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AB STR ACT 
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fulfilment of the requirement for the degree of Doctor of Philosophy 
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December 2015 

Chairman:     Lee Teang Shui, PhD 
Faculty:         Engineering 

One of the major manifestations of the climate change impacts in the 21st 
century in a water catchment is the precipitation—frequency and intensity—
pattern alteration that may result in water scarcity. It is important therefore to 
define the basin-scale hydrologic features under changing/variable climate for 
sustainable management of water resources. Spatial changes of precipitation 
frequency and intensity because of climate change may influence the 
streamflows frequency and magnitude causing intensified floods and droughts 
and the associated substantial local and regional impacts on the economy. 
Assessment of climate change hydrological impacts deals with uncertainties 
resulting from the application of General Circulation Models (GCM), Greenhouse 
Gasses Emission Scenarios (ES), downscaling methods, and hydrological 
models, each with their inherent uncertainty.  

Uncertainty assessment of the climate change impacts on streamflow of the Hulu 
Langat Basin is the main objective of this study. To this end, the Soil and Water 
Assessment Tool (SWAT) is used to model the hydrological system of the 
catchment. It is calibrated based on the historical streamflow data of the 
catchment. An ensemble of 19 GCMs under two emission scenarios (ES) is used 
to provide a wide range of possible future climate scenarios. Next, bias-corrected 
GCM’s precipitation and temperature data were used to run the SWAT model for 
both the current and future climate. Uncertainty in obtained streamflow scenarios 
was analyzed with focus on hydrological model parameters, emission scenarios, 
and GCM uncertainties. This research has modified the existing uncertainty 
model of Reliability Ensemble Averaging (REA) to be applicable at impact level 
of climate studies; and a probabilistic ensemble approach that is referred to as 
Bootstrapped Ensemble Uncertainty Modeling (BEUM) was proposed for 
uncertainty modeling. In the baseline climate simulations, hydrologic model 
parameters uncertainty was found to be larger than the emission scenario 
uncertainty, while GCMs were the largest source of uncertainty. However, 
parameter uncertainty was the smallest source in future climate periods, while 
GCMs and emission scenarios were the larger sources with projections of 130% 
and 51% relative change in annual streamflow, respectively. The projected 
temporal pattern of monthly streamflow for 2070-2099 under emission scenario 
of RCP8.5 was found to be different from observed pattern, where the usual first 
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peak flow of the year in April is changed to May and the lowest flow rate happens 
in February instead of July and August. The temporal change in uncertainty 
sources may have to be taken into cognizance when implementing water 
resources projects in the future. 

Based on the REA method, an approximately 3.5 and 2.9 m3/s increase in mean 
monthly streamflow during the 2016-2045 period respectively under the emission 
scenarios of RCP4.5 and RCP8.5, are anticipated. The modification applied to 
the REA method accommodated the inclusion of hydrological model parameter 
uncertainty into the total uncertainty assessment. The modified REA method was 
able to embrace a more reliable prediction interval compared to the original REA. 
In addition, a full coverage of prediction intervals was possible in the proposed 
BEUM method, although it proved to be computationally expensive in 
comparison with the REA method. 
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AB STR AK 

Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah  

 
ANALISIS KETIDAKPASTIAN UNJURAN ALIRAN SUNGAI LANGAT 

MENGGUNAKAN PENDEKATAN PELBAGAI MODEL YANG 
BERDASARKAN KESAN 

Oleh 

HADI GALAVI 

Disember 2015 

Pengerusi:     Lee Teang Shui, PhD 
Fakulti:           Kejuruteraan 

Salah satu penyataan utama daripada kesan perubahan iklim di satu kawasan 
tadahan air pada abad ke-21 adalah pemendakan—kekerapan dan keamatan—
corak perubahan yang mungkin menyebabkan kekurangan air. Jadi ia adalah 
amat penting untuk mentakrifkan ciri-ciri hidrologi pada skala lembangan bawah 
perubahan iklim untuk pengurusan sumber air yang mampan untuk 
memuaskanpermintaan semasa dan masa depan. Perubahan spatial kekerapan 
pemendakan dan keamatan yang disebabkan oleh perubahan iklim boleh 
mempengaruhi kekerapan dan magnitud pengaliran sungai menyebabkan banjir 
dan kemarau terlampau bersama kesan tempatan dan serantau ketara yang 
berkenaan terhadap ekonomi. Penilaian kesan hidrologi perubahan iklim 
merangkumi ketidakpastian yang didapati daripada penggunaan Model 
Pengedaran Umum (GCM), Senario Pemancaran Gas Rumah Hijau (ES), 
kaedah-kaedah penskalaan rendah dan model hidrologi, yang mempunyai 
ketidakpastian semula jadi masing-masing. Penilaian ketidakpastian kesan 
perubahan iklim ke atas pengaliran sungai di Lembangan Hulu Langat 
merupakan objektif utama kajian ini. Namum begitu, Peralatan Penilaian Tanah 
dan Air (SWAT) digunakan untuk memodelkan sistem hidrologi kawasan 
tadahan. Ia ditentukurkan berdasarkan data sejarah pengaliran sungai di hilir 
kawasan tadahan. Satu kumpulan sebanyak 19 GCMs di bawah dua senario 
pemancaran digunakan untuk menyediakan pelbagai senario (ES) iklim yang 
mungkin berlaku pada masa hadapan. Kemudian, data pemendakan dan suhu 
daripada penskalaan rendah GCM yang diperbetulkan secara cenderung 
digunakan bersama model SWAT untuk menunjukkan   kedua-dua iklim semasa 
dan masa hadapan. Senario pengaliran sungai yang diperolehi dianalisis 
berasaskan ketidakpastian yang sedia ada dalam ramalan. Parameter model 
hidrologi, senario pemancaran, dan ketidakpastian GCM dipermodelkan dengan 
menggunakan kaedah Reliability Ensemble Averaging (REA) dan kaedah 
Bootstrapped Ensemble Uncertainty Modeling (BEUM). Dalam simulasi iklim 
semasa, ketidakpastian parameter model hidrologi didapati lebih besar daripada 
yang dikaitkan dengan senario pemancaran, manakala GCMs merupakan 
sumber ketidakpastian yang terbesar. Bagaimanapun,  ketidakpastian 
parameter model hidrologi  adalah sumber yang paling kecil pada  tempoh iklim 
masa hadapan, manakala GCMs dan senario pemancaran adalah  sumber 
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terbesar dengan unjuran 130% dan 51% perubahan relatif pengaliran sungai 
tahunan, masing masing. Corak pengaliran sungai bulanan yang diunjurkan 
untuk 2070-2099 dalam senario pemancaran RCP8.5 didapatiberbeza daripada 
corak pemerhatian, di mana pengaliran kemuncak pertama tahunan biasa pada 
bulan April telah berubah ke bulan Mei dan kadar pengaliran terendah berlaku 
pada Februari dibandingkan biasanya berlaku pada Julai dan Ogos. Perubahan 
masa mungkin perlu diperhatikan dalam melaksanakan projek sumber air pada 
masa depan.  

Berdasarkan kaedah REA, peningkatan lebih kurang 3.5 dan 2.9 m3/s pada 
purata pengaliran bulanan masing-masing dalam tempoh 2016-2045 untuk 
senario pemancaran RCP4.5 dan RCP8.5 dijangkakan. Satu ubahsuai telah 
dipakaiguna kepada kaedah REA untuk menampung ketidakpastian model 
hidrologi dalam penilaian ketidakpastian berkeseluruhan. Kaedah REA 
terubahsuai mampu berkuatkuasa dalam satu selang ramalan lebih luas 
berbanding dengan REA asal. Satu liputan penuh selang ramalan boleh 
dilakukan dengan cadangan kaedah BEUM, walaupun dibuktikan bahawa ia 
lebih mahal berbanding dengan kaedah REA. 
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b Baseline climate 
p Projection 
Xbc Bias-corrected value of 𝑋 on the CDF of the future GCM 
�̌� Time series of the observed rainfall above 0.1 mm 

�̅�𝐺  
Threshold for the GCM simulations applied for bias-
correction 

∆𝑄 
Simulations deviation from the observed mean annual 
flow 

∆�̃� The ensemble average deviation from observations 
𝑅𝑖 Reliability measure of ith GCM. 
𝑅𝐵,𝑖 Model bias criteria 
𝑅𝐷,𝑖 Model convergence criteria 
휀𝑄 Natural variability in the observed annual flow 
𝐵𝑖 ith GCM absolute bias (∆Q) from the observation 
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xviii 
 

𝐷𝑖 
Distance of ith GCM predictions from the ensemble 
average 

𝛿∆𝑄 Root mean square difference 
�̌�𝑄 Hydrological model variability 
𝑅𝑚𝑜𝑑,𝑖 Overall reliability of ith GCM in the modified REA  
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 Background 

The past climate used to be the leading guideline for future planning and 
management of water resources and other relevant events. However, since the 
inception of the Industrial Revolution, the climate conditions are perturbed 
because of the escalated volume of heat-trapping greenhouse gases. The 
current level of carbon dioxide concentration surpasses the past 650,000–
800,000 years record (Lüthi et al., 2008) and in response, Northern Hemisphere 
average surface temperature has risen by 0.76°C over the past 150 years (IPCC, 
2007). Consequently, the global atmospheric circulation pattern and the 
precipitation and temperature patterns have altered sequentially. In addition, the 
anthropogenic changes on land such as waterways channelization and land use 
change, which alter the nature of ecosystem and watershed hydrology, 
characterize climate changes at the local scale (Moradkhani et al., 2010). 

One of the major manifestations of the climate change impacts in the 21st century 
in a water catchment is the precipitation—frequency and intensity—pattern 
alteration that may result in water scarcity. It is important therefore to define the 
basin-scale hydrologic features under changing/variable climate for sustainable 
management of water resources in order to satisfy both the current and future 
demands. Precipitation and temperature changes impacts on hydrologic 
processes negatively affect water resources and consequently all the water-
reliant sectors (Jung and Chang, 2011). Notably, spatial changes of precipitation 
frequency and intensity because of climate change may influence the 
streamflows frequency and magnitude causing intensified floods and droughts 
with substantial local and regional impacts on the economy. Dependency of 
runoff variability on multi-year or -decadal scale variability of climate necessitates 
the study of key elements of the climate, temperature and precipitation. However, 
to define the major regional impacts of climate change, characteristics of a 
specific basin should be associated with the magnitude and distribution of 
changes in global scale (H. Xu et al., 2011).  

General Circulation Models (GCMs), representing various earth systems 
including atmosphere and land surface based on general principles of fluid 
dynamics and thermodynamics, are the most credible tool for climate change 
modelling (Fowler et al., 2007). Climate change assessment practices require a 
global perspective of at least a century long. Practically, prediction of 
Greenhouse Gases emission for such a long horizon is impossible. Thus, the 
Intergovernmental Panel on Climate Change (IPCC) periodically introduces 
alternative emission scenarios representing storylines of the potential future 
developments in socio-economic systems and their corresponding emission 
level. GCMs—run using any of the IPCC emission scenarios—are powerful tools 
in capturing the large-scale global circulation pattern. However, the mismatch 
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between spatial resolution of GCMs and impact models (for instance a 
hydrological model in this research) limits the direct application of GCM outputs 
in impact assessment studies. Therefore, GCM simulations are downsized to a 
regional or basin-scale resolution using different downscaling techniques. 

Every step in the climate change impact study—including GCMs run under any 
emission scenario, downscaling, and hydrological modeling—is inherently 
uncertain. Uncertainty in each assessment stage stems from model structure 
and parameters. Contribution of each uncertainty source towards the overall 
uncertainty envelop is significantly different. However, GCMs and emission 
scenarios are introduced as the largest sources of uncertainty in impact studies 
(Chen et al., 2013; Prudhomme et al., 2003). Emission scenarios due to their ill-
understood systems are a fundamental source of uncertainty, although their 
uncertainty is most often assessed combined with GCM uncertainty. GCMs 
according to their model structure and associated assumptions produce different 
simulations of the same variable; thus, the choice of GCM highly influences the 
future projections of hydrologic components. Different approaches have been 
developed to analyze and quantify the GCM uncertainty and it is still at the 
forefront of the impact studies.  

Hydrological models are frequently used to quantify the hydrological impacts of 
climate change using GCM data as inputs (Bastola, 2013; Ludwig et al., 2014; 
Vezzoli et al., 2013). Nevertheless, application of the model results with respect 
to future changes in runoff remains limited due to the large uncertainty stemming 
from GCMs, greenhouse gases emissions scenarios, downscaling methods, and 
hydrological models (Kingston and Taylor, 2010; Woldemeskel et al., 2014). 
Therefore, all the uncertainties have to be explored in order to draw a valid 
conclusion from the study (Quintana-Seguí et al., 2010). The major uncertainty 
source, however, is commonly believed to be the choice of GCM, where every 
GCM can project a different future climate condition (Buytaert et al., 2010). 
Therefore, many published studies and the IPCC embolden application of 
multiple GCMs in order to assess the GCM uncertainty (Chen et al., 2013; 
Ludwig et al., 2014). 

 

1.2 Problem Statement  

Up to date, uncertainty analysis has usually been limited to the climate part (e.g. 
Chen et al., 2013; Prudhomme and Davies, 2007), while many recent studies 
highlight that the uncertainty due to hydrological model parameters instability 
should not be ignored (Brigode et al., 2013; Goderniaux et al., 2015; Touhami et 
al., 2015). Because, hydrological model parameters are highly dependent on the 
climate properties of the catchment during model calibration period; thus, the 
highly variable model parameters can generate a wide spectrum of future 
scenarios when they are run by GCM data (Poulin et al., 2011). However, 
assessment of hydrological model structure uncertainty is deemed less 
informative when a large number of GCMs are applied in the study (Lespinas et 
al., 2014). 
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The common agreement within the climate research community is that the 
downscaling uncertainty is notably smaller than the GCM uncertainty (Chen et 
al., 2013; Prudhomme et al., 2003; Wilby and Harris, 2006), in which some 
studies have neglected it or incorporated it into the GCM uncertainty as one 
source (Liu et al., 2012; Mujumdar and Ghosh, 2008; Thompson et al., 2013). 
However, exploration of downscaling uncertainty is recommended in cases 
where only one GCM is applied for impact assessment (Chen, et al., 2011).  

Selection of uncertainty modeling approach is believed to play an important role 
in quantifying the uncertainties involved in the impact study. Uncertainty 
modeling techniques are generally divided into probabilistic approaches, where 
equal probability is assigned to an ensemble of opportunities, and weighting 
approaches that assign different weights to different future scenarios (Lopez et 
al., 2006). Those methods analyze the uncertainty in GCM simulations of 
temperature and precipitation as the main climate variables and apply the 
quantified uncertainty to the impact models (Wang and Chen, 2013; H. Zhang et 
al., 2011). However, disregarding the impact level uncertainty and only applying 
the uncertainty models to the weather events under climate change scenarios is 
claimed to be the current gap in uncertainty analysis of integrated climate change 
impact studies (Fowler et al., 2007; Kumar, 2014; Yao et al., 2011).  

The Reliability Ensemble Averaging (REA) method (Giorgi and Mearns, 2002) is 
one of the most credible weighting approaches that has been proved a promising 
method to reduce uncertainty in climate studies (Mearns et al., 2003; Tebaldi 
and Knutti, 2007; Tebaldi et al., 2005), but it has very rarely been applied at 
impact level of climate change studies. To the best of the author’s knowledge, 
only Sperna-Weiland et al. (2012) used REA method at impact level in their study 
where the total uncertainty is represented in streamflow scenarios. Unlike the 
Sperna-Weiland et al. (2012) study, however, this research argues that 
application of REA method at impact level requires inclusion of hydrologic 
(impact) model uncertainty into the method’s structure. Therefore, the present 
research analyzes the possibility of hydrological model uncertainty inclusion to 
the REA method. 

Probabilistic approaches, on the other hand, have shown to be effective at 
demonstrating the likelihood of climate change scenarios and impacts (Chen et 
al., 2013; Fowler et al., 2007; Raje and Mujumdar, 2010), despite being generally 
applied at climate level. A resampling method is often used to generate a large 
number of future climate scenarios and quantify the uncertainties through 
defining a confidence interval for the likelihood of climate projections. Wilby and 
Harris (2006) have claimed that application of an integrated system of 
GCM/downscaling/hydrological-model for uncertainty quantification might 
conceal the individual uncertainty sources influence on the final Cumulative 
Distribution Function (CDF). In response, this research postulates that by 
altering the probability of occurrence of obtained impacts (streamflow) from an 
ensemble of integrated systems, individual components’ uncertainty would be 
manifested in the final ‘uncertainty band’ instead of a single CDF. Thus, climate 
change hydrological impact uncertainty is to be quantified by bootstrapping each 
integrated systems output and defining a probabilistic uncertainty band.  
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1.3 Research Objectives  

According to the stated research gaps in uncertainty analysis of climate change 
hydrological impacts amidst increasing water scarcity, which necessitates a 
precise impact assessment of climate change scenarios; the main objective of 
this study is to assess impact-based multi-model ensemble approaches for 
uncertainty analysis of climate change impact studies. Consequently, to achieve 
this aim, the following sub-objectives are delineated: 

1- To study climate change impacts on climate variables of the case study 
by generating a large ensemble of future scenarios using 19 GCMs’ 
bias-corrected simulations under two emission scenarios.   

2- To simulate the hydrology cycle of the case study using Soil and Water 
Assessment Tool (SWAT) model and assess climate change impacts on 
streamflow of the basin. 

3- To quantify uncertainty contribution of each component in the impact 
study inclusive of GCMs/downscaling, emission scenarios, and 
hydrological model parameter set.  

4- To modify the uncertainty modeling method of Reliability Ensemble 
Averaging (REA) for an impact wise assessment of uncertainties, and 
compare it with a new impact-based probabilistic approach.  

 

1.4 Scope of the Research 

Climatological, hydrological, and statistical considerations are the three main 
aspects of this research that are integrated for uncertainty modeling of the 
climate change impacts on streamflow of the Hulu Langat Basin. Downscaling of 
19 GCMs’ output under two greenhouse gases emission scenarios to run the 
calibrated hydrological model for assessment of climate change impacts on 
streamflow is followed by the analysis and modeling of the uncertainty in 
obtained streamflow scenarios. Uncertainty modeling is accomplished using two 
methods; one based on weighting the streamflow scenarios and the other follows 
a probabilistic approach. The analysis of the effect of climate change at two time 
periods of 2016-2045 as the near-future climate represented by 2030s, and 
2070-2099 as the long-term climate represented by 2080s serve as the main 
draw of the work. The physical characteristics of the catchment are represented 
with the calibrated hydrological model. In both phases of the study, climate and 
hydrology, data availability constraint has been dealt with by changing periods’ 
length. In addition, posterior distribution of hydrological parameters were used in 
hydrological modeling to conceptualize land use changes effect on hydrological 
modeling in future periods. 
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1.5 Significance of the work  

The future challenge in adapting to climate changes is quantification of 
uncertainties involved. In comparison with other studies in this context, two 
common uncertainty-modeling approaches are applied at the impact level of the 
study. The results would be integrated uncertainty modeling methods that 
encapsulate climate components (GCM, emission scenario) uncertainty and 
hydrological modeling uncertainty within a lump system. The reliability ensemble 
averaging method in the class of multi-model ensemble approaches is modified 
to take into account the effect of hydrological model parameter uncertainty, which 
then encircles all the uncertainty sources and portrays them within a prediction 
interval without overlooking any uncertainty component. Moreover, in the class 
of probabilistic approaches, application of bootstrapped ensemble of streamflow 
scenarios is promoted as a new approach that can stand for all the uncertainty 
sources in an impact study. Thus, uncertainty level can be reduced by ranking 
future streamflow scenarios based on their reliability measures or probability of 
occurrence. The more pragmatic realizations of future climate can be then 
selected to appoint adaptation strategies and approximate the future 
compatibility between water demand and resources available.  
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