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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the Degree of Doctor of Philosophy 

 
 

CLIMATE CHANGE AND ITS IMPACT ON HYDROLOGICAL REGIME OF 
THE LANGAT RIVER BASIN, MALAYSIA 

 
 

By 
 

MAHDI AMIRABADIZADEH 
 

July 2015 
 
 

Chairman  : Assoc. Prof. Abdul Halim Bin Ghazali, PhD 
Faculty      : Engineering 
 
 
The water resources in the Langat River Basin are the main sources of water supply for 
different usage in the Klang Valley area that includes the city of Kuala Lumpur. In this 
study the rainfall data and the maximum, minimum and mean temperatures data were 
investigated for the presence of annual and seasonal trends. The Mann-Kendall test and 
the Theil-Sen's Slope method were used to detect the existence and magnitude of 
changes in the significant trends. The analytical results indicated that there were 
significant increasing trends in the annual and seasonal precipitation as well as the 
maximum and minimum temperatures at the 95% confidence level. 
 
This study also investigated the ability of the multiple linear (Statistical Downscaling 
Model) and nonlinear regression (Artificial Neural Network) methods with different 
complexity in downscaling and projection of climate variables in the Langat River 
Basin. These statistical downscaling models have been calibrated and validated using 
the NCEP/NCAR predictors in single station approach. The statistical validation of the 
generated precipitation, maximum and minimum temperatures on a daily scale, 
illustrated that the SDSM performs with better accuracy than the ANN model. The 
SDSM showed much ability to catch the wet spell and dry spell length than the ANN 
model. The calibrated models show more accuracy in simulating the temperature when 
compared with the capture of the variability of the precipitation. The better performing 
SDSM model was applied in projecting regional variables for two future periods (2030s 
and 2080s) by using predictors of the Coupled Global Climate Model version 3.1 under 
the A2 emissions scenario. The SDSM predicts an increase in mean monthly 
precipitationfor two future periods. This downscaling model predicts a similar pattern 
for maximum and minimum temperatures during future periods.  
 
The GEV distribution was fitted to the observed and generated daily rainfall, maximum 
and minimum temperatures in two future periods (2030s and 2080s) as well as baseline 
period using the Maximum Likelihood Method (MLE) at different stations. The 
comparison between the return values for precipitation and maximum and minimum 
temperatures indicated that the precipitation increases more than the temperature at all 
stations under future scenarios. 
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Results of sensitivity analysis during the calibration process indicated that the mean 

monthly streamflow was sensitive to changes in seven parameters (v_ALPHA_BNK, 

v_CH_K2, r_SOL_K(…), r_CN2, v_EPCO, v_GW_REVAP, r_REVAPMN) out of 19 

parameters. Four evaluation index values namely, NSE, PBIAS, RSR, and R
2
 of 0.62, 

5.7, 0.61, and 0.63, respectively indicated that the calibration was reasonable. These 

indexes during the validation period were 0.55, 3.5, 0.67, and 0.56 respectively. The 

SWAT modelwas applied to predict the values of the mean monthly discharges in the 

Hulu Langat basin for the three periods which are the baseline, 2030s, and 2080s and 

these values are 14.15, 24.20, and 29.42 m
3
/s, respectively.The majorcontribution of 

this study was to identify the SDSM model as the more reliable downscaling model for 

the study area, which can be developed further by using of more General Circulation 

Model (GCM) outputs. 
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Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

ABSTRAK 

PERUBAHAN IKLIM DAN KESANNYA KE ATAS REJIM HIDROLOGI 

LEMBANGAN SUNGAI LANGAT, MALAYSIA 
 

Oleh 

 

MAHDI AMIRABADIZADEH 

 

Julai 2015 

 

 

Pengerusi  : Profesor Madya Abdul Halim Bin Ghazali, PhD 

Fakulti      : Kejuruteraan 

 

Sumber air di Lembangan Sungai Langat adalah sumber utama bekalan air untuk 

pelbagai kegunaan di kawasan Lembah Klang dan ini termasuk bandar Kuala Lumpur. 

Dalam kajian ini, data taburan hujan dan data suhu maksimum, minimum dan min telah 

dikaji untuk mendapatkan kehadiran tren tahunan dan musim. Ujian Mann-Kendall 

kaedah Cerun Theil-Sen telah digunakan untuk mengesan kewujudan dan magnitud 

perubahan dalam tren yang signifikan. Keputusan-keputusan analitikal menunjukkan 

bahawa terdapat tren yang semakin meningkat secara signifikan dalam taburan hujan 

tahunan dan musim begitu juga dengan suhu-suhu maksimum dan minimum pada aras 

keyakinan 95%.  

 

Kajian ini juga meneroka ke dalam kebolehan linear pelbagai (Model Penurun-skalaan 

Berstatistik) dan kaedah-kaedah regresi bukan-linear (Jaringan Neural Artifisial) dengan 

kompleksiti yang berbeza dalam penurun-skalaan dan projeksi pembolehubah iklim di 

Lembangan Sungai Langat. Model-model penurun-skalaan berstatistik ini telah 

dikalibrasikan dan disahkan menggunakan peramal-peramal NCEP/NCAR dalam 

pendekatan stesyen tunggal. Pengesahan berstatistik taburan hujan, serta suhu 

maksimum dan minimum pada skala harian, menunjukkan bahawa SDSM mempunyai 

ketepatan yang lebih baik dari model ANN. SDSM menunjukkan lebih kebolehan untuk 

merekodkan musim hujan dan musim kemarau dari model ANN. Model-model yang 

dikalibrasi menunjukkan lebih ketepatan dalam mensimulasi suhu jika dibandingkan 

dengan perekodan keboleh-varian hujan.  Model SDSM yang lebih baik digunakan 

untuk memaparkan pembolehubah kewilayahan untuk dua jangkamasa hadapan (2030s 

dan 2080s) dengan menggunakan peramal-peramal Model Iklim Global Berpasangan 

versi 3.1 di bawah senario pengeluaran A2. SDSM meramal kenaikan dalam min 

taburan hujan bulanan untuk dua jangkamasa akan datang. Model penurun-skalaan ini 

meramalkan pola yang serupa untuk suhu-suhu maksimum dan minimum semasa 

jangkamasa di hadapan ini.  

 

Pengagihan GEV disesuaikan dengan taburan hujan harian yang diperhatikan dan 

dijana, suhu-suhu maksimum dan minimumdalam dua jangkamasa akan datang (2030s 

dan 2080s) dan juga jangkamasa menggunakan Kaedah Kebarangkalian Maksimum 

(MLE) pada stesyen-stesyen yang berbeza. Perbandingan di antara nilai pulangan hujan 
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dan suhu-suhu maksimum dan minimum menunjukkan bahawa hujan meningkat lebih 

dari suhu di semua stesyen dalam senario-senario masa depan.  

 

Keputusan-keputusan analisis sensitiviti semasa proses kalibrasi menunjukkan bahawa 

min aliran bulanan adalah sensitif kepada perubahan dalam tujuh parameter 

(v_ALPHA_BNK, v_CH_K2, r_SOL_K(…), r_CN2, v_EPCO, v_GW_REVAP, 

r_REVAPMN) daripada 19 parameter. Empat nilai indeks penilaian, iaitu NSE, PBIAS, 

RSR, dan R2 kepada 0.62, 5.7, 0.61, dan 0.63, menunjukkan bahawa kalibrasi adalah 

wajar.  Indeks-indeks dalam waktu ini adalah 0.55, 3.5, 0.67, dan 0.56. Model SWAT 

model diaplikasi untuk meramal nilai-nilai min pengeluaran bulanan di lembangan Hulu 

Langat untuk tiga jangkamasa iaitu garis asas,  2030s, dan 2080s dan nilai-nilai ini 

adalah 14.15, 24.20, dan 29.42 m
3
/s. Sumbangan utama kajian ini ialah untuk 

mengenalpasti model SDSM sebagai model penurun-skalaan yang lebih boleh 

dipercayai untuk kawasan kajian, dan yang boleh dibangunkan lagi dengan 

menggunakan lebih banyak output Model Edaran Umom (GCM). 
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CHAPTER 1 

INTRODUCTION 

INTRODUC TION  

1.1   General Background 

Global warming is one of the most talked about subjects in the 21st century, which 

affects our sphere of life. Its main problem is that global warming is not only a concern 

for the scientificcommunity, but it also affects the economy, geopolitics, health, local 

politics, and even our lifestyle. Since 1800s, there has been a significant increase in the 

amounts of fossil fuel usedto produce power for factories and global civilization. As 

such, it is expected that the global warming would affectsworld'saverage temperature, 

and its precipitation, ice and snow cover and sea level directly. Subsequently It will 

affect the water resources, economy, health, agriculture, forest and etc.(Solmon et al., 

2007). 

Therefore, it is important to address the many impacts of global warming on the 

environment of a region. The two known effects of global warmingon a regional scale 

are the increasingfrequency and severity of floods. The Global Climate Model (GCM) 

and statistical downscaling model are widely used in the researches to evaluate these 

effects (Duan & Mei, 2013; Hellstrom et al., 2001; Seidou et al., 2011). For simulating 

the hydrological response of a region against the changing climate, the Soil and Water 

Assessment Tool (SWAT) which is a long-term, continuous and spatially distributed 

model, is one of the most appropriate models. 

1.1.1   Climate Change 

Climate change refers to the statistically significant variations of the mean state of the 

climate or of its variability for decades or longer period. The atmospheric circulation 

and its interaction with the large-scale ocean currents and land with its features such as 

Albedo, vegetation, and soil moisture specify the climate(Houghton et al., 2001). 

In other words, there is a climate system such that interactions between its components 

determine the climate. The climate system consists ofthese components: atmosphere, 

hydrosphere, cryosphere, land surface and biosphere(Figure 1.1). Changing each part of 

this system will create a change in the whole climate system and also in their 

interactions. As water is involved in all components of the climate system, therefore any 

change in the climate system will affect water through a number of mechanisms. 

The oceans have an important role in the climate system with their huge capacity to 

store the heat and also their large thermal inertia. Half of solar radiation to the earth is 

on the ocean and it absorbs and stores that energy before escaping to the earth and 

reinforces the greenhouse warming process. As such, the oceans produce a balance 



© C
OPYRIG

HT U
PM

2 

 

against rapid climate fluctuations (Solmon et al., 2007). So, the oceans reduce the 

effects of rapid climate change during the time. (Houghton et al., 1990). 

 

 

Figure 1.1.Schematic view of climate system components and their 

interactions(Solmon et al., 2007) 

Scientists make qualified projection about the state of the climate in the future using 

some data analysis and special tools like climate and statistical models. The report from 

the IntergovernmentalPanel on Climate Change (IPCC) states that there is a 0.6°C 

increase in global temperatures and an increase of 20 cm in the level of sea water 

surface during the 20
th

 century. The IPCC survey also predictsa rise of between 1.4°C to 

5.8°C for mean global temperature and a rise of 20cm to 88 cm in sea surface level by 

the year 2100(Solmon et al., 2007).  

Trend analysis done over a time period from 1900 to 2005 describes a significant 

increase in the amount of precipitation in many parts of the world. In this time period, 

the precipitation in eastern parts of North and South America, northern Europe and 

northern and central Asia has increased while in other parts of the world drought is 

dominant. IPCC’s long-term observation of precipitation from 1950 to 2005 indicated a 

significant increase in the numbers of heavy precipitation in many land regions even in 

those regions that the total amount of precipitation has reduced(Solmon et al., 2007b). 

The study also states that more intense and longer droughts have happened since 1970, 

particularly in tropical and subtropical regions. Increasing temperature and decreasing 

land precipitation have contributed to these droughts. 
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Water resource projects needs to be evaluated with regard to possible changes in 

climate during the service period of the project. The most important water resource 

projects are dam construction, water supply infrastructure, wastewater treatment and 

reuse, desalination, pollutant emission, irrigation systems, hydropower generation and 

watershed management (Bryson et al., 2008). 

1.2   Statement ofthe Problem 

The frequency of occurrence and severity of some events like floods, drought and other 

hydrological events have significant effects on economic and social activity.According 

to IPCC (2007),experienced increasing temperature will continue with higher rate until 

the end of this century. Since one third of the population of Malaysia depends on the 

agriculture sector for their livelihood, so climate change in this country definitely has an 

influence on agriculture productions.More frequent occurrence of flood and drought are 

the two consequences of the changing in climate, which then cause significant 

socioeconomic impacts to the nation. Thus, climate change may affect the water 

resources of a region by variation in the input parameters to hydrologic cycle. 

The water resources in the Langat River Basin provides two third of water demand in 

the state of Selangor (Juahir et al., 2010).As the surface water is the main source for 

providing water in the Langat River Basin, estimation of streamflow in the future is an 

essential work for water management and conservation. On the other hands, managing a 

water projects during the service periodwill be more applicable with information about 

the components of hydrological cycle, especially streamflow, under the effect of climate 

change.Using of continues, and physically based hydrological model which is calibrated 

on observed data is the most common procedure to deal with this issue (Singh et al., 

2011). Hence, the main problems which exist regarding climate change is obtaining the 

change in the regime of this watershed in two future periods which arethe 2030s (2020-

2049) and 2080s (2070-2099). Furthermore, simulating the behavior of hydrological 

cycle's components needs to downscale the meteorological parameters which include 

precipitation as well as maximum and minimum temperatures in the future period using 

the predictors of a GCM model. 

As the spatial scales of GCMs and hydrological model are inconsistent, the output of 

GCMs cannot be uses directly as input to hydrological model. The statistical 

downscaling models are known approach to bridge the difference between large scale 

and regional scale models. It is a well-accepted fact that there are uncertainty in the 

outputs of downscaling models and hydrological modeling(Chen et al., 2012). Thus, 

comparison of downscaling model (SDSM and ANN models) and applying the more 

accurate model could decrease the rate of errors in simulating the hydrological response 

of Hulu Langat basin against the climate change in two future periods. 

On the other hands, design amounts for different return value for most of water projects 

are vital. The frequency analysis of downscaled meteorological parameters in the future 

(like the precipitation and maximum and minimum temperatures) under the A2 

emission scenario provides the extreme condition that expected to happen for the water 

project. As the A2 emission scenario describes the worst condition of climate change 

effect, therefore the estimated values of precipitation, temperature, and monthly 
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streamflow will be the extreme condition for the forecasted climate in the Langat River 

Basin. The current study tries to provide a more clear view on the components of 

hydrologic cycle in the future due to climate change in the Langat River Basin.  

1.3   Objectives 

The main objective of this research is to study the climate change and its impacts on the 

hydrological regime of the Langat River Basin in two future periods by applying 

appropriate downscaling and hydrologic models. To achieve the main objective of this 

study, the followingspecific objectives have been established: 

i. To determine thetrends in rainfallas well asthe maximum and minimum 

temperaturesatthe Langat River Basin. 

ii. To downscalethe daily rainfall, and also the maximum and minimum 

temperaturesusing two statistical downscaling models and determine the best 

model for the study area. 

iii. To create scenarios by projection of climate data for 2020-2049 and 2070-2099 

using the Coupled Global Climate model 3
rd

 generation (CGCM3.1) predictors 

under the most severe emission (A2). 

iv. To fita Generalized Extreme Value (GEV) distribution to the annual maximum 

precipitationas well asthe maximum and minimum temperaturesduringthe 

control and projectedperiods with return periods of 5, 10, 20, 50, and 100years. 

v. To simulatethe water balance and streamflow in the Hulu Langat basin due to 

climate change for the projected time periods using the SWAT model.  

1.4   Scope of Work and Limitation of the Study 

The primary effort of this thesis is to analyze the long time changing in the climate of 

the Langat River Basin by detecting trends in precipitation and maximum and minimum 

temperatures. In this way, the Mann-Kendall and Theil-Sen's Slope methods were 

applied to determine the significance of the occurrence and rate of change in the 

climatic variables. The other effort is to do a comparison of Statistical Downscaling 

Model (SDSM) and Artificial Neural Network (ANN) in downscaling the daily 

rainfall,maximum and minimum temperatures and chooses the more appropriatemodel 

for hydrological impact studies due to climate change in two future periods. The efforts 

also include an analysis of hydrological response of the Hulu Langatbasin using the 

SWAT model against the climate change by importing the downscaled rainfall and 

maximumand minimum temperatures into the SWAT model. 

The scope of this study is limited to long period data so as to reach better accuracy in 

estimated values. In the current study, the available recorded data covered a period of 

27 to 41 years that was obtained from Department of Irrigation and Drainage (DID) and 

Malaysian Meteorology department (MMD). The other limitation is lack of long time 

data for the Semenyih reservoirregarding storage and release relation. This limitation 

changed the area of study for the SWAT model simulation to the Hulu Langat basin that 

excludes the Semenyih reservoir. 
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1.5    Significance of the Study 

The climate change in Malaysia will affect several significant sectors, mainly water 

resources, agriculture, forest, energy and public health. It directly affects water 

resources and agriculture as the pattern of precipitation and temperature change. As one 

third of people in Malaysia are working in the agriculture sector, thus any change in 

agricultural resources creates profound risks in the life of people in this sector. 

Reservoirs and rivers are very important forirrigation, hydropower, water supply, and 

health. Amounts of water which is stored in the Langat reservoir to provide enough 

water for all consumptions, water level in reservoir for hydropower, reducing damage 

during and after flooding period, designing new reservoirs, design and improve sewer 

systems and many other water projects require the knowledge of the impacts of climate 

change in these areas.Simulating the behavior of streamflow as the main source of water 

in the Langat River Basin due to climate change is an essential work in managing the 

water projects. Therefore, studying the potential impacts of climate change on 

meteorological parameters as well as water resources helps to provide a better policy 

decision for water projects in the Langat River Basin. 

In planning and management of the water resources in the Langat River Basin to supply 

all the consumptionneeds ofthree large cities like Kuala Lumpur, Kajang, and Bangi; it 

requires clear view about the reliability of these water resources due to climate change. 

So, the master plan for the development of water resources in the study areaneeds to 

have a figure about regional climate for a long time in the future. As a matter of fact, 

pattern of precipitation, temperature,and evapotranspirationare so significant inthe 

management of crisis in the water district in the Langat River Basin. 

1.6   Organization of the Thesis 

Following the chapteron introduction, there are four chapters not including the 

appendices. Chapter Twocovers the literature review, which includes several 

background concepts in climate change, trend analysis,statistical downscaling, and the 

SWAT model. In Chapter Three, a description of the study area, trend analysis of 

threeclimatic variables (precipitation, maximum and minimum temperatures), and two 

statistical downscaling models are presented. Generalized extreme value distribution 

and the hydrological SWAT model are also discussed in this chapter. In Chapter Four, 

quality testing of data and detection of trend in climatic parametersat tenstations are 

presented.The performance of two downscaling models in regenerating local time series 

is analyzed. Theapplication of the SWAT model to simulate the monthly streamflow in 

the outlet of the Hulu Langatbasin is also presented in this chapter.This thesis ends with 

a conclusion that synthesizes the results and summarizes the main findings of the study 

in Chapter Five. 
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