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Acoustic wave technology has been used for gas sensing applications for several 

decades. A SAW device consists of a piezoelectric substrate; inter digital transducers 

(IDTs) and reflectors. Rayleigh waves have two types of configuration namely SAW 

resonator and SAW delay line. Each configuration has different structure but has 

similar output characteristic when employed as a sensor. The Surface Acoustic Wave 

(SAW) sensor has offered the development of small, lightweight, battery-free, 

maintenance free and multiple sensor wireless interrogation operation. Double SAW 

resonator (DSAWR) is a configuration that involves two SAW resonators and it has 

proven to be reliable in sensing applications such as temperature and strain sensor. 

Carbon nanotubes (CNTs) have been proven to be good sensing material with high 

metallic behavior. However, when they are employed as sensing materials for SAW 

gas sensor they cause short circuit to the IDTs. Previous works based on single SAW 

resonator gas sensor requires the fabrication of a guiding or protective layer which is 

made up of oxides so as to avoid the short circuiting of the IDTs. Based on literature 

reviewed, previous works have employed the DSAWR for strain and temperature 

sensors but it has never been deployed for gas sensing. Therefore, in this thesis, 

DSAWR resonator based gas sensor was developed and been deployed for gas 

sensing applications for the first time. The advantage of this technique is that the 

CNT sensor was fabricated and integrated independently which eliminates 

fabrication of any guiding or protective layer for the SAW resonator. Another 

advantage of this technique is that the same system could be used with different 

types of sensing layer which makes it more economical and less time consuming. 

 

In this thesis the Double Surface Acoustic Wave Resonator System (DSAWR) for 

gas sensing application was proposed and developed. DSAWR system consists of 

two commercial SAW resonators with resonant frequencies of 433.92 and 433.42 

MHz. The DSAWR system was fabricated on a PCB and deployed for gas sensing 

application. There are 2 types of system that were used for DSAWR gas sensing 

application but the systems differ in the sensing material been employed and is been 

configured as system 1 and system 2 sensors. System 1 sensing layer composed of 

functionalized multi walled carbon nanotubes with polyaniline layer which was 
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deployed for hydrogen sensing while system 2 sensing layer composed of polyaniline 

as a sensing material and was deployed for ammonia sensing.  

 

 Results obtained showed that system 2 sensor was better than system 1 sensor in 

terms of sensitivity. The sensitivity of system 1 sensor was found to be 3Hz/ppm at 

room temperature while it doubles to 6 Hz/ppm at 40 
0
C. System 2 sensing results 

obtained showed that the system has detection limit of 0.125 % with a sensitivity of 8 

Hz/ppm at room temperature. 

 

In order to investigate the sensing behavior of a new material, system 3 sensor was 

developed which is based on Graphene Nanoribbon (GNR) and was deployed for 

ammonia sensing. Results obtained showed that the novel structure could be a 

potential material for ammonia sensing with good sensitivity and a detection limit of 

1250 ppm. 
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Teknologi gelombang akustik telah digunakan untuk aplikasi penderiaan gas selama 

beberapa dekad. Peranti SAW terdiri daripada substrat piezoelektrik; transduser 

antara digital (IDTs) dan reflektor. Gelombang Rayleigh mempunyai dua jenis iaitu 

konfigurasi resonator SAW dan talian lengah SAW. Setiap konfigurasi mempunyai 

struktur yang berbeza tetapi mempunyai ciri-ciri output yang serupa apabila 

digunakan  sebagai sensor. 

 

Sensor Gelombang Akustik Permukaan (SAW) memungkinkan dalam pembangunan 

operasi soal siasat tanpa wayar yang berbilang sensor, kecil, ringan, tidak 

memerlukan bateri dan penyelenggaraan. Resonator SAW berganda (DSAWR) 

adalah merupakan konfigurasi yang melibatkan dua resonator SAW dan telah 

terbukti boleh dipercayai dalam aplikasi penderiaan seperti sensor suhu dan tekanan. 

Nanotube karbon (CNTs) telah terbukti menjadi bahan penderiaan yang baik dengan 

sifat logam yang tinggi. Walau bagaimanapun, apabila ia digunakan sebagai bahan 

untuk penderiaan sensor gas SAW ia menyebabkan litar pintas kepada IDTs. 

Penyelidikan sebelum ini yang berdasarkan sensor gas resonator SAW tunggal 

memerlukan fabrikasi satu lapisan pembimbing atau pelindung yang terdiri daripada 

oksida untuk mengelakkan litar pintas kepada IDTs. 

 

Di dalam tesis ini sensor gas berasaskan Resonator DSAWR telah dibangunkan. 

Kelebihan teknik ini adalah sensor CNT telah difabrikasi dan diintegrasi secara 

berasingan yang menyingkirkan fabrikasi sebarang lapisan pembimbing atau 

perlindungan untuk resonator SAW itu. Satu lagi kelebihan teknik ini adalah bahawa 

sistem yang sama boleh digunakan dengan pelbagai jenis lapisan penderiaan yang 

menjadikan ia lebih ekonomi dan kurang memakan masa. 

 

Dalam tesis ini, Sistem DSAWR untuk aplikasi penderiaan gas telah dicadangkan 

dan dibangunkan. Sistem DSAWR terdiri daripada dua resonator SAW komersial 

dengan frekuensi resonans 433.92 dan 433.42 MHz. Sistem DSAWR telah 

difabrikasi pada PCB dan digunakan untuk aplikasi penderiaan gas. Terdapat 2 jenis 

sistem telah digunakan untuk aplikasi penderiaan gas DSAWR namun sistem-sistem 



© C
OPYRIG

HT U
PM

iv 

 

tersebut berbeza dalam bahan penderiaan yang digunakan dan dikonfigurasikan 

sebagai sensor sistem 1 dan sistem 2. Lapisan penderiaan sistem 1 terdiri daripada 

fungsionalisasi karbon nano tiub berbilang dinding dengan lapisan polyaniline yang 

digunakan untuk penderiaan hidrogen manakala lapisan penderiaan sistem 2 terdiri 

daripada polyaniline sebagai bahan penderiaan dan digunakan untuk penderiaan 

ammonia.  

 

Hasil kajian menunjukkan bahawa sensor sistem 2 adalah lebih baik daripada sensor 

sistem 1 dari segi sensitiviti. Kepekaan sensor sistem 1 didapati adalah 3Hz / ppm 

pada suhu bilik manakala ia berganda kepada 6 Hz / ppm pada 40 
0
C. Keputusan 

penderiaan Sistem 2 yang diperolehi menunjukkan bahawa sistem itu mempunyai 

had pengesanan 0.125 dan 8 Hz / ppm pada suhu bilik. 

 

Dalam usaha untuk menyiasat tingkah laku penderiaan bahan baru, sensor sistem 3 

telah dibangunkan yang berdasarkan GNR dan telah digunakan untuk penderiaan 

ammonia. Keputusan yang diperolehi menunjukkan bahawa struktur novel tersebut 

berpotensi untuk dijadikan bahan untuk penderiaan ammonia dengan sensitiviti yang 

baik dan had pengesanan 1250 ppm. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1  Background of the Study 

 

A gas sensor is a device that detects the presence of gases in the environment. The 

ever increasing demand for developing gas sensors becomes imperative due to its 

vast application which ranges from environmental and air-quality monitoring, 

automotive and industrial control. In view of some legislative initiatives which are 

aimed at pollution control and human exposure to hazardous gases, development of 

portable and hand-held gas sensing systems becomes rather critical. There are 

different types of gas sensor technologies which have been used for several decades. 

 

In the earlier centuries, traditional gas detection technologies were developed 

whereby the system sounds an audio alarm in order to notify people when there is a 

gas leakage from a harmful or poisonous source. This method is not very reliable 

because it is required to obtain accurate real-time measurements of the concentration 

of a target gas. For many centuries, different gas sensor technologies have been used 

for gases detection including semiconductor gas sensors, catalytic gas sensors, 

electrochemical gas sensors, optical gas sensors and acoustic gas sensors.  

 

An ideal sensor is characterized based on some performance indicators such as high 

sensitivity, good selectivity, high detection limit, good repeatability and 

reproducibility, high response time and recovery time, compactness and low cost. All 

the gas sensors technologies listed above provides the aforementioned characteristics 

but have some limitation on the size, power consumption and the potential of using 

wireless capabilities.  

 

Acoustic wave technology can offer the technology for gas detection and has been 

used for a variety of wireless sensor applications for some decades. The Surface 

Acoustic Technology (SAW)  has offered the development of small, lightweight, 

battery-free, maintenance free and multiple sensor wireless interrogation operation 

(Hamidon, 2005). SAW components have been used as a filter or resonator in mobile 

phones in the telecommunication industry. They are also used as sensors for 

pressure, torque, acceleration, humidity, temperature, chemical and biological 

applications. 

 

 

1.2 Surface Wave Acoustic Technology Gas Sensor 

 

Surface acoustic wave technology involves the use of the SAW device in different 

technological applications. Surface acoustic waves were first discovered by Lord 

Rayleigh in 1885 and they were developed based on Rayleigh waves. A  Rayleigh 

SAW is composed of two mechanical displacement components in the saggital plane 

which includes the plane containing the direction of propagation and the surface 

normal.   
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There are two types of acousto-electronic devices which are based on Rayleigh SAW 

sensors namely: delay-line or resonator. The frequency of operation of Rayleigh 

wave sensors is usually lies between 40MHz-600MHz (Dorozhkin & Rozanov, 

2001) and in GHz range (Rodríguez-Madrid et al., 2012) . Both configurations have 

the same response behavior when employed as a sensor. However, they differ from 

each other in their design; a delay line has two receiving and transmitting inter digital 

transducer (IDT) whereas a resonator has one IDT placed at the resonator cavity. 

However, their mechanism of response is the same and they also have similar output 

characteristics. A delay line is simpler to design compared with the resonator that is 

why it is mainly preferred for practical applications.  

 

A resonator and a delay line could be either single or two-port. A single-port delay 

line consists of a propagation path between one IDT and one or more reflectors. A 

two-port SAW delay line consists of a propagation path between two separate IDTs, 

the first serves as a transmitting transducer and the second serves as a receiving 

transducer so as to convert the SAW back to electrical form. A single-port resonator 

makes use of one IDT structure in the centre between two reflectors while the two-

port resonator consists of two IDT structures in between two reflectors. The function 

of the reflector is to reflect an incident wave completely over a narrow band of 

frequency and also to reduce energy loss in the system so that it can produce a 

narrow and stable signal. 

  

The first acoustic gas sensor was discovered by King in 1964 (Dorozhkin & 

Rozanov, 2001) and was based on the measurement of bulk acoustic waves (BAW) 

in a piezoelectric quartz crystal resonator which is sensitive to mass changes. After 

intensive research studies in mid1960’s, chemical sensors for industrial atmospheric 

pollutants were developed. Since piezoelectric quartz resonators were used, these 

types of sensors were called quartz microbalances (QMB). There are different types 

of acoustic wave sensors which are based on the type of wave propagation.  

 

The principle of operation of acoustic chemical sensor is described as follows; when 

a receptor film is introduced unto the vibrating surface of a transducer that is 

activated by an electronic device, the characteristics of the receptor film such as its 

mass and thickness are changed when exposed to an analyte. This change directly 

affects the vibration frequency, amplitude and phase. The shift resulting from the 

frequency changes, amplitude, phase or velocities are further translated into analyte 

concentration of the target gas.  

 

The main advantages of using SAW technology is high sensitivity, low power 

consumption, wireless capability and can be placed on moving or rotating parts and 

in hazardous environment (Drafts, 2001). The SAW device is also technologically 

compatible because its fabrication process is similar to that of other microelectronic 

devices. Single SAW resonators have been used for gas sensing and have proved to 

be reliable and successful (Chevallier, Scorsone, & Bergonzo, 2011a; David et al., 

2012; Raj, Singh, Nimal, Sharma, & Gupta, 2013; S.-H. Wang, Kuo, & Shen, 2011). 

However, the SAW is a very sensitive device as any slightest drift in temperature or 

other environmental disturbances may cause a shift in resonance frequency. 

Therefore a means of compensations of this drifts in resonance frequency needs to be 

implemented. 
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 In this project a Double Surface Acoustic Resonator (DSAWR) system is proposed 

for gas sensing. This system is anticipated to provide protection against the radio 

channel effect and offers temperature compensation as shown by (Binhack, Buff, 

Klett, Hamsch, & Ehrenpfordt, 2000; M.Binhack, S.Klett, E.Guliyev, W.Buff, 

M.Hamsch, 2003).  It has also potentialities for wireless applications. The L-

matching circuit was chosen due to its simplicity and linearity, this simplicity in 

terms of less number of elements will improve its sensitivity towards gas detection.  

 

The proposed DSAWR sensor system is shown in Figure 1.1. It consists of two 

commercial resonators namely R03101 and R03112 (RF monolithics) each 

connected to its matching system and a capacitor for tuning while the resistor which 

is connected in parallel with the capacitor is used as the sensing layer. 

 

 

 
Figure 1.1 Schematic of the Proposed System on printed circuit board 

 

 

1.3 Problem Statement 

 

Nowadays, with the increased growth of worldwide industries, a lot of pollutants are 

injected into the environment either in air, water or land. The rate of pollutions 

becomes worst in developing countries such as Malaysia. With recent legislatives 

imposed by the government so as to harness this problem, great efforts have been 

made during the last decades to improve the quality of water but air pollution is not 

easily reduced. One of the main sources of air pollution is in power generation which 

is as a result of fossil fuel consumed by the power plants. 

 

 In order to reduce the use of fossil fuel consumption, the interest on using hydrogen 

as a clean energy source or a fuel gas has been increased remarkably because it is 

renewable, abundant and efficient with zero emissions. Hydrogen is also used 

extensively in some industries to make ammonia, methanol and rocket fuel and also 

including replacement of natural gas in warming home and powering hot water 

heaters (Winter, 2009). Therefore safety has become the first priority in using 

hydrogen gas as fuel like other gas fuels; hydrogen is flammable and potentially 

dangerous.  
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The explosive limit of hydrogen is more than 4% (Hübert, Boon-Brett, Black, & 

Banach, 2011), therefore a careful handling, storage and transportation is required. In 

this thesis all concentrations of hydrogen gas are expressed in percentage so as to 

benchmark the detection limit with the flammability limit of 4 %. However, the 

conversion of % to ppm is that 1 % of concentration of hydrogen gas in air is 

equivalent to 10,000 ppm of hydrogen gas in air. The monitoring of the concentration 

is very crucial so as to avoid accidents resulting from hydrogen explosions. 

Therefore, a reliable, sensitive and selective gas sensor is required for this job. A 

hydrogen gas sensor which uses a DSAWR will be developed in this project.  

 

In addition, the proposed system will also be tested towards ammonia. This is 

because ammonia is colorless, poisonous and its presence in air interferes with the 

oxygen content.  The hazards associated in both humans and animals are summarized 

in Tables 1.1 and 1.2. From Table 1.1 it could be seen that the minimum ammonia 

concentration to cause some health symptoms in humans is 25 ppm. The health 

symptoms complicates with increase in ammonia gas concentrations. At a 

concentration of 5000 ppm continuous exposure could lead to death and full 

protection is recommended at concentrations greater than 15, 000 ppm. At very high 

concentrations of greater than 150,000 ppm the gas is flammable at 50 
0 

C. 

 

Similarly, ammonia gas also poses serious health hazards to animals and a study was 

carried out on different animals (Health, 1992) in order to investigate exposure of 

different ammonia gas concentrations and the results are summarized and presented 

in Table 1.2. Based on the studies, it was observed that exposure of 5000-6000 ppm 

of ammonia gas concentrations causes some health indications and the concentration 

of 9900 ppm in cats and rabbits. Similarly, exposure of 2000 ppm of ammonia will 

cause harmful effect in rats while for rabbits and dogs limit of exposure that causes 

health hazards was observed to be 658 ppm for several weeks. 

 

Therefore with the toxicity of ammonia gas and its health implications on both 

humans and animals, a very reliable gas sensor is required to detect low traces of 

concentrations of ammonia in air. 

 

One of the suggested forms for the detection of these dangerous gases is the use of 

Surface Acoustic Wave (SAW) sensors. This is due to their small size, high 

frequency and sensitivity, low cost in mass production, low power consumption, 

simple integration and remotely controlled (wireless).  As earlier stated in section 

1.2, there are two types of SAW: delay-line and resonator. Delay-line focus on the 

time delay or the phase of the transmitted signal to the receiving signal due to the 

detection of the gases while resonator focus on the resonance frequency shift. Since 

the SAW device is sensitive to temperature, most SAW sensors uses a single SAW 

resonator and small drifts in temperature changes could not be compensated. 

Therefore, in this project a Double SAW (DSAW) resonator system is proposed for 

application in gas detection so as to investigate its potential for use in wireless 

system. 
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Table 1.1 Health symptoms of ammonia in humans  

(www.engineeringtoolbox.com/ammonia, n.d.) 

Ammonia 

concentration in air 

(ppm) 

Health symptoms 

<25 This is the maximum permissible 

limit which could be detected by 

smell 

30 Causes discomfort in breathing with 

a maximum exposure of 15 minutes 

50 maximum exposure limit 

100 Causes eye irritation, throat and 

mucous membrane which may 

withstand tolerance in 1-2 weeks 

with no adverse effects. 

140 May cause moderate eye irritation 

with no long-term effect of 

exposures  less than 2 hours 

400 Causes moderate throat irritation 

and may damage the mucous 

membranes with more than one 

hour exposure 

500 This limit causes an immediate 

danger to life  

1000 Destructive to the airway 

1700 Short exposures of less than 30 

minutes might lead to death 

5000 Causes hazard to life immediately 

>15000 At this limit a full body protection 

is required 

160,000-170,000 Flammable limit in air at 50
o
C 

 

 

Table 1.2 Hazards of ammonia gas to animals [14] 

Animals  Ammonia concentration 

(ppm) 

Health symptoms 

Guinea pigs 5000-6000 ppm for 30 to 

120 minutes 

Induced blindness 

Cats and 

rabbits 

9900 ppm for 1 hour Severe bronchiolar 

damage and alveolar 

congestion 

Rats 2000 ppm for 4 hours Interstitial pneumonitis 

with renal tubules 

Rabbits and 

dogs 

658 ppm for weeks Corneal opacity and eye 

irritation 
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The system will be tested towards both hydrogen and ammonia with different 

sensing materials. The response of the gas will be measured as the frequency shift i.e. 

the difference between the resonance frequencies of the two resonators. The 

advantage of this system is that it is suitable for passive and wireless applications and 

could be used for compensating slight drifts in temperature. The L-matching circuit 

is used for the matching circuit because of its simplicity and linearity and improved 

sensitivity (M.Binhack, S.Klett, E.Guliyev, W.Buff, M.Hamsch, 2003). In this 

project, the resonator will be used, because we want to measure the changes in the 

gas concentration from the change in the resonance frequency. 

 

In order to enable the commercial operation of the sensor, the chosen transmission 

medium should be available worldwide. The use the industrial, scientific and medical 

(ISM) band is preferable because it offers license free communication in most 

countries. A frequency band of 433.92 MHz center frequency will therefore be used 

for the SAW resonator chosen for this project. 

 

 

1.4  Objectives  

 

The ultimate goal of this research is to develop a DSAWR system capable of 

detecting flammable gas such as hydrogen and toxic gas such as ammonia. Previous 

researches based on literature usually employ a single resonator system for sensing 

applications. It therefore becomes interesting to explore and investigate the potential 

of a DSAWR as a new mechanism for gas sensing applications.  In order to realize 

this aim, the following objectives will be embarked upon. 

  

1. Deployment of commercial SAW resonators operating at a frequency of 

433.92 MHz and 433.42 MHz for the design of the DSAWR system that 

consists of a matching circuit. Simulation and analytical techniques will be 

used to get the optimal values of an L-type matching circuit configuration 

that consists of an inductor and a capacitor. Finally the whole system will be 

fabricated as shown in the schematic of the PCB as shown in Figure1.1. 

 

2. Application of DSAWR system for gas detection. 

The developed DSAWR system will be employed for gas sensing applications 

towards different concentrations of hydrogen from 0.5-2% and ammonia from 

0.125-1% which is equivalent to 1250-10,000 ppm with reference to Table 1.1 

this range of concentration causes immediate hazards to humans which may 

lead to death. 

 

3. Fabrication of the active layer for the sensor 

For this stage, Chemical Vapor Deposition (CVD) method will be used to 

fabricate different types of carbon nanostructures as the sensing layer. The 

carbon nanostructure will be directly synthesized on a piezoelectric substrate 

and then characterized. The locally synthesized carbon nanostructures will 

also be investigated for gas sensing applications. 
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The methodology for the overall design of the project is depicted in a block 

diagram as shown in Figure 1.2. This involves different stages to accomplish 

the objectives of the research work. 

 

 

 

 
 

Figure 1.2 Block diagram of the overall research methodology 

 

 

1.5 Scope and Limitation 

 

The substrate that was used is gallium orthophosphate (GaPO4) which is 

piezoelectric in nature. It was selected because of its high thermal stability and high 

electromechanical coupling. The high thermal stability makes GaPO4 the preferred 

choice of substrate support for the direct synthesis of carbon nanostructures using 

CVD. This requires a high temperature of about 800
0
C so a substrate with high 

thermal stability is required. Based on the literature reviewed, there has been no 

research works involving the use of GaPO4 as a substrate support for the direct 

synthesis of carbon nanostructures.  The reason could be due to its high cost but in 

this research, and it was proposed to be used as a substrate for the active layer 

fabrication so as to have a high thermal stability during synthesis and to explore its 

potentiality for gas sensing application. The Alcohol Catalytic Chemical Vapor 

Deposition (ACCVD) will be used throughout the research work.  

 

The proposed system which comprises of two commercial SAW resonators R03101 

and R03112 (RFM Monolithics Limited) will be used with an L-matching network 

only and will be fabricated on PCB. The limitation of the PCB is that it could not 

withstand temperature higher than 120 
o
C higher and the passive components also 

could not withstand high temperature during measurement. This limits its application 

for high temperature gas sensing application and makes it only feasible for low 

temperature only.  
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This system will then be used for gas detection application by testing it towards 

different concentrations of hydrogen and ammonia gases respectively. The range of 

gas concentration supported by the available gas measuring set up is 0.5 % to 2 % for 

hydrogen while for ammonia gas it is 0.125 % to 1 % which is equivalent to 1250-

10,000 in ppm. 

 

For the development of the DSAWR system, fabrication and simulation will both be 

employed so as to investigate the system behavior and for comparison purpose. 

Simulation using CST design studio will be done to get the optimized values for the 

matching and the DSAWR with the sensing layer. 

 

 

1.6 Thesis Layout 

 

Chapter one presents the Introduction, problem statement, aims and objectives of 

study, scope, limitations and contribution of the thesis and novelty of the project. 

 

Chapter two discusses about the Review on Carbon Nanostructures as Sensing 

materials and their applications in SAW gas sensing. It will also discuss about the 

local synthesis of the sensing material using Chemical Vapor Deposition Technique. 

 

Chapter three will discuss about the review on DSAWR system for sensing 

application and the proposed system to be used in the study and some preliminary 

simulation results. 

 

Chapter four will present the experimental set-up for thermal CVD and ACCVD for 

the synthesis of carbon nanostructures and the equipments for characterization of 

these structures. It will also present the experimental gas sensing measurement set-up 

for both DSAWR method and electrical based method. 

 

Chapter five presents the results from micro-characterization of sensing materials 

and results from measurement of the whole DSAWR system when applied to gas 

detection. 

 

Chapter six will present the results from simulation of the whole system using CST 

design studio suite. 

 

Chapter seven summarizes the findings and suggestions for future work. 
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