UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF COATING TECHNOLOGY USING ROTARY PAN FOR PRODUCTION OF SLOW-RELEASE UREA

FARAHNAZ EGHBALI BABADI

ITMA 2015 4
DEVELOPMENT OF COATING TECHNOLOGY USING ROTARY PAN FOR PRODUCTION OF SLOW-RELEASE UREA

By

FARAHNAZ EGHBALI BABADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

To the soul of my Father, the first to teach me.

To my beloved Mother, for her prayers to me.

To my beloved sisters, for their care and support.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF COATING TECHNOLOGY USING ROTARY PAN FOR PRODUCTION OF SLOW-RELEASE UREA

By

FARAHNAZ EGHBALI BABADI

May 2015

Chair: Professor Robiah Yunus, PhD
Faculty: Institute of Advanced Technology

Urea fertilizer has been used for many years to supplement nutrients in growing media. Urea has the advantages of low cost and easy availability, thus touts as the most popular nitrogenous fertilizer. However, the major disadvantage of urea is its high solubility in water and its susceptibility to nitrogen losses through various pathways like leaching, ammonia volatilization, nitrification and denitrification. This adds extra cost for fertilizers manufacturer and higher concentration of urea in the soil. Currently, the use of slow-release fertilizer is a trend to reduce fertilizer consumption and to minimize environmental pollution. Slow-release nitrogenous-based fertilizer is often linked to positive characteristics such as regular release of nitrogen over a long period, reductions in nitrate leaching and reduced volatilization. However, slow-release nitrogen sources tend to be more expensive compared to other products and may lead to nitrogen release mismatch.

The coating process of urea has been performed using different techniques and various materials to delay urea release. In this study, a low cost rotary pan coating technology running at room temperature was used as the coating process for urea. In the first experiment, a fractional factorial design of experiment was utilized to screen the operational parameters of rotary pan including urea particle size, proportion of coating, amount of spray water, rotation speed, pan inclination, pan loading and spray flow rate. In the second experiment; the most effective coating parameters were analyzed and optimized using a central composite design of experiments. The results of the optimized process correlated well with a second-order polynomial model with percentage of variation, R^2 at 95.12%.

In the next experiment, the effects of different coating formulations on the efficiency, crushing strength and morphology of the coated urea were examined. Urea fertilizer was coated using six different materials, namely, gypsum, sulfur, ground magnesium lime, kaolin clay, rice husk ash and zeolite based on the “optimal” parameters of rotary pan. A mixture of 25% of gypsum, 25% of sulfur and 50% zeolite gave the lowest rate of urea release with acceptable crushing strength. Six different models namely, zeroth order, first order, second order, Higuchi and Ritger & Peppas and Kopcha model were examined to understand better the relationship between coating layer and urea release mechanism. By comparing coefficient of determination (R^2) of models, the Ritger & Peppas model provided the highest R^2 value (≈ 0.93) for final coating formulation. The
efficiency of gypsum-sulfur-zeolite (25/25/50%) coated urea was improved further where microcrystalline wax and polyol was experimented as a sealant. The efficiency of gypsum-sulfur-zeolite coated urea sealed by 3% of microcrystalline wax improved to around 56% while the efficiency of commercial sulfur coated urea is about 65%. This indicates the potential of gypsum-sulfur-zeolite coated urea produced in a room temperature process to be commercialized and used as a slow released nitrogen fertilizer.
PERKEMBANGAN TEKNOLOGI SALUTAN MENGGUNAKAN PAN BERPUTAR BAGI PENGHASILAN PELEPASAN UREA SECARA PERLAHAN

Oleh

FARAHNAZ EGHBALI BABADI

Mei 2015

Pengerusi: Professor Robiah Yunus, PhD
Fakulti: Institut Teknologi Maju

Proses salutan baja telah dijalankan dengan teknik yang berbeza dan pelbagai bahan untuk melambatkan pelepasan urea. Dalam kajian ini, teknologi pan salutan putaran dengan berkos rendah telah dilakukan pada suhu bilik sebagai proses salutan untuk urea. Dalam percubaan pertama, reka bentuk eksperimen melalui pecahan faktorial telah digunakan untuk menyiapkan parameter operasi pan berputar termasuk saiz zarah urea, nisbah salutan, jumlah air semburan, kelajuan putaran, kemiringan pan, laju muat pan, dan kadar aliran semburan. Dalam kajian yang kedua; parameter lapisan paling berkesan telah dianalisis dan dioptimumkan menggunakan reka bentuk eksperimen komposit pusat. Hasil daripada proses pengoptimuman mempunyai kaitan yang baik dengan model polinomial susunan kedua dengan peratusan variasi yang menjelaskan, \(R^2 \) pada 95,12%.

Dalam eksperimen selanjutnya, kesan formulasi salutan yang berbeza pada keberkesanan, kekuatan terhadap penghancuran dan morfologi urea yang bersalut telah diperiksa. Baja urea disalut menggunakan enam bahan yang berbeza, iaitu, gipsum, sulfur, magnesium tanah kapur, tanah liat kaolin, abu sekam padi dan zeolite yang telah
dibuat menggunakan parameter pan berputar yang optimum. Campuran 50% gipsum-sulfur dan 50% zeolite memberikan kadar yang paling rendah dalam pelepasan urea dengan kekuatan terhadap penghancuran yang boleh diterima. Lima model yang berbeza iaitu, perintah sifar, perintah pertama, Higuchi dan Ritger & Peppas dan model Kopcha dikaji untuk memahami hubungan yang lebih baik di antara lapisan salutan dan mekanisme pelepasan urea. Dengan membandingkan pekali penentuan (R²) model, model Ritger & Peppas memberikan nilai tertinggi R² (≈0.93). Keberkesanan urea bersalut gipsum-sulfur-zeolite (25/25/50%) telah ditingkatkan lagi dimana mikrohabluran lilin dan polyol dikaji sebagai tampilan. Keberkesanan gipsum-sulfur zeolite urea bersalut dengan menggunakan 3% daripada mikrohabluran lilin meningkat kepada kira-kira 56% manakala keberkesanan salutan untuk komersial urea bersalut sulfur adalah kira-kira 65%. Ini menunjukkan bahawa urea bersalut gipsum-sulfur zeolite yang dihasilkan pada suhu bilik berpotensi untuk dikomersialkan dan digunakan sebagai bahan perlepasan nitrogen secara perlahan.
ACKNOWLEDGEMENTS

The presented research work has been conducted under the supervision of Prof. Dr. Robiah Yunus to whom I sincerely express my utmost gratitude and respect for her continuing support, assistance, guidance and inspiration. I would like to thank for encouraging my research. Your advice on both research as well as on my career have been of invaluable experiences. I would also be very much appreciative of my co-supervisors; Dr. Suraya bt. Abdul Rashid and Dr. Mohamad Amran b. Mohd Salleh for their valuable advices and help during this project. I would also like to thank members of the academic staff in the Institute of advanced technology for their advice and support.

I am extremely thankful and indebted to Mr. Khairul Ridzwan Mohd Ibrahim for sharing expertise, sincere and valuable guidance to me.

I would also be very much appreciative of the professional and enlightening support given by Dr. Soraya Hosseini throughout my PhD research whose generosity in the distribution of knowledge is beyond words.

I would like to specially thank Dr Azhari for his assistance in my research. I also would like to express my thanks to my friends Naghme Abbasi, Mahtab Samadi, Mohammad Rasool Malekbala, Nur Syamimi Rahman, Chang Teck Sin, Nurhidayat, Hadi Amirkhani, Ali Zamani, Nurliyana Abdul Rauf, Nur Atiqah Mohamad Aziz and Nagisa Darajeh for their advice, help, moral support and memorable days that we shared together.

Special thanks to my family. Words cannot express how grateful I am to my mother (Esmat Aref) and my sisters (Shahnaz, Sedigheh, Zohre and Azam Eghbali Babadi) for all the sacrifices that you have given to me. Thank you for supporting me and I cannot thank you enough for encouraging me throughout this experiences.
I certify that a Thesis Examination Committee has met on 28th May 2015 to conduct the final examination of Farahnaz Eghbali Babadi on her thesis entitled "Development of Coating Technology Using Rotary Pan for Production of Slow-Release Urea" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Nor Azah binti Yusof, PhD
Associate Professor
Institute of Advance Technology
Universiti Putra Malaysia
(Chairman)

Mohd. Zobir bin Hussein, PhD
Professor
Institute of Advance Technology
Universiti Putra Malaysia
(Internal Examiner)

Thomas Choong Shean Yaw, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Sandra Cristina dos Santos Rocha, PhD
Professor
University of Campinas/ School of Chemical Engineering
Brazil
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 7 July 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Robiah Yunus, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Suraya bt. Abdul Rashid, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohamad Amran b. Mohd Salleh, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
(Date):
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Farahnaz Eghbali Babadi, GS33478
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _____________________
Name of Chairman of Supervisory Committee: Robiah Yunus, PhD

Signature: _____________________
Name of Member of Supervisory Committee: Suraya bt. Abdul Rashid, PhD

Signature: _____________________
Name of Member of Supervisory Committee: Mohamad Amran b. Mohd Salleh, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem statement</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Research objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Scope</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Structure of thesis</td>
<td>5</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Slow and controlled release fertilizers</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Classification of CRFs/ SRFs</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Advantages and disadvantages of slow/controlled release fertilizer</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Coating processes and equipment</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1 Drum coating</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2 Fluidized Bed Coating</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3 Advantage and Disadvantages of Coating Processes</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Physical barriers for slow-release coated urea</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1 Sulfur based coated urea</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2 Polymer based coated urea</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3 Sulfur-polymer coated urea</td>
<td>25</td>
</tr>
<tr>
<td>2.4.4 Resin-based coated urea</td>
<td>27</td>
</tr>
<tr>
<td>2.4.5 Superabsorbent/water retention coated urea</td>
<td>27</td>
</tr>
<tr>
<td>2.4.6 Bio-composite based coated urea</td>
<td>29</td>
</tr>
<tr>
<td>2.5 Physical and chemical properties of coating materials</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1 Gypsum</td>
<td>31</td>
</tr>
<tr>
<td>2.5.2 Sulfur</td>
<td>32</td>
</tr>
<tr>
<td>2.5.3 Kaolin clay</td>
<td>33</td>
</tr>
<tr>
<td>2.5.4 Ground magnesium lime</td>
<td>34</td>
</tr>
<tr>
<td>2.5.5 Rice husk ash</td>
<td>34</td>
</tr>
<tr>
<td>2.5.6 Zeolite</td>
<td>34</td>
</tr>
<tr>
<td>2.6 Nutrient release mechanism of semi/impermeable coated particles</td>
<td>35</td>
</tr>
<tr>
<td>2.6.1 Theories of dissolution</td>
<td>36</td>
</tr>
<tr>
<td>2.6.2 Kinetic models</td>
<td>37</td>
</tr>
<tr>
<td>2.7 Response surface methodology</td>
<td>40</td>
</tr>
</tbody>
</table>
2.7.1 Screening of variables 41
2.7.2 Choice of the experimental design 41
2.7.3 Codification of the levels of the variable 42
2.7.4 Mathematical–statistical treatment of data 43
2.7.5 Response surface methodology application for coating urea process 43

3 METHODOLOGY 45
3.1 Preparation 45
 3.1.1 Materials 45
 3.1.2 Description of rotary pan coater 47
 3.1.3 Procedure 48
3.2 Experimental design 52
3.3 Mechanical and chemical analysis 54
 3.3.1 Particle size distribution analysis 54
 3.3.2 Crushing strength analysis 55
 3.3.3 Dissolution analysis of urea 55
 3.3.4 High-performance Liquid Chromatography analysis 55
3.4 Characterization method 56
 3.4.1 Fourier transform-infrared (FT-IR) analysis 57
 3.4.2 Scanning electron microscopy 58
 3.4.3 Energy dispersed X-ray analysis 59

4 RESULTS AND DISCUSSION 60
4.1 Screening and optimization of the most effective operational parameters of urea coating process 60
 4.1.1 Screening of operational parameters 60
 4.1.2 Optimization of operational parameters 69
4.2 Selection of suitable coating materials and kinetic models for different coating formulations 79
 4.2.1 Selection of suitable coating materials 80
 4.2.2 Kinetic models study for different coating formulations 90
4.3 Optimization of operational parameters of rotary pan using new coating formulation 100
 4.3.1 Analysis of variance 102
 4.3.2 Regression analysis 104
 4.3.3 Response surface analysis 106
 4.3.4 Optimization by response surface methodology and model validation for gypsum-sulfur-zeolite coated urea 108
4.4 Investigation of the effect of applying sealant on coating efficiency of urea and suitable kinetics models 109
 4.4.1 Investigation of the effect of applying sealant on urea coating efficiency 109
 4.4.2 Investigation of suitable kinetics models 113

5 CONCLUSIONS 119
5.1 Research conclusions 119
5.2 Future research and recommendations 120

REFERENCES 122
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS

134
150
151
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. World demand for fertilizer nutrients, 2012-2016 (thousand tonnes)</td>
<td>6</td>
</tr>
<tr>
<td>2.2. Advantages and disadvantages of coating technologies</td>
<td>22</td>
</tr>
<tr>
<td>2.3. General properties of gypsum</td>
<td>31</td>
</tr>
<tr>
<td>2.4. Physical properties of sulfur</td>
<td>32</td>
</tr>
<tr>
<td>2.5. General properties of kaolinite</td>
<td>34</td>
</tr>
<tr>
<td>2.6. Interpretation of solute diffusional mechanisms</td>
<td>39</td>
</tr>
<tr>
<td>2.7. Applied dissolution models</td>
<td>40</td>
</tr>
<tr>
<td>3.1. Properties of urea granules</td>
<td>45</td>
</tr>
<tr>
<td>3.2. Properties of gypsum plaster</td>
<td>46</td>
</tr>
<tr>
<td>3.3. Properties of cellulose-based polyols</td>
<td>46</td>
</tr>
<tr>
<td>3.4. Properties of microcrystalline wax</td>
<td>47</td>
</tr>
<tr>
<td>3.5. Properties of sulfur-coated urea</td>
<td>47</td>
</tr>
<tr>
<td>3.6. Coating formulations using: gypsum (G); sulfur (S); kaolin clay (KC); rice husk ash (RHA); ground magnesium lime (GML) and zeolite (Z)</td>
<td>49</td>
</tr>
<tr>
<td>3.7. HPLC column operating parameters</td>
<td>56</td>
</tr>
<tr>
<td>4.1. Variables of the fractional factorial design</td>
<td>61</td>
</tr>
<tr>
<td>4.2. Fractional factorial design of experiments and corresponding efficiency of coating</td>
<td>62</td>
</tr>
<tr>
<td>4.3. The analysis of variance (ANOVA) for efficiency of coating: non-optimized coated urea</td>
<td>64</td>
</tr>
<tr>
<td>4.4. Central composite design matrix (coded), actual and predicted values of the model of gypsum-sulfur coated urea</td>
<td>70</td>
</tr>
<tr>
<td>4.5. Sequential Model Sum of Squares</td>
<td>73</td>
</tr>
<tr>
<td>4.6. Lack of fit tests</td>
<td>74</td>
</tr>
<tr>
<td>4.7. Model summary statistics</td>
<td>74</td>
</tr>
<tr>
<td>4.8. Analysis of variance and R-squared of gypsum-sulfur coated urea (Quadratic model)</td>
<td>75</td>
</tr>
<tr>
<td>4.9. Analysis of variance and regression coefficients of gypsum-sulfur coated urea (Quadratic model)</td>
<td>75</td>
</tr>
<tr>
<td>4.10. Optimum condition derived by the response surface methodology for gypsum-sulfur coated urea</td>
<td>79</td>
</tr>
<tr>
<td>4.11. Operational parameters of urea coating process in a rotary pan</td>
<td>80</td>
</tr>
<tr>
<td>4.12. Energy dispersed X-ray analysis of coating materials.</td>
<td>82</td>
</tr>
<tr>
<td>4.13. Five models used to study urea release</td>
<td>91</td>
</tr>
<tr>
<td>4.14. Kinetic parameters based on six models for uncoated urea (Urea), commercial sulfur coated urea (SCU) and gypsum-sulfur coated urea (G-S)</td>
<td>96</td>
</tr>
<tr>
<td>4.15. Kinetic parameters based on six models for uncoated urea (Urea), commercial sulfur coated urea (SCU), gypsum-kaolin clay coated urea (G-KC) and gypsum-sulfur-kaolin clay coated urea (G-S-KC)</td>
<td>96</td>
</tr>
<tr>
<td>4.16. Kinetic parameters based on six models for uncoated urea (Urea), commercial sulfur coated urea (SCU), gypsum-rice husk ash coated urea (G-RHA) and gypsum-sulfur-rice husk ash coated urea (G-S-RHA)</td>
<td>97</td>
</tr>
<tr>
<td>4.17. Kinetic parameters based on six models for uncoated urea (Urea), commercial Sulfur Coated Urea (SCU), gypsum-ground magnesium limestone coated urea (G-GML) and gypsum-sulfur-ground magnesium limestone coated urea (G-S-GML)</td>
<td>97</td>
</tr>
</tbody>
</table>
4.18. Kinetic parameters based on six models for uncoated urea (Urea), commercial sulfur coated urea (SCU), gypsum-zeolite coated urea (G-Z) and gypsum-sulfur-zeolite coated urea (G-S-Z) 99
4.19. Central Composite design matrix (coded), actual and predicted values of the model of gypsum-sulfur-zeolite coated urea 101
4.20. Sequential model sum of squares 103
4.21. Lack of fit tests 103
4.22. Model summary statistics 104
4.23. Analysis of variance and R-squared of gypsum-sulfur-zeolite coated urea (Quadratic model) 104
4.24. Analysis of variance and regression coefficients of gypsum-sulfur-zeolite coated urea (Quadratic model) 105
4.25. Optimum condition derived by the response surface methodology for gypsum-sulfur-zeolite coated urea 108
4.26. Kinetic parameters based on six models for uncoated urea (Urea), commercial sulfur coated urea (SCU) and gypsum-sulfur-zeolite coated urea, polyol F1-gypsum-sulfur-zeolite coated urea 115
4.27. Kinetic parameters based on six models for uncoated urea (Urea), commercial sulfur coated urea (SCU) and gypsum-sulfur-zeolite coated urea, polyol F2-gypsum-sulfur-zeolite coated urea 115
4.28. Kinetic parameters based on five models for uncoated urea (Urea), commercial sulfur coated urea (SCU) and gypsum-sulfur-zeolite coated urea, microcrystalline wax (145)-gypsum-sulfur-zeolite coated urea 117
4.29. Kinetic parameters based on five models for uncoated urea (Urea), commercial sulfur coated urea (SCU) and gypsum-sulfur-zeolite coated urea, microcrystalline wax (146)-gypsum-sulfur-zeolite coated urea 117
LIST OF FIGURES

Figure Page
1.1. Nitrogen transformations of urea in the soil 2
1.2. Development categories of control nitrogen losses from urea 3
1.3. Structure of the thesis 5
2.1. Schematic diagram showing the relative quantity of fertilizer made available to a plant during the period of its growth. OX is one crop cyclic 7
2.2. Classification of controlled release fertilizers 8
2.3. General principle of a particle coating process 10
2.4. Tennessee Valley Authority(TVA) process for sulfur coating of urea 11
2.5. A batch basis of pan granulater coating device 12
2.6. Flow diagram of a process for producing improved sulfur-coated urea 13
2.7. Schematic representation of a top spray fluid bed coater 13
2.8. Different forms of fluid bed coating 14
2.9. Schematic diagram of University of British Columbia (UBC) spouted bed coating unit for producing sulfur coated urea 15
2.10. The University of British Columbia (UBC) spouted bed for sulfur coating of urea (Modification designed by Mathur, Meisen, and Zee) 16
2.11. Simplified flow sheet of UBC spouted bed 17
2.12. The process of coating urea in a spouted bed 18
2.13. Schematic diagram of a semi-circular Wurster fluidized bed coating equipment 19
2.14. Schematic representation of a Wurster coating chamber 21
2.15. Diffusion layer model 36
2.16. Diagrammatic representation of the free energy barrier to dissolution 37
3.1. A schematic diagram of rotary pan for coating urea 48
3.2. Preparation of coating formulations: (a) ratio 75/25% and (b) ratio 50/50% 50
3.3. Preparation of coating formulations: (a) ratio 50/25/25%, (b) ratio 33/33/33% and (c) ratio 25/25/50% 51
3.4. Applying sealant on the surface of coated urea 52
3.5. Mathematical modeling steps in response surface methodology (RSM) 53
3.6. A schematic of mechanical sieve trays sizes and arrangement 54
3.7. Flow chart used for characterization of coating materials and coated samples 57
4.1. Urea size distribution (±0.1 mm) 60
4.2. Normal plot of residuals for efficiency of coating 63
4.3. Main effect plot (non-optimized coated urea): 66
4.4. Interaction affects plots 68
4.5. Scatter plot of predicted efficiency % value versus actual efficiency % value from central composite design for gypsum-sulfur coated urea 71
4.6. Residual plot of runs from central composite design for gypsum-sulfur coated urea 72
4.7. Response surface plot of significant variables on efficiency of coating as response 78
4.8. FTIR spectra of coating materials (gypsum, sulfur, kaolin clay (KC), rice husk ash (RHA), ground magnesium lime (GML) and zeolite (Z)) 81
4.9. SEM micrographs of coating materials in length 50 μm images 83
4.10. SEM images of urea coated in length 100 μm and 50 μm images 85
4.11. Crushing strength of coated urea using a mixture of gypsum with sulfur, kaolin clay, rice husk ash, ground magnesium lime and zeolite (±1.55N) 86
4.12. Crushing strength of coated urea using a mixture of gypsum-sulfur with kaolin clay, rice husk ash, ground magnesium lime and zeolite (±2.76 N) 87
4.13. Efficiency of coated urea by a mixture of gypsum with other compound (sulfur, kaolin clay, rice husk ash, GML and zeolite) compared to sulfur-coated urea (±0.71%) 88
4.14. Efficiency of coated urea by a mixture of gypsum-sulfur with other compound (kaolin clay, rice husk ash, GML and zeolite) compared to sulfur-coated urea (±0.51%) 90
4.15. Release profiles of the uncoated urea, the coated urea (at ratio 50/50%) and commercial sulfur coated urea (SCU) in water 92
4.16. Release profiles of the uncoated urea, the coated urea (included sulfur) and commercial sulfur coated urea (SCU) in water 93
4.17. Scatter plot of predicted efficiency value versus actual efficiency value from central composite design for gypsum-sulfur-zeolite coated urea 100
4.18. Residual plot of runs from central composite design for gypsum-sulfur-zeolite coated urea 102
4.19. Response surface plot of significant variables on efficiency of coating as response, 107
4.20. FESEM images of two organic sealants applied on coated urea in length 100 µm and 30 µm images 110
4.21. FTIR spectra of sealant materials (Polyols and Microcrystalline wax) 111
4.22. Effect of sealant on the crushing strength of coated urea (±1.62 N) 112
4.23. Effect of sealant on the efficiency of coated urea (±0.62%) 113
4.24. Release kinetics of the uncoated urea, the coated urea (gypsum/sulfur/zeolite 25/25/50%), sealant coated urea and commercial sulfur-coated urea (SCU) in water 114
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Acrylic Acid</td>
</tr>
<tr>
<td>AAPFCO</td>
<td>Association of American Plant Food Control Officials</td>
</tr>
<tr>
<td>AM</td>
<td>Acrylamide</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ASA</td>
<td>Alkenyl Succinic Anhydride</td>
</tr>
<tr>
<td>BMA</td>
<td>N-Butyl methacrylate</td>
</tr>
<tr>
<td>BPO</td>
<td>Benzoyl Peroxide</td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
</tr>
<tr>
<td>CCRD</td>
<td>Central Composite Rotatable Design</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethylcellulose</td>
</tr>
<tr>
<td>CRF</td>
<td>Controlled Release Fertilizer</td>
</tr>
<tr>
<td>DCD</td>
<td>Dicyandiamide</td>
</tr>
<tr>
<td>DCPD</td>
<td>Dicyclopentadiene</td>
</tr>
<tr>
<td>EC</td>
<td>Ethyl Cellulose</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersed X-ray</td>
</tr>
<tr>
<td>EP</td>
<td>Epoxy resin</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene Vinyl Acetate</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier Transform-Infrared</td>
</tr>
<tr>
<td>G</td>
<td>Gypsum</td>
</tr>
<tr>
<td>GML</td>
<td>Ground Magnesium limestone</td>
</tr>
<tr>
<td>HEC</td>
<td>Hydroxyethylcellulose</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IBDU</td>
<td>Isobutyledene-Diurea</td>
</tr>
<tr>
<td>KC</td>
<td>Kaolin Clay</td>
</tr>
<tr>
<td>kC-SA</td>
<td>k-Carrageenan-Sodium Alginate</td>
</tr>
<tr>
<td>MBA</td>
<td>N,N'-Methylenebisacrylamide</td>
</tr>
<tr>
<td>MMA</td>
<td>Methyl Methacrylate</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Branch</td>
</tr>
<tr>
<td>NAA</td>
<td>1-Naphthylacetic-Acid</td>
</tr>
<tr>
<td>NR</td>
<td>Natural Rubber</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PHB</td>
<td>Polyhydroxybutyrate</td>
</tr>
<tr>
<td>PUF</td>
<td>Polyurethane Foams</td>
</tr>
<tr>
<td>RHA</td>
<td>Rice Husk Ash</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>SCU</td>
<td>Sulfur Coated Urea</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SRF</td>
<td>Slow-Release Fertilizer</td>
</tr>
<tr>
<td>TVA</td>
<td>Tennessee Valley Authority</td>
</tr>
<tr>
<td>UBC</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>UF</td>
<td>Urea-Formaldehyde</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

There has been an exponential growth in the earth's population that has now reached approximately 7.0 billion and is expected to approach 9.5 billion by 2050 (Azeem et al., 2014). Global food requirements have also risen and the expected per capita food requirement is likely to double by 2050. Meanwhile, arable lands diminish due to industrialization, urbanization, desertification and land degradation from heavy flooding. These intimidating factors threaten global food security and demand a robust response. Multidimensional steps have already been taken worldwide to meet the challenge of food security with modifications to improve agricultural systems. To meet the increasing food demands, the agricultural sector is bound to employ enormous quantities of fertilizers that have thus far demonstrated undesirable environmental impacts. Hence, it is of paramount importance to develop systems that boost production and alleviate environmental problems. Controlled and slow release fertilizers may be one such solution as they are believed to enhance crop yield while reducing the environmental pollution caused by the hazardous emissions (NH$_3$, N$_2$O etc.) from the current fertilizer applications.

1.2 Problem statement

Plants need optimum quantities of the available nutrients for normal growing. These nutrients content may come from multiple sources, such as native soil minerals, soil organic matter, air (e.g., legumes), organic materials that are added to the soil (e.g., animal manures), and fertilizers. When the soil is not capable of providing sufficient nutrients to satisfy crop/plant requirements, fertilizers may be added to provide the required nutrients (Binford, 2006).

Among the three main essential nutrients applied to the plants, N, P and K, nitrogen is the one that is rapidly lost by leaching. Urea is the most widely used fertilizer globally because of its high nitrogen content (46%), low cost, easy application and availability. But the major disadvantages of urea are its high solubility in water and its susceptibility to nitrogen losses through various pathways like leaching, ammonia volatilization, nitrification and denitrification. This adds extra cost for materials and labor and causes inconvenience and a high solute concentration in the soil (Salman, 1989).

When the urea is applied to the soil, it undergoes a series of biological, chemical and physical transformations to produce plant available nutrients as follows (Azeem et al., 2014).

The need to control nitrogen losses initiated a wide range of research activities that fall under four development categories:
1. Slightly soluble materials such as urea formaldehyde (urea form);
2. Materials for deep placement such as urea super granules (USG);
3. Urease and nitrification inhibitors;
4. Fertilizers coated with semi-permeable or impermeable layer.
Figure 1.2 shows the problematic issues relates to the nitrogen losses from urea and the possible materials and methods solutions.

The use of slow or controlled release fertilizers is an effective way to solve the problems of resource waste and environmental pollution that would be caused by indiscriminate use of huge quantities of fertilizers (Lan et al., 2011). The physical intromission of urea granules in an appropriate coating material is one such technique that produces controlled release coated urea. The development of controlled release coated urea is a green technology that not only reduces nitrogen loss caused by volatilization and leaching, but also alters the kinetics of nitrogen release, which, in turn, provides nutrients to plants at a pace that is more compatible with their metabolic needs (Azeem et al., 2014).

The coating processes are quite complex and involve a number of chemicals. The overall process does not attract commercial attention. This not only increases costs due to solvents and their recovery, but also poses adverse environmental impacts in terms of hazardous emissions. Furthermore, many coatings materials are non-biodegradable after total nutrient release and present a new type of soil pollution that is undesirable. The coating process of fertilizer has been performed with different techniques (rotating drum, fluidized bed, spouted bed, rotating pan). To reduce operational cost, among different techniques, rotary pan can be chosen for producing slow release urea because of its flexibility, large throughputs and ability to handle a wide range of particles.

In case of coating materials, sulfur and polymer materials are common materials but have limitations. The sulfur increases the soil acidity and lowers the nitrogen content of the sulfur coated fertilizer. Although lime application can mitigate the acidifying
effect and greater fertilizer dosage as well as can make up the necessary nitrogen requirement, both remedies add to the total cost. Therefore, it is important to reduce the sulfur content of SCU without significantly lowering the quality of SCU as a slow-release nitrogen fertilizer. Following the affair with sulfur, polymeric materials were widely used to coat urea since sulfur coatings were easily disrupted by microorganisms whereas polymer coatings were not. However, organic polymer coating materials involves organic solvents that not only inflict additional costs of the lean solvent and solvent recovery, but also cause hazardous environmental emissions (Azeem et al., 2014).

Figure 1.2. Development categories of control nitrogen losses from urea
Due to higher costs and process complexity along with issues of environmental pollution caused by sulfur and polymers, research frontiers shifted towards developing low cost, easily fabricable and environmentally friendly materials and technology.

1.3 Research objectives

The main aim of this thesis is to develop coating technology for urea in order to reduce the amount of urea released to the environment. This aim was achieved through improvement of coating formulation and optimization of coating process using a rotary pan. Overall, the objectives are divided into specific objectives as follows, which are the main contribution of the thesis to the body of knowledge:

i. To screen and optimize the most effective operational parameters of urea coating process in rotary pan by response surface methodology.

ii. To study suitable coating materials and kinetic models for different coating formulations.

iii. To optimize the operational parameters of rotary pan using new coating formulation by central composite design.

iv. To investigate the effect of applying sealants on coating efficiency of urea and suitable kinetics models for final coating.

1.4 Scope

1) In this research, rotary pan has been chosen for producing coated urea because of its versatility, flexibility, large throughputs and ability to handle a wide range of particles. Firstly, a mixture of gypsum-sulfur (ratio: 50/50%) was used as a coating materials and dry method applied to reduce cost of process. The Expert design software was employed for screening and optimization of operational parameters. To make a uniform solution and shorten the time of comparative study agitation factor in an incubator shaker was added in dissolution analysis.

2) To find suitable coating materials, inexpensive materials like gypsum, sulfur, kaolin clay, rice husk ash, ground magnesium lime and zeolite have been chosen based on their availability, price and potential of nutrient containing for plant. Based on these six materials, twenty two formulations were developed for screening coating formulations. The urea release mechanism was investigated using five kinetic models namely, zeroth order, first order, Higuchi, Ritger & Peppas and Kopcha. The 14 days dissolution analysis in the absence of agitation was used to evaluate urea release profile.

3) A central composite design was used to optimize operational parameters of coating formulation.

4) The biodegradable materials like microcrystalline wax and cellulose-based polyol provided the selection of sealants to study the effect of sealants on the efficiency of coating formulation.
1.5 Structure of thesis

This thesis is divided into five chapters. Chapter one covers introduction, problem statements, objectives, scope and thesis structure. Chapter two includes descriptions on the slow/controlled release fertilizers (SRFs/CRFs), their classification and advantages and disadvantages of SRFs. The different coating process, methods and materials are explained to demonstrate materials and design options available and to highlight the limitation of current materials and design deficiencies. Furthermore, this chapter consists of the mechanism of nutrient release and theory of multi-objective design optimization using response surface methodology. Chapter three presents the materials and method used for urea coating process. Chapter four consist an experimental design using fractional factorial on coating process to screen out most effective parameters of coating process. Then it continues to optimize operational parameters using response surface methodology. This chapter also covers the development of different coating formulate and choosing the best formulation by comparing results with commercial sample. In addition, the optimization of coating process conditions for new formulation is explained. Finally, the role of different sealant used as a top coating materials is also presented in chapter four. Conclusions and future works are presented in Chapter 5. Figure 1.3 is a short explanation of the chapters organized in this thesis.

![Figure 1.3. Structure of the thesis](image)

Introduction (Chapter 1)

Literature review on both coating technology and materials (Chapter 2)

Materials, methods and instruments for coating process and analysis dissolution and crushing strength of coated samples (Chapter 3)

Screening and optimization of operational parameters of urea coating process, changing coating formulation, kinetic study of different coating formulations, optimization of process for new formulation, applying sealant and kinetic study of final coated production (Chapter 4)

Conclusion and recommendation for future research (Chapter 5)
REFERENCES

Food and agriculture organization of the united nations- World paddy production. (2008).

(Hevea brasiliensis) and tea seed (Camelia sinensis) oils. *Journal of King Saud University - Science*, 25(2), 149–155.

Powell, R. (1968). Controlled release fertilizer. In *Noyes Development Corp. Park Ridge, NJ.*

Tsai, B. S. E. (1986). *Continuous spouted bed process for sulphur coating urea*. The University of British Columbia.

