
 
 

UNIVERSITI PUTRA MALAYSIA 
 

MECHANICAL PROPERTIES OF ULTRA-FINE GRAIN ALUMINIUM 
AL6063 AND PURE COPPER PROCESSED BY EQUAL CHANNEL 

ANGULAR EXTRUSION METHOD 

 
 
 
 
 
 
 

JAMSHID NEMATI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2015 85 

 



© C
OPYRIG

HT U
PM

i 

 

 
 

 

 

MECHANICAL PROPERTIES OF ULTRA-FINE GRAIN ALUMINIUM 

AL6063 AND PURE COPPER PROCESSED BY EQUAL CHANNEL 

ANGULAR EXTRUSION METHOD 

 

 

 

 

 

 

 

 
By 

 

 

JAMSHID NEMATI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 

Fulfilment of the Requirements for the Degree of Doctor of Philosophy 

 

July 2015 

 

 



© C
OPYRIG

HT U
PM

ii 

 

COPYRIGHT 

  

 
All material contained within the thesis, including without limitation text, logos, icons, 

photographs and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis 

for non-commercial purposes from the copyright holder. Commercial use of material 

may only be made with the express, prior, written permission of Universiti Putra 

Malaysia.  

 

 

Copyright © Universiti Putra Malaysia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

iii 

 

DEDICATIONS 
 

 

Dedicated to my family and in particular to my wife, Tayebeh whose 

love, support, and encouragement are the most wonderful of the many 

blessings that God has granted me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirements for Degree of Doctor of Philosophy  

 

 

MECHANICAL PROPERTIES OF ULTRA-FINE GRAIN ALUMINIUM 

AL6063 AND PURE COPPER PROCESSED BY EQUAL CHANNEL 

ANGULAR EXTRUSION METHOD 

 

By 

 

JAMSHID NEMATI 

 

July 2015 

 

 

Chairman: Professor Shamsuddin Bin Sulaiman, PhD 

Faculty    : Engineering 

 

 

Severe  plastic  deformation  (SPD)  is  one  of  the  processes  used  to  refine  the 

microstructure of materials among which the Equal Channel Angular Extrusion 

(ECAE) is the most common method. ECAE has gained much interest over the past 

decades. In this study, pure copper and aluminum alloy 6063 grain refinement were 

performed using the ECAE method. The materials were extruded up to eight and six 

passes at room  and 200°C temperatures with a constant ram speed of 20 and 30 

mm/min, respectively, following route A through a die angle of  90° between  the  die  

channels. Optical microscopic examinations revealed pure copper grain refinements in 

the range of 32 µm to 4 µm after eight passes whereas for Al-6063 alloy the grain 

diameter reduced from 45 µm to 2.8 µm after six passes of ECAE. The extruded 

specimens were tested under quasi-static, medium and high strain rate loadings using 

various testing machines. Mechanical properties of the extruded material were obtained 

at different strain rates. For the pure copper, it was found that the maximum increased 

of ultimate strength of 80% occurred after the second pass for the V=200 mm/min. The 

total increase of ultimate strength after eight passes was around 100%. Furthermore, 

hardness, increased to a maximum of 36% after eight passes.  

 

The results of Al-6063 tensile tests indicated that the tensile yield stress (YS) and 

ultimate tensile strength (UTS) of the extruded specimens increased significantly after 

5 passes of ECAE process. The average increase was found to be around 70%, 

regardless of the tension velocities. The hardness measurements were made on 

different locations of the billet.  For Al-6063, the results indicated around 90% increase 

in microhardness after 5 passes. The results for pure copper illustrated that the most 

increase of hardness (about 18%) occurs after the 2
nd

 pass. A total of around 36% 

increase in hardness was observed after 8 passes.  

 

A maximum increase in impact energy absorption of 100% was achieved from Charpy 

tests after eight passes and 90% after six passes of the ECAE process for pure copper 

and Al-6063 alloy, respectively. In addition, bending fatigue test results indicates that 

for fatigue tested pure copper specimens, the results of fatigue tests indicated that a 

significant improvement in fatigue life occurred after the 2
nd

 pass. For low stresses, a 
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maximum increase in fatigue resistance of approximately 500% was observed. The 

results of fatigue tested Al-6063 specimens indicate that major improvements in 

fatigue resistance occurred after the first pass. The impact strength of extruded 

specimens was also evaluated for different passes at a strain rate of 1800 s
-1

 using 

Split-Hopkinson pressure bar (SPHB). The  results indicated that the major strength  

improvement for  Al-6063  and pure copper in  the  5
th

  and  6
th

  passes and 6
th

 and 

8
th

occurred, respectively. Finally, ECAE process was simulated using the DEFORM-

3D software through a three-dimensional analysis.  
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Pengerusi: Professor Shamsuddin Bin Sulaiman, PhD  

Fakulti    : Kejuruteraan 

 

 

Mengubah bentuk plastik teruk adalah satu proses yang digunakan untuk mengecilkan 

struktur mikro bahan dimana antara cara yang digunakan ialah Saluran Sama 

Penyemperitan Sudut (ECAE). ECAE telah diminati beberapa dekad lalu. Dalam 

kajian ini, tembaga tulen dan aloi Aluminium 6063 penghalusan bijian/struktur telah 

dilakukan menggunakan kaedah ECAE.  Bahan-bahan ini telah disemperitkan sehingga 

lapan dan enam laluan pada suhu bilik dan 200°C dengan halaju ram yang tetap 20 dan 

30 mm/min, melalui sudut acuan 90° antara saluran-saluran acuan. Pemeriksaan 

mikroskop optik mendapati penghalusan bijian tembaga tulen adalah antara 32µm 

hingga 4µm selepas melalui lapan laluan tetapi untuk aloi Al-6063 garispusat  bijian 

berkurang dari 45µm ke 2.8 µm selepas enam laluan ECAE. Sifat-sifat mekanikal hasil 

ECAE telah dikaji.  Spesimen semperitan telah diuji dibawah kuasi-statik, bebanan 

kadar terikan pertengahan dan tinggi menggunakan berbagai mesin ujian. Sifat-sifat 

mekanikal bahan tersemperit diperolehi pada kadar terikan berbeza.  Untuk tembaga 

tulen, didapati kekuatan muktamad maksima 80% bertambah berlaku pada laluan 

kedua dengan kelajuan V=200 mm/min. Jumlah kenaikan kekuatan muktamad selepas 

laluan kelapan adalah 100%. Tambahan pula, kekerasan bertambah sehingga maksima 

36% selepas lapan laluan. Specimen secara fractografi menunjukkan bahawa 

mekanisma keretakan adalah tidak bergantung kepda kadar terikan. 

 

Keputusan ujian tegangan Al-6063 menunjukkan tegasan alah tegangan (YS) dan 

kekuatan tegangan muktamad (UTS) spesimen disemperit bertambah dengan ketara 

selepas 5 laluan proses ECAE.  Purata kenaikan sekitar 70% telah diperolehi tanpa 

mengira kelajuan tegangan. Ini menunjukkan sifat tegangan specimen tidak 

dipengaruhi oleh kadar terikan.Pengukuran kekerasan telah dibuat pada kedudukan 

berbeza bilet. Untuk Al-6063, keputusan menunjukkan penambahan 90%  kekerasan 

mikro selepas 5 laluan.  Keputusan untuk tembaga tulen menyatakan kekerasan banyak 

bertambah (18%) berlaku selepas laluan kedua.  Jumlah sebanyak 36% pertambahan 

kekerasan  dilihat selepas 8 laluan. Penambahan maksima penyerapan tenaga hentaman 

100% dicapai melalui ujian Charpy selepas lapan laluan dan 90% selepas enam laluan 

proses ECAE untuk tembaga tulen dan Al-6063. 
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Sebagai tambahan, specimen lesu bentuk-tulang-anjing telah dihasilkan dari spesimen 

semperitan dengan laluan dan tanpa laluan. Untuk ujian kelesuan specimen tembaga 

tulen, keputusan kelesuan menunjukkan penambahbaikan ketara kehidupan keletihan 

berlaku selepas laluan ke 2. Untuk tegasan rendah, didapati tahan keletihan bertambah 

maksima hampir 500%. Keputusan ujian kelesuan spesimen AL-6063 menunjukan 

penambahbaikkan major dalam tahan kelesuan berlaku selepas laluan pertama. 

Kekuatan hentaman specimen semperitan juga dinilai pada laluan berbeza dengan 

kadar terikan  1800 s
-1

 menggunakan Split-Hopkinson Pressure Bar (SPHB).  

Keputusan menunjukkan penambahbaikan kekuatan major untuk Al-6063 dan tembaga 

tulen dalam laluan ke 5 dan ke 6, dan laluan ke 6 dan ke 8. Akhirnya, proses ECAE 

telah disimulasikan menggunakan perisian DEFORM-3D melalui analisis tiga-dimensi. 
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1. CHAPTER ONE 

 

 
INTRODUCTION 

 

 

1.1. Background of the Study 

 

In materials engineering, it is essentially important to characterize and improve the 

mechanical properties, among which the strength, ductility, fatigue life, and others. The 

fact is that microstructure, which affects the material mechanical performance, also 

determines the mechanical properties of any materials directly. Hence, the material‘s 

average grain size, particularly plays a very substantial and dominating role. In this 

context, those materials which have grain sizes ranging from 100 to 1000 nm, i.e. <1-

μm, are called Ultra-Fine Grain (UFG) materials (Srinivasan, et al., 2006), which even 

have grain sizes bigger than the nano-materials and are seemingly recognized as the 

materials having grain sizes less than 100 nm. While there have been voluminous 

attentions given to the bulk UFG materials throughout the last two decades, several 

techniques have also been simultaneously devised aimed at manufacturing UFG 

materials. For instance, in order to transform and refine the materials‘ microstructure, 

the Severe Plastic Deformation (SPD) process is exploited, which is in detail describes 

as a kind of deformation being able to deform a billet of material beyond a true strain 

of 4.00. In addition, in order to refine the microstructural grain, numerous kinds of 

SPD are commonly utilized. Illustrations of such kinds are drawing, rolling, swaging, 

3- axes deformation, and equal channel angular extrusion (Heffner, 2008). 

 

A lot of of endeavors have been so far borne directed on manufacturing the bulk ultra- 

fine/nanostructured materials directly from micro structured ones by making use of the 

SPD. Particularly with the equal channel angular extrusion/processing (ECAE/ECAP) 

which is referred to as the most economical method and the easiest one to execute 

among the other SPD methods. It is admitted that one reason for such properties is the 

simplicity in both processing and tooling (Abd El Aal, 2011). The first instance of its 

development was reported in the former Soviet Union in the early 1990s by V.M. Segal 

(Segal, 1995). Since then, the materials community has tremendously focused on the 

ECAE process on account of its capability to yield ultrafine- grained metals as well as 

offering novel properties (Chen, et al., 2003). 

 

It is accentuated that the ECAE process was principally concomitant with structure 

refinement to sub-micron scale (Segal, 2004). Refining the grain size leads to the 

dislocation pile-up at the grain boundary which accordingly hampers the dislocation 

movement as well as boosting the material‘s yield stress. It is repeatedly proved that 

this technique can be used for significantly enhancing the materials‘ mechanical 

properties in consort with their microscopic structures. 

 

A review was undertaken to examine using the ECAP for grain refinement by altering 

the conventional ECAP with the purpose of boosting the process efficiency and the 

techniques used for up-scaling the procedure as well as processing the materials which 

were hard-to-deform (Valiev and Langdon, 2006). Figure 1.1 schematically exhibits 

the ECAE process wherein the specimens with square or circular cross section are 

strained by consecutive extrusion processes. 
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The ECAE technique revolves around refining the metals and alloys 

microstructure which ultimately results in the material strengthening. According to 

the Hall-Petch relationship (Etch, 1953), this technique is mathematically described as 

follows:  

σ  σ  
  

√                                                                                                       (1.1) 

 

where σy is the yield stress, σo and Ky are the materials‘ constants, while d is the 

average grain diameter. The ECAE is particularly distinctive due to the fact that the 

cross sectional area of the workpiece will be unaffected in the course severe 

deformation; nonetheless, extrusion and drawing the area decreases in other processes 

such as forging. It should be noted that the material in the ECAE technique is extruded 

through a channel and around a corner which have mostly an angle of 90
°
. Once the 

work piece passes by this corner, it experiences fairly large strains, at times, of the 

order of 1.5. Furthermore, the strains at the consecutive passes amass causing more 

material refinement as the section of the workpiece will be equal on the entrance and 

exit of the die. 

 

It should be pinpointed that better enhancement will be given into the billet mechanical 

behavior so long as the number of passes increases (up to 7 to 8 times of extrusions). 

The ECAE is advantageous as the billet is capable of supporting severe deformations as 

well as sustaining large strains larger than one while it never struggle with the change in 

the dimensions. The core fact is that the materials grain turns out to be finer owing to 

these large strains. It should be noticed that the grain refinement is carried on after each 

extrusion pass. This process can eventually yield a nano-structures material (Patil 

Basavaraj, et al., 2008) while such a process is not burdened with the weaknesses 

typically associated the other producing techniques like the milling and compaction. In 

details, the latter mentioned techniques are concomitant with few issues, including 

impurities, cavities, buckling and fracturing.  

 

Over the last two decades, a great deal of research has been conducted to 

comprehensively investigate the microstructural aspects of the materials which have 

       

Figure 1-1:Schematic process of ECAE 

(Salem, H. G., & Lyons, J. S. 2002) 

http://en.wikipedia.org/wiki/Microstructure
http://en.wikipedia.org/wiki/Hall-Petch_relationship
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been generated through the ECAE. The microstructure of a copper was scrutinized by 

Huang et al. (2004) which had been developed by means of the ECAE to a strain ∼8 

employing two different strain paths by way of rotating the billets through 90
°
or180

°
 

between each pass. Moreover, the nano-structured copper‘s (NC) properties were 

significantly affected by the heat treatment and the hardening cyclic deformation in the 

viscoplastic regime (Kommel et al., 2007). Also, the mechanical properties related to a 

6063-T1 aluminum alloy have been  studied while this alloy was processed via the 

ECAP method up to nine passes, revealing that the SPD (ECAP processing) could 

significantly enhance the Al 6063 alloys‘ mechanical properties through grain 

refinement (Serban et al., 2012). Furthermore, it is found that at the room temperature, 

the annealing temperature can remarkably influence the microhardness of the as-

processed material (Daly, et al., 2009). 

 

Moreover, under constant stress testing, a significant enhancement of fatigue limit and 

fatigue life has been reported in the ultrafine-grained state revealing that numerous 

cyclic properties related to the severely-predeformed materials having fine grains can be 

reorganized with regard to the Hall–Petch grain boundary hardening as well as 

dislocation hardening (Vinogradov, et al., 2001). Likewise, the tensile properties and 

impact toughness of Zn–40Al alloy subjected to the ECAE have been examined 

demonstrating that elongation to fracture noticeably upsurges corresponding to the rise 

in the number of ECAE passes as well as proving that there is an escalation in the 

strength after the first pass while there will be a decrease for the succeeding passes. 

Such softening is claimed to occur by reason of the deformation-induced 

homogenization alongside the incessant change in the composition of the constituting 

phases with the number of passes. Another related conclusion is that as a result of the 

significant growth in ductility, multi-pass ECAE could be employed to improve the 

impact toughness of the alloy (Pureck et al., 2004). 

 

 

1.2. Statement of the Problem 

 

As stated earlier, scientists and engineers have been fascinated in ultrafine grains 

(UFG) and nanostructured (NC) materials for more than two decades. In recent times, 

many advances have also been obtained in processing and characterizing these two 

materials due to their boosted properties, namely their high tensile strength, high 

toughness, excellent fatigue life, as well as their likelihood to get superplasticity at the 

low temperatures (Kim et al., 2003; Tham et al.,2007). Along with an ever-increasing 

demand on the improved materials performance, there is an urge for ultra-fine grain-

sized materials which yield greater strength while there is no deterioration in the 

materials‘ ductility. Of numerous existing severe plastic deformations, the ECAE 

technique has proved capable in developing the ultra-fine grained microstructures in 

bulk samples. It is also substantiated by Segal that the simple shear (SS) taking place 

on the die intersection plane can be used to estimate the deformation in the ECAE 

under ideal conditions (Beyerlein et al., 2008). 

 

To date, it is discerned that the majority of the published literature investigating the 

effect of the ECAE process has only examined few mechanical properties and/or 

microstructure of the materials under study, leaving out a dearth of much more 

comprehensive studies. Moreover, there are still some unanswered questions on the 
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impact this process imposes on the materials‘ mechanical properties. What follows is a 

brief account of such questions: 

 

1. Is there any limitation in grain refinement in a metal or alloy using the ECAE 

method? 

2.  Does the improvement of mechanical properties of the material keep rising 

with grain refinement? Or does it have a critical point? 

3. To what extent can the improvement of materials‘ mechanical properties be 

achieved using the ECAE method?   

4. Are the responses if the ECAEed materials in quasi static, dynamic, and cyclic 

loads similar to the normal materials? 

5. What is the fracture mechanism regime of the ECAEed materials under 

different loading conditions? 

 

To address the above mentioned questions, this study was conducted to investigate the 

mechanical properties and microstructure as well as their relationship of pure copper 

and aluminum alloy 6063 processed using the multi-pass ECAE method. 

 

 

1.3. Research Objectives 

 

The main objective established in this research study was to refine and homogenize the 

microstructure of commercially pure copper and aluminum alloy 6063 via the Severe 

Plastic Deformation (SPD) employing the Equal Channel Angular Extrusion (ECAE). 

Moreover, the effects of grain refinement on mechanical properties improvement of the 

processed materials using ECAE were examined. To fulfill the main objective, the 

following specific objectives were addressed:  

1.   To predict the force and speed of the plunger during the ECAE process. 

2.  To determine the strength, structure and fracture toughness of extruded pure copper 

and Al-6063 alloy after different ECAE passes. 

3.   To determine the fatigue life of the extruded materials.  

 

 

1.4. Scope and Limitations of the Study 

 

The focus of this research is to study the mechanical properties improvements while it 

deals with grain refinement of the materials by SPD is employing the ECAE method 

and explores its effects on microstructure and mechanical properties. In details, the 

study focused on AL-6063 alloy and pure copper as they both entailed satisfactory 

workability as well as possessing extensive applications in industry. The research was 

conducted through the two subsequent stages while only one of the materials was 

examined in each stage: 

 

 During the first stage, the pure copper was employed and the received material 

was annealed and extruded through the ECAE method for a maximum of eight 

passes. The point is that this process was carried out at the room temperature in a 

die made up of two channels of equal cross-section intersecting at an angle 90
°
, 

having corner angle of 20
°
. Afterwards, by using 2, 4, 6 and 8 passes, the ECAE 

tests were executed while eight specimens were tested during each pass. In order 
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to prepare the specimens for mechanical characterization and microstructural 

examination of the extruded materials, the tested billets were employed. 

 

 During the second stage, identical processes were executed for the annealed Al-

6063 alloy. In details, the ECAE tests were achieved by employing 1, 2, 3, 4 and 5 

passes following route A at the temperature which varied from 195
°
C to 205

°
C. 

Eight specimens were tested during each pass. The tested billets were used to 

prepare the specimens for mechanical characterization and microstructural 

examination of the extruded materials. 

It should be asserted that this research study encountered two main limitations. In the 

first place, by increasing the number of ECAE passes, the extrusion force will increase, 

necessitating a pressing machine with higher capacity as well as requiring a die and 

plunger with high strength and such demands were almost impossible. In the second 

place, the extruded specimens became shorter after each pass of the ECAE process; 

this was the case because after a definite amount of the ECAE passes, their suitable 

length became too short as to prepare the samples for most of the examination tests on 

the mechanical properties; these tests included the tensile, fatigue, fracture toughness, 

and so on. 

 

 

1.5. Organization of the Thesis 

 
This thesis is organized in ten chapters. Chapter one presents a general introduction 

consisting; Background of the Study, problem statement, research objective and scope 

and Limitations of the Study. In chapter two a review of literature that relates to the 

ECAE process and its effect on the mechanical properties of processed materials as 

well as their microstructure is presented. Description of methods used in the study and 

investigated materials provided in chapter three. 

Chapter four discusses finite element and metallurgical study of properties of deformed 

pure copper by ECAE at various strain rates. An investigation of microhardness 

characteristics of Al-6063 alloy processed by Equal Channel Angular Extrusion is 

presented in chapter five. Chapter six discusses the improvements in the microstructure 

and fatigue behavior of pure copper using equal channel angular extrusion (ECAE). 

 

Chapter seven discusses the experimental study of impact strength of Al-6063 alloy 

processed by Equal Channel Angular Extrusion. Chapter eight is related to the results 

and discussion of the development of microstructure and fracture toughness of AL-

6063 alloy using equal channel angular extrusion. Chapter nine discusses the effect of 

equal channel angular extrusion on Al-6063 bending fatigue characteristics. 

 

Chapter ten discusses the outcomes of the research; provides answers to the research 

questions and also how the objectives of the research were fulfilled. The chapter ends 

with conclusions and setting a direction for future research which could further 

investigate some aspects of this research. 
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