and Table
1.2.
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1.1.2 PET Imaging

Imaging modalities

Diagnostic Radiology

SPECTCT

PET

Nuclear Medicine

MRI*

Mammography 

Fluoroscopy

Digital 
Radiography

Ultrasound*
Image 

Processing

Signal 
Processing

Fusion

PET/CT

PET/MRI

* refer to imaging modalities that utilize the application of non-ionizing radiation.

SPECT/CT

Figure 1.3: Summary of the imaging modalities used for diagnostic purpose and the
direction focused in this study

As discussed in the previous section, varieties of imaging modalities have been
developed with the purpose of medical diagnosis and monitoring. Generally, these
modalities could be classified into two categories, namely diagnostic radiology and
nuclear medicine imaging modalities. In addition to that, a fusion technology that
incorporates both diagnostic radiology and nuclear medicine modalities in a single
gantry is available. The classification of these imaging modalities is summarized in the
flow chart shown in Figure 1.3.

Current technology does offer combination of both diagnostic radiology and nuclear
imaging modalities in a single scanner, for instance, PET/CT, SPECT/CT, PET/MRI and
SPECT/MR [29]. In addition to that, multimodality or commonly called as hybrid
imaging modality has become a research interest nowadays. The examples of other
hybrid system are the Opti-SPECT/PET/CT, PET/SPECT/CT and PET/optical imaging
[30–34]. Most of these hybrid systems are still in the stage of pre-clinical trial and
laboratory research. Of all existing imaging equipment, this study focuses on the signal
processing of the PET scanner. Figure 1.4 shows the image of the Siemens Biograph
TruePoint PET/CT scanner modeled in this study. Optimization of the signal, i.e. in the
sense of the energy window that restricts the extension of PET data to be counted for
image reconstruction is the focus of this study.
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Figure 1.4: Siemens Biograph TruePoint PET/CT scanner used as a reference in
this study

PET imaging works based on the detection of coincidence photons that are emitted at
approximately 180o each other. The radioisotopes for PET imaging are positron
emitters, for instance Fluorine-18 (18F), Oxygen-15 (15O), Carbon-11 (11C) and
Nitrogen-13 (13N). The maximum positron energy (and half-life) of each are 635 keV
(110 min), 1720 keV (2.07 min), 970 keV (20.4 min) and 1190 keV (9.96 min).
Following the injection of the radioisotope into the patient’s bloodstream, the material is
distributed throughout the patient’s body. Basically, this material follows the glucose
pathway, as it is tagged with the FDG. Interestingly, the active cells like tumor, brain and
heart consume more glucose than the normal cell due to the high metabolic activity of
the cells. Thus, the tumor cell, which absorbs more radiotracer appears brighter
compares to the normal cell in the reconstructed image. The tumor appearance with
respect to the normal cell in the reconstructed image is termed as the hot spots.

1.2 Problem Statement

Compton scatter is one of the predominant interactions within the patient’s body. This
interaction causes a high number of scatter events detected in PET imaging. The photon
interaction cross-section for a wide range of photon energy is illustrated in Figure 1.5
[1]. For the lower atomic number of the material, the probability of Compton interaction
covers a relatively broad area. The Compton effect dominates within the energy range of
20 keV to 30 MeV at the respective lower atomic number material. The human body,
which highly contributes by the lower atomic number of materials, thus causes the
Compton interaction to dominate. For instance, the effective atomic number of bone and
soft tissue is 11.6-13.8 and 7.4 respectively [35]. In addition to that, the probability of
scatter interaction increases with the increment of the patient’s body weight. This
situation is encountered when imaging of an overweight or obese patient. Imaging of a
relatively big patient causes the image to be contributed by a higher fraction of scattered
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data and thus noisy [36]. The method proposed in this study is therefore aimed to
minimize the contribution of scatter events in PET imaging, especially for the higher
density human body.

The examples of methods are currently practiced to reject the scattered photon include
the use of septa in 2D acquisition, scatter correction and the energy threshold level
setting [18, 37, 38]. The energy threshold level that is commonly manipulated to reject
the scattered photons is the lower energy threshold level. Theoretically, a PET scanner
will have a perfect energy resolution by accepting only 511 keV photons. Unfortunately,
this method is impractical to be implemented in the real life situation. A longer
acquisition time is required to acquire statistically enough photons for image
reconstruction if such finite energy resolution is practiced. In addition to that, more
counts could be gained by injection of higher radioactivity and better efficiency of a
scanner. Inadequate number of counts during image reconstruction causes the image to
be influenced by the artifact [39]. Indeed, a relatively long acquisition time will lead to
other disadvantages, for instance, patient motion artifacts and patient inconvenience
[9, 40]. Therefore, the energy threshold level for PET imaging usually sets to cover some
range of energy and called as the lower and upper energy threshold level. The energy
threshold level of a scanner usually specified by the vendor may vary depending on the
configurations of the scanner, particularly the type of the detector material [12, 41].
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Figure 1.5: The photon interaction cross-section, presented for the various photon
energy and effective atomic number of the medium. Adapted from [1]
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Surveys of the literature reveal that the most commonly used energy threshold level for
the clinical LSO-based PET scanner is in the range of 300 keV to 425 keV for lower
energy threshold level and 590 keV to 665 keV (with the most common practise is 650
keV) for upper energy threshold level [12, 41–44]. Those levels usually set at a constant
setting for a particular PET study. One of the problems with this is when dealing with
different sizes of the patient’s body. The different sizes of the patient’s body (some
previously studied by different sizes of phantom) lead to a different fraction of scattered
and attenuated event counted in the PET data [18, 39, 40, 45–47]. Therefore, based on
the data of phantom study, PET image acquisition using a constant level of energy
threshold for different sizes of the patient’s body could overestimate or underestimate the
scatter fraction [18, 47]. Our effort was therefore to determine the optimal energy
threshold level for the different sizes of a patient’s body. This target was achieved based
on the simulation of various sizes of human-shaped phantom using Monte Carlo
N-particle (MCNP) code version MCNP5.

In conclusion to all the explanations previously discussed, the factors that contribute to
the onset idea of this research are as below:

1. The natural characteristic of human body, which comprises of low atomic number
materials leads to high probability of scatter interactions at the respective energy
range involves in PET imaging [1, 35].

2. The probability of the scatter interaction and photon attenuation increases with the
increment of the weight of the patient [40, 46]. Thus, imaging of a bigger size
patient would lead to noisier PET image compares to the smaller patient [36].

3. Current practices in our institution, which apply a constant energy window and
constant dose, would cause the overestimation or underestimation of the scatter
fraction when the various sizes of patient’s imaging are considered [18, 47].

1.3 Aim and Objectives

The aim of this study is to determine the optimum value of energy threshold level for
LSO-based PET scanner, focusing for different sizes of human-shaped phantom which
represent the underweight, normal, overweight and obese patients. To achieve the aim,
we therefore set the following specific objectives:

1. To model the PET scanner using Monte Carlo code version MCNP5 and validate
experimentally with Siemens Biograph TruePoint PET/CT.

2. To investigate and relate the effect of human body mass to the scatter fraction and
visibility of a tumor.

3. To determine and formulate the optimal energy threshold level for the different sizes
of phantom.
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1.4 Scope and Limitation of the Study

    PET data
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CT            PET
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Figure 1.6: The data flow in PET/CT scanner. Each PET and CT data are treated
individually and are fused together at the end of the processing steps. Adapted

from [48]

This study focuses on the definition of the optimal energy threshold level for LSO-based
PET imaging based on a validated MCNP5 code. Initially, we developed the PET
scanner MCNP5 code based on the technical specification of Siemens Biograph
TruePoint PET/CT. The dual modalities offer by this hybrid scanner interestingly
enables both PET and CT data to be processed individually (as shown in Figure 1.6)
[48]. Hence, a hybrid scanner will provide us with three types of data or images. These
data are PET image, CT image and PET/CT image. This characteristic enables us to
focus on the PET data only. The improvement in the PET section thus will let similar
improvement when PET/CT scanner is used. Therefore, the findings yielded from this
study are applicable for both PET or PET/CT system. Development of a realistic PET
scanner by using MCNP5 code is one of the important aspects of this study. Validation
on the particular PET scanner modeled was conducted and presented in this study. The
processes of our PET MCNP5 code verification was done via the comparison between
simulated and experimental data.

In addition to the development of a realistic PET MCNP5 code, the other most important
scope of this study is the different sizes of the phantom imaging modeled. Various
phantom sizes were considered in this study to represent the different groups of a
patient’s body. Patient weights of 44.0 kg, 68.7 kg, 86.2 kg and 99.0 kg are
approximated by four different sizes of elliptical-shape cylindrical phantoms. Estimation
of the weight and eventually the body mass index (BMI) of the phantom were made
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based on assumption of 175 cm height patient and pure water density [49]. The size of
the normal phantom and eventually phantom’s volume is comparable to the calibrated
phantom which is the commercially available PET phantom. The phantoms, that are in
the range of 20 cm to 30 cm major diameter are represented the underweight, normal,
overweight and obese adult patients. The phantom volume, which was filled with water
of 1 gcm−3 density, thus approximates the photon interactions within the human body.

The next discussion is to explain the validity of the data obtained in this study, of which
a water-filled phantom was modeled to represent the different BMI patients. The
relationship between weight gains, increases in waist circumference and evenly total
body fat have been discussed by a previous study [50]. Compton scattering, that is the
dominant interaction within the photon energy range involves in PET imaging is
dependent on electron per unit volume. Therefore, this interaction is affected by the
electron density and physical density of the material encountered by the photon. The
differences between the electron density of bone, fat, muscle and water are not more than
10% because it is proportional to the atomic number to atomic mass ratio [51]. In
addition to that, the electron density of approximately similar for both of the materials
also documented. Fat and water have an electron density of 3.34 to 3.48x1026 and
3.34x1026 each [35]. It should be noted that the Compton scattering is not affected by
the atomic number of the material as it involves the loosely bound electron. The effective
atomic numbers of 5.9 to 6.3 and 7.4 have been reported for fat and water respectively
[35]. As a conclusion, Compton scattering is thus assumed to be affected by the physical
density of the material only.

A photon might be attenuated either through absorption or scattering when pass through
a material. This characteristic is described by the linear attenuation coefficient or the
mass attenuation coefficient. Nevertheless, the attenuation rate is commonly expressed in
terms of the mass of the medium that is passed through by the photon namely mass
attenuation coefficient [3, 52]. Referring to Figure 1.7, the mass attenuation coefficient
of fat and soft tissue are not significantly varied at photon energy of 100 keV and greater
[53]. Therefore, the probability of fat and water (which modeled to approximate the soft
tissue interaction) to be attenuated either by the absorption or Compton scattering is not
significantly varied at the photon’s energy involved in PET imaging. Based on this
argument, we believe that this water-filled phantom is representing the scattering
behavior within the different BMI of a patient’s body.

12



© C
OPYRIG

HT U
PM

L-edge(s), Lead

     K-edge, 
Iodine     Lead

Iodine
Z=53 Lead

Z=82

Fat

10                                  100                               1000
                         Energy (keV)

1000

100

10

1

0.1

µ
/ρ

 (
cm

2 /
g)

Bone

   Soft  
  tissue

Figure 1.7: The mass attenuation coefficient for the various materials involved in
imaging presented for as a function of photon energy. Adapted from [53].

The simulations of the various phantom imaging used similar initial random seed
number. The model thus randomly sampling the similar behavior of the photon emitted
from the various phantoms. Each simulation model was then repeated using three
different initial random seed numbers to observe the standard error of the data.
Decrement in the statistical uncertainty of the data as the number of photon history
modeled increases had been declared by previous study [54].

In PET imaging, there are three types of data that let to coincidence events registration.
Those data are true coincidence, scatter coincidence and random coincidence. The latter
two data are those that contributed to the noise in the reconstructed image. In this study,
we did not model the random coincidence due to absence of real timeliness of interaction
information in the simulation output. The absence of random noise modeling after all is
expected to not significantly affect the characteristic of the parameters tested in this
study. The random event, which is unrelated to the patient’s body weight, is affected by
the activity present [36, 41]. A constant average random fraction at approximately 35%
was reported in previous study for the relatively constant dose protocol implemented,
when the various weights of patient’s body imaging were performed [36]. The similar
study also declared that the true coincidence lost with the increment of the patient’s body
weight is the reason for the degradation in the PET image quality for this imaging
protocol. Therefore, the constant dose protocol concerns in this study is expected not to
give significant variation in the random fraction when the various phantoms’ imaging are
performed. The noise that is solely contributed from the scatter interaction was therefore
modeled in this study.
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1.5 Contribution of the Thesis

The significant contribution of this thesis is in the optimal energy threshold level
definition for the underweight, normal and obesity patients. The definitions of the energy
threshold levels were made based on phantoms modeling using a validated MCNP5
code. The current energy threshold level practices commonly did not vary among the
different sizes of the patient’s body. Indeed, the fraction of scatter interactions within the
patient’s body is affected by the size or weight of the patient’s body. Therefore,
implementation of the optimal energy threshold level for each size of phantom is
necessary to minimize the contribution of noise in the reconstructed PET image. In
addition to that, the other significant contribution of this study is on the derivation of an
equation that correlates among the body weight, TBR or SUV of the tumor and the
optimal energy threshold level. This equation is therefore much valuables in definition of
the optimal energy window for the specific imaging conditions. Other than that, we also
managed to develop as realistic as possible model of a PET scanner using MCNP5 code.
Development of this PET scanner code is much useful in understanding the physical
principles of photon interactions in PET imaging. Further study associated with the PET
imaging is therefore possible and applicable by using this simulation code. We have also
submitted the data obtained in this study to be published in several related journals, and
even presented at several international conferences.

The main contributions of the study can be summarized into three:

1. Development of a guideline on the optimal energy threshold level for the
underweight, normal and obesity patients to be used in PET or PET/CT scanner.

2. Derivation of equations on the optimal energy threshold level calculation, with full
consideration on the patient’s body weight and TBR as well as SUV of the tumor.

3. Development of a realistic PET MCNP5 simulation code for PET scanner modeling
which can be used as a testbed.
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