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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement of the degree of Doctor of Philosophy 
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THERMAL ENERGY STORAGE MEDIUM  

 

 

By 

 

TUMIRAH KHADIRAN 

 

August 2015 

 

 

Chairman : Professor Mohd Zobir Hussein, PhD 

Faculty  : Institute of Advanced Technology  

 

 

In this study, two types of supporting materials, namely porous carbon-based material 

and polymer were used to encapsulate organic phase change materials (OPCM). The 

supporting material based on porous carbon is activated carbon (AC) derived from 

tropical peat soil using physical activation method (PSAC-P), AC derived from 

tropical peat soil using phosphoric acid (H3PO4) chemical activation method (PSAC-C) 

and commercial activated carbon (CAC), while supporting material based on polymer 

consists of mixtures of monomer styrene (St) and methyl methacrylate (MMA) at mass 

ratio of 4:1. The OPCM encapsulated into the pores of AC is known as shape-stabilised 

OPCM nanocomposite, while OPCM encapsulated into nano-sized St-MMA 

copolymer shell is known as OPCM nanocapsules. The shape-stabilised OPCM 

nanocomposite was synthesised using the one-step impregnation method, while OPCM 

nanocapsules was synthesised using the one-step miniemulsion in-situ polymerisation 

method. n-Octadecane and n-nonadecane were chosen as OPCM due to their phase 

transition temperatures are close to human comfort temperature (18 – 33 
o
C), thus they 

are suitable to be used for thermal comfort building applications.   

 

The latent heat and encapsulation efficiency of shape-stabilised OPCM increased as the 

BET specific surface area of AC increased. The increasing of latent heat and 

encapsulation efficiency of shape-stabilised OPCM nanocomposite are in order of 

shape-stabilised OPCM/PSAC-P < OPCM/CAC < OPCM/PSAC-C. The higher the 

BET specific area of AC, the more OPCM can be infiltrated into the pores of AC, thus 

increase the latent heat value. The latent heat of fusion of shape-stabilised 

OPCM/PSAC-P, OPCM/CAC and OPCM-PSCA-C was 95.4 J/g, 101.3 J/g and 107.2 

J/g, respectively. For the encapsulation of OPCM using polymer, it was found that the 

mass ratio of shell to core, shell to initiator, St to MMA and thermo-chemical 

properties of OPCM plays an important role in the morphology, latent heat and 

encapsulation efficiency of the OPCM. The n-octadecane nanocapsules was 

successfully prepared with diameter size of 102 ± 11 nm, while n-nonadecane 

nanocapsules was 160 ± 16 nm. The latent heat of fusion of n-octadecane and n-

nonadecane nanocapsules was found to be 107.9 J/g and 76.9 J/g, respectively. 

Thermal cycling tests of both shape-stabilised OPCM nanocomposite and OPCM 

nanocapsules showed good thermal and chemical stability even after 1000 



© C
OPYRIG

HT U
PM

ii 

 

heating/cooling cycles. This indicates that both shape-stabilised OPCM nanocomposite 

and OPCM nanocapsules could be used as thermal energy storage (TES) medium for at 

least of 3 years.   

 

The shape-stabilised OPCM nanocomposite and OPCM nanocapsules with the highest 

latent heat was chosen as TES medium to develop thermally regulated gypsum 

composite board (smart gypsum composite board). The thermal performance test of 

thermally regulated gypsum composite boards were carried out in order to understand 

their ability in reducing the internal building temperature fluctuation.  The results show 

that both shape-stabilised OPCM nanocomposite and OPCM nanocapsules play an 

important role in reducing the indoor building temperature, which could help to 

maintaining internal building comfort, thus believed could decrease the energy 

consumption. The results and the information generated from this study could be very 

beneficial to the local building industries as well as those who are concerned about 

internal building comfort, environmental protection and energy sustainability. 

 

All the works presented in the thesis have been accepted and published in the journals 

of the international repute, which reflect the quality of this research work.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

NANO-PENGKAPSULAN BAHAN ORGANIK BERUBAH FASA SEBAGAI 

MEDIUM PENYIMPANAN TENAGA HABA  

 

 

Oleh 

 

TUMIRAH KHADIRAN 

 

 

Ogos 2015 

 

 

Pengerusi : Profesor Mohd Zobir Hussein, PhD 

Fakulti  : Institut Teknologi Maju  

 

 

Dalam kajian ini, dua jenis bahan sokongan iaitu bahan karbon berliang dan polimer 

telah digunakan untuk pengkapsulan bahan organik berubah fasa (OPCM). Bahan 

sokongan karbon berliang yang digunakan ialah karbon teraktif (AC) daripada tanah 

gambut tropikal yang disediakan menggunakan kaedah pengaktifan fizikal (PSAC-P), 

karbon teraktif daripada tanah gambut tropikal menggunakan kaedah pengaktifan 

kimia asid fosforik (H3PO4) (PSAC-C) dan karbon teraktif komersial (CAC), 

sementara bahan sokongan polimer terdiri daripada gabungan monomer stirena (St) 

dan metil metakrilat (MMA) pada nisbah berat 4:1.  Pengkapsulan OPCM ke dalam 

liang AC dikenali sebagai nanokomposit OPCM terstabil bentuk, manakala 

pengkapsulan OPCM ke dalam saiz-nano kopolimer St-MMA dikenali sebagai OPCM 

nanokapsul.  Nanokomposit OPCM terstabil bentuk telah disediakan dengan 

menggunakan kaedah pengisitepuan satu langkah, manakala nanokapsul OPCM 

disediakan menggunakan kaedah pempolimeran in-situ miniemulsi satu langkah. n-

Oktadekana dan n-nonadekana dipilih sebagai OPCM kerana mempunyai perubahan 

fasa menghampiri suhu selesa manusia iaitu di antara 18-33 
o
C, di mana ianya sesuai 

digunakan untuk kegunaan bangunan selesa suhu.  

 

Haba pendam lakuran dan kecekapan pengkapsulan nanokomposit OPCM terstabil 

bentuk meningkat dengan peningkatan luas permukaan spesifik BET bagi AC. 

Peningkatan haba pendam lakuran dan kecekapan pengkapsulan nanokomposit OPCM 

terstabil bentuk adalah mengikut susunan nanokomposit terstabil bentuk 

OPCM/PSAC-P < OPCM/CAC < OPCM/PSAC-C. Semakin luas permukaan spesifik 

BET AC, semakin banyak OPCM boleh menyerap masuk ke dalam liang AC 

menyebabkan peningkatan nilai haba pendam lakuran. Haba pendam lakuran 

nanokomposit terstabil bentuk OPCM/PSAC-P, OPCM/CAC dan OPCM/PSAC-C 

ialah masing-masing 95.4 J/g, 101.3 J/g dan 107.2 J/g. Manakala untuk pengkapsulan 

OPCM menggunakan polimer, nisbah berat petala/teras, petala/bahan pemula, 

St/MMA dan sifat thermo-kimia OPCM memainkan peranan penting kepada morfologi, 

haba pendam lakuran dan kecekapan pengkapsulan OPCM. n-Oktadekana nanokapsul 

telah berjaya disediakan dengan saiz garispusat 102 ± 11 nm, sementara n-nonadekana 

nanokapsul ialah 160 ± 16 nm. Haba pendam lakuran n-oktadekana dan n-nonadekana 
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nanokapsul masing-masing ialah 107.9 J/g dan 76.9 J/g. Ujian ulangan terma yang 

dilakukan pada kedua-dua nanokomposit OPCM terstabil bentuk dan OPCM 

nanokapsul menunjukkan kedua-duanya mempunya kestabilan terma dan kimia yang 

baik walaupun selepas melalui 1000 kali putaran pemanasan/penyejukan. Ini 

menunjukkan kedua-duanya boleh berfungsi sebagai medium penyimpanan tenaga 

haba (TES) sekurang-kurangnya untuk 3 tahun. 

 

Nanokomposit OPCM terstabil bentuk dan OPCM nanokapsul yang mempunyai haba 

pendam lakuran yang tertinggi dipilih sebagai medium TES untuk pembangunan haba 

terkawal-papan gipsum komposit.  Ujian prestasi terma telah dijalankan terhadap haba 

terkawal-papan gipsum komposit bagi tujuan memahami keupayaannya untuk 

mengurangkan turun naik suhu dalam bangunan. Keputusan menunjukkan 

nanokomposit OPCM terstabil bentuk dan OPCM nanokapsul memainkan peranan 

penting dalam mengurangkan turun naik suhu dalam bangunan, di mana ianya akan 

membantu mengekalkan keselesaan dalam bangunan, seterusnya dipercayaai akan 

membantu menurunkan penggunaan tenaga dalam bangunan. Keputusan ujian dan 

maklumat yang diperolehi daripada kajian ini akan dapat memberi manfaat kepada 

industri bangunan tempatan, juga kepada individu yang mengambil berat tentang 

bangunan selesa suhu, perlindungan alam sekitar dan kemampanan tenaga. 

 

Semua kerja-kerja yang terkandung dalam tesis ini telah diterima dan diterbitkan dalam 

jurnal yang mempunyai reputasi antarabangsa, ini mencerminkan kualiti kerja bagi 

penyelidikan ini. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

v 

 

ACKNOWLEDGEMENTS 

 

 

In the name of ALLAH, The Most Merciful and Most Beneficent 

 

 

Alhamdulillah, all praises to Allah S.W.T., Lord of the universe, for giving me the 

strength and ability to endure all problems and only by His grace and mercy this thesis 

can be completed.  

 

First and foremost, I wish to express my deep and sincere appreciation and gratitude to 

my supervisor, Prof. Dr. Mohd Zobir Hussein, whose encouragement, supervision and 

support from the beginning till end of this study, and all my co-supervisors, Prof. Dr. 

Zulkarnain Zainal and Dr. Rafeadah Rusli for their guidance, advices and 

encouragement. 

 

Special thanks are extended to Mr. Hashim W Syamsi for providing me a thermal 

climatic chamber and data logger facilities and the guidance for the use of both 

instruments.  I would also like to acknowledge the staff members of the Wood 

Preservative Analytical Laboratory, Forest Research Institute Malaysia (FRIM), staff 

members of the Department of Chemistry, Faculty of Science, UPM, staff members of 

the Institute of Advanced Technology (ITMA), UPM, the Microscopy and 

Microanalysis Unit, Institute of Bioscience (IBS), UPM, Dr. Norhayati Hashim from 

the Faculty of Science, UPSI, who was very helpful and cooperative in many ways 

during the course of the study. 

 

My dearest friends, I wish to thank to Kak Ita, Zana, Maya, Ana and other members of 

the Nanoscience group, for the bond of friendship, the conducive work environment, 

helpfulness in the daily life in the laboratory a bearable one, with many sweet 

memories and experiences. Thank you for being friends in need. 

 

My deepest love and gratitude to my husband, Ahmad Norddin Mohamad for his 

continues prayers, high encouragement, patience, and understanding and scarifies 

throughout the study. To my son Amirul Danish and my daughter Alya Sofea, for 

simply being there and loving me with all their hearts and has inspired me in their own 

way to finish my thesis. My beloved parents, for their never ending prayers and 

supports.  

 

Finally, I would like to thank UPM, Jabatan Perkhidmaan Awam (JPA) and FRIM for 

their facilities, financial support, and study leave. To all of them I dedicated this thesis. 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

vi 

 

I certify that a Thesis Examination Committee has met on 12 August 2015 to conduct 

the final examination of Tumirah bt. Khadiran on her thesis entitle “Nano-

Encapsulated Organic Phase Change Material as Thermal Energy Storage Medium” in 

accordance with the Universities and University College Act 1971 and the Constitution 

of the Universiti Putra Malaysia [P.U.(A)106] 15 March 1998. The Committee 

recommends that the student be awarded the Doctoral of Philosophy. 

 

Members of the Thesis Examination Committee were as follows: 

 

Khamirul Amin Matori, PhD 

Associate Professor 

Department of Physics 

Faculty of Science 

University Putra Malaysia 

(Chairman) 

 

Nor Azah Yusof, PhD 

Professor 

Department of Chemistry 

Faculty of Science 

University Putra Malaysia 

(Internal Examiner) 

 

Mohd Zaizi Desa, PhD 

Pusat Asasi Sains Pertanian 

Universiti Putra Malaysia 

(Internal Examiner) 

 

In Woo Cheong, PhD 

Associate Professor 

Department of Applied Chemistry 

Kyungpook National University 

Republic of Korea 

(External Examiner) 

 

 

 

ZULKARNAIN ZAINAL, PhD 

Professor and Deputy Dean 

School of Graduate Studies 

Universiti Putra Malaysia 

 

Date: 22 September 2015 

 

 

 

 



© C
OPYRIG

HT U
PM

vii 

 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been 

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The 

members of the Supervisory Committee are as follows: 

 

 

Mohd. Zobir Hussein, PhD 

Professor  

Institute of Advanced Material  

Universiti Putra Malaysia 

(Chairman) 

 

Zulkarnain Zainal, PhD 

Professor 

Faculty of Science 

Universiti Putra Malaysia 

(Member) 

 

Rafeadah Rusli, PhD 

Senior Research Officer 

Forest Product Division 

Forest Research Institute Malaysia 

(Member) 

 

 

 

 

 

 

 

 

 

 

 

 

 

_________________________ 

BUJANG KIM HUAT, PhD 
Professor and Dean 

School of Graduate Studies 

Universiti Putra Malaysia 

 

Date: 

 

 

                                                                             

                                                                     



© C
OPYRIG

HT U
PM

viii 

 

Declaration by Graduate Student 

 

I hereby confirm that: 

 

 this thesis is my original work; 

 quotations, illustrations and references have been fully referenced; 

 this thesis has not been submitted previously or concurrently for any other degree 

at any other institutions; 

 intellectual property from the thesis and copyright of thesis are fully-owned by 

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia 

(Research) Rules 2012; 

 written permission must be obtained from supervisor and the office of Deputy 

Vice-Chancellor (Research and Innovation) before thesis is published (in the form 

of written, printed or in electronic form) including books, journals, modules, 

proceedings, popular writings, seminar papers, manuscripts, posters, reports, 

lecture notes, learning modules or any other materials as stated in the Universiti 

Putra Malaysia (Research) Rules 2012; 

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly 

integrity is upheld as according to the Universiti Putra Malaysia (Graduate 

Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia 

(Research) Rules 2012. The thesis has undergone plagiarism detection software.  

 

 

 

Signature: ____________________________       Date: ____________ 

 

 

Name and Matric No.: Tumirah Khadiran (GS30491) 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

ix 

 

Declaration by Member of Supervisory Committee 

 

This is to confirm that: 

 

 this research conducted and the writing of this thesis was under our 

supervision; 

 supervision responsibilities as stated in Universiti Putra Malaysia (Graduate 

Studies) Rules 2003 (Revision 2012-2013) are adhere to: 

 

 

Signature :_____________________________ 

Name of Chairman of 

Supervisory Committee 

: Professor Dr. Mohd Zobir Hussein 

   

 

  

 

 

 

Signature :_____________________________ 

Name of Member of 

Supervisory Committee 

: Professor Dr. Zulkarnain Zainal 

   

 

  

 

 

 

Signature :_____________________________ 

Name of Member of 

Supervisory Committee 

: Dr. Rafeadah Rusli 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

x 

 

TABLE OF CONTENTS 

  Page 

ABSTRACT  i 

ABSTRAK  iii 

ACKNOWLEDGEMENTS  v 

APPROVAL  vi 

DECLARATION  viii 

LIST OF TABLES  xviii 

LIST OF FIGURES  xxi 

LIST OF ABBREVIATIONS  xxviii 

   

CHAPTER   

   

1 INTRODUCTION  1 

 1.1 Background of research  1 

 1.2 Problem statements  3 

 1.3 Scope of study  5 

 1.4 Objectives  6 

      

2 LITERATURE REVIEW  7 

 2.1  Materials for Advanced Energy Storage and Their 

Characterization and Applications in Thermal Comfort 

Buildings 

 

7 

 2.1.1 Introduction  7 

 2.1.2 Thermal energy storage  8 

  2.1.2.1 Sensible heat storage  9 

  2.1.2.2 Chemical heat storage  10 

  2.1.2.3 Latent heat storage  11 

 2.1.3 Phase change materials  13 

  2.1.3.1 Organic phase change materials  14 

  2.1.3.2 Inorganic phase change materials  16 

  2.1.3.3 Eutectic phase change materials  17 

 2.1.4 Criteria of phase change materials for thermal 

energy storage application 
 

18 

 2.1.5 Criteria of thermal energy storage based on phase 

change material for building application 
 

20 

 2.1.6 Advantages of thermal energy storage system 

based on phase change materials for building 

applications 

 

20 

 2.1.7 Thermal energy storage based on phase change 

materials in buildings 
 

21 

  2.1.7.1 Passive storage system  21 

  2.1.7.2 Active storage system  25 

 2.1.8 Thermal performance testing  26 

  2.1.8.1 Experimental approach under the 

laboratory condition 
 

26 

  2.1.8.2 Experimental approach under the real 

condition 
 

31 

      

  2.1.8.3 Numerical modeling  31 



© C
OPYRIG

HT U
PM

xi 

 

  2.1.8.4 Combination of experimental and 

numerical modeling 
 

32 

 2.1.9 New phase change materials technology  32 

 2.1.10 Summary  33 

  Copyright permission/Acceptance 

letter/Submission letter   
 

34 

      

 2.2  Encapsulation Techniques for Organic Phase Change 

Materials as Thermal Energy Storage Medium: A Review 
 

35 

 2.2.1 Introduction  35 

 2.2.2 Micro- or nano-encapsulation methods  36 

  2.2.2.1 Physico-mechanical methods  38 

  2.2.2.2 Chemical methods  38 

  2.2.2.3 Physico-chemical methods  47 

 2.2.3 Shape-stabilised methods  48 

  2.2.3.1 Supporting material-based on 

polymers 
 

49 

  2.2.3.2 Supporting material-based on 

inorganic frameworks 
 

54 

  2.2.3.3 Advantages and disadvantages of 

using polymer and inorganic 

materials as a supporting material 

 

66 

 2.2.4 Intercalation method  67 

 2.2.5 Method for characterization of encapsulated 

OPCMs 
 

67 

  2.2.5.1 Chemical properties   69 

  2.2.5.2 Physical properties  70 

  2.2.5.3 Thermal properties  70 

  2.2.5.4 Thermal reliability  70 

 2.2.6 Summary  72 

  Copyright permission/Acceptance 

letter/Submission letter 
 

73 

      

3 MATERIALS AND EXPERIMENTAL METHODS  74 

 3.1 Preparation of nano-encapsulated n-alkanes  75 

  3.1.1 Optimization parameters for 

nanoencapsulation of n-alkanes  
 

75 

   3.1.1.1 Effect of styrene to methyl 

methacrylate mass ratios 
 

75 

   3.1.1.2 Effect of shell to core mass  

ratios 
 

76 

   3.1.1.3 Effect of initiator to monomer  

mass ratios 
 

76 

 3.2 Preparation of shape-stabilised n-alkanes 

nanocomposites 
 

76 

  3.2.1 Production of peat soil activated 

carbon as inorganic framework 
 

76 

   3.2.1.1  Physical activation method  76 

   3.2.1.2  Chemical activation method  77 

  3.2.2 Fabrication of shape-stabilised n-  78 



© C
OPYRIG

HT U
PM

xii 

 

alkanes nanocomposites 

 3.3 Integration of n-alkanes nanocapsules or shape-

stabilised n-alkanes into building materials  
 

79 

  3.3.1 Preparation of thermally regulated 

gypsum composite boards 
 

79 

 3.4 Characterizations   79 

  3.4.1 Transmission electron microscopy  79 

  3.4.2 Field emission scanning electron 

microscopy 
 

80 

  3.4.3 Fourier transforms infrared 

spectroscopy 
 

80 

  3.4.4 X-ray diffractometer  80 

  3.4.5 Particle size analyzer  80 

  3.4.6 Differential scanning calorimetry   80 

  3.4.7 Thermal gravimetric analyzer  81 

  3.4.8 Thermal reliability test  81 

  3.4.9 Surface area and porosimetry 

analyzer 
 

82 

  3.4.10 True and apparent density and 

porosity 
 

82 

  3.4.11 Raman spectroscopy  83 

  3.4.12 Thermal conductivity test  83 

  3.4.13 Characterization of proximate, 

ultimate and main  components of 

peat soil and peat soil activated 

carbon 

 

83 

  3.4.14 Leakage test  83 

  3.4.15 Determination of actual mass loading 

percentage of n-alkanes in the 

nanocomposites 

 

84 

  3.4.16 Simulation of temperature 

controlling of thermally regulated 

gypsum composite boards 

 

84 

      

4 TEXTURAL AND CHEMICAL PROPERTIES OF 

ACTIVATED CARBON PREPARED FROM TROPICAL 

PEAT SOIL  BY CHEMICAL ACTIVATION METHOD 

 

86 

 4.1 Introduction  86 

 4.2   Experimental  88 

  4.2.1 Materials  88 

  4.2.2 Preparation of peat soil activated 

carbon 
 

89 

 4.3 Characterization of peat soil activated carbon  90 

 4.4 Results and discussion  91 

  4.4.1 Physico-chemical properties of peat 

soil 
 

91 

  4.4.2 Thermal analysis  91 

  4.4.3 Surface morphology  93 

  4.4.4 Surface area and porosity structure  95 

  4.4.5 Raman spectroscopy  99 



© C
OPYRIG

HT U
PM

xiii 

 

  4.4.6 Surface chemistry  101 

  4.4.7 XRD patterns  103 

 4.4 Summary  104 

  Copyright permission/Acceptance 

letter/Submission letter 
 

105 

      

5 ACTIVATED CARBON DERIVED FROM PEAT SOIL 

AS A FRAMEWORK FOR THE PREPARATION OF 

SHAPE-STABILIZED PHASE CHANGE MATERIAL 

 

106 

 5.1 Introduction  106 

 5.2 Materials and methods  109 

  5.2.1 Materials  109 

  5.2.2 Preparation of activated carbon from 

peat soil 
 

109 

  5.2.3 Preparation of shape-stabilized n-

octadecane/PSAC composite 
 

109 

  5.2.4 Characterization methods  110 

  5.2.5 Thermal cycling test  111 

 5.3 Results and discussion   

 
 

5.3.1 Characterization of peat soil 

activated carbon 
 

111 

 
 

5.3.2 Characterization of shape-stabilized 

n- octadecane/PSAC composite 
 

115 

  5.3.3 Leakage study  116 

 
 

5.3.4 Microstructure analysis of the 

composite PCM 
 

117 

 
 

5.3.5 Physical properties of composite 

PCM 
 

119 

  5.3.6 Particle size distribution  121 

 
 

5.3.7 Thermal properties of composite 

PCM 
 

122 

  5.3.8 Thermal stability  122 

 
 

5.3.9 Thermal reliability of composite 

PCM  
 

125 

 
 

5.3.10 Thermal conductivity of composite 

PCM 
 

127 

 5.4 Summary  128 

 
 

Copyright permission/Acceptance 

letter/Submission letter 
 

129 

      

6 PROPERTIES OF N-OCTADECANE-ENCAPSULATED 

ACTIVATED CARBON NANOCOMPOSITES FOR 

ENERGY STORAGE MEDIUM: THE EFFECT OF 

SURFACE AREA AND PORE STRUCTURE 

 

130 

 6.1 Introduction  130 

 6.2 Experimental  131 

  6.2.1 Materials  131 

  6.2.2 Preparation of peat soil activated 

carbon 
 

131 

  6.2.3 Preparation of shape-stabilized n-  132 



© C
OPYRIG

HT U
PM

xiv 

 

octadecane/activated carbon 

nanocomposite 

  6.2.4 Characterization methods  132 

 6.3 Results and discussion  132 

  6.3.1 Pore structure of activated carbon  132 

  6.3.2 Energy storage properties of n-

octadecane/AC nanocomposites 
 

136 

 6.4 Summary  139 

 
 

Copyright permission/Acceptance 

letter/Submission letter 
 

140 

     

7 SHAPE-STABILIZED N-OCTADECANE/ACTIVATED 

CARBON NANOCOMPOSITE PHASE CHANGE 

MATERIAL FOR THERMAL ENERGY STORAGE 

 

141 

 7.1 Introduction  141 

 7.2 Experimental  142 

  7.2.1 Materials  142 

  7.2.2 Synthesis of shape-stabilized n-

octadecane/AC nanocomposites 
 

143 

  7.2.3 Production of thermally regulated 

gypsum composite boards 
 

143 

  7.2.4 Characterization of shape-stabilized 

n-octadecane/AC nanocomposites 
 

144 

  7.2.5 Thermal cycling test  144 

  7.2.6 Thermal performance evaluation test  145 

 7.3 Results and discussion  146 

 

 

7.3.1 Chemical properties of shape-

stabilized n-octadecane/AC 

nanocomposite 

 

146 

 

 

7.3.2 Thermal properties of the shape-

stabilized n-octadecane/AC 

nanocomposites 

 

147 

 

  7.3.3 Leaching test  149 

 
 

7.3.4 Morphology of the shape-stabilized 

n-octadecane/AC nanocomposites 
 

149 

 
 

7.3.5 Surface area, porosity and physical 

properties 
 

151 

 

 

7.3.6 Thermal stability of the shape-

stabilized n-octadecane/AC 

nanocomposite 

 

153 

 

 

7.3.7 Determination of actual mass loading 

percentage of n-octadecane in the 

nanocomposites 

 

154 

 

 

7.3.8 Thermal stability of the shape-

stabilized n-octadecane/AC 

nanocomposites 

 

156 

 

 

7.3.9 Thermal conductivity of the shape-

stabilized n-octadecane/activated 

carbon nanocomposite 

 

158 

  7.3.10 Thermal performance evaluation of  158 



© C
OPYRIG

HT U
PM

xv 

 

the nanocomposite in building 

materials 

 7.4  Summary  159 

 
 

Copyright permission/Acceptance 

letter/Submission letter 
 

160 

      

8 NANO-ENCAPSULATED ORGANIC PHASE CHANGE 

MATERIAL BASED ON COPOLYMER 

NANOCOMPOSITES FOR THERMAL ENERGY 

STORAGE 

 

161 

 8.1 Introduction  161 

 8.2 Experimental  163 

  8.2.1 Materials  163 

  8.2.2 Fabrication of nanocapsules 

containing n-octadecane 
 

164 

  8.2.3 Characterization of nanocapsules 

containing n-octadecane 
 

165 

  8.2.4 Thermal cycling test of n-

octadecane/St-MMA nanocapsules 
 

166 

 8.3 Results and discussion  166 

 
 

8.3.1 Morphology and particle size 

distribution of nanocapsules 
 

166 

 
 

8.3.2 Chemical characterization of the 

nanocapsules 
 

170 

  8.3.3 XRD patterns of nanocapsules  170 

  8.3.4 Thermal properties of nanocapsules  171 

  8.3.5 Thermal stability of the nanocapsules  175 

 
  

8.3.6 Thermal reliability of the n-

octadecane/St-MMA nanocapsules 
 

175 

 8.4 Summary  180 

 
 

Copyright permission/Acceptance 

letter/Submission letter 
 

181 

      

9 NANO-ENCAPSULATED N-NONADECANE USING 

VINYL COPOLYMER SHELL FOR THERMAL 

ENERGY STORAGE MEDIUM 

 

182 

 9.1 Introduction  182 

 9.2 Materials and methods  185 

  9.2.1 Materials  185 

  9.2.2 Preparation on nanocapsules 

containing n-nonadecane 
 

185 

  9.2.3 Characterization of the nanocapsules  186 

  9.2.4 Determination of the thermal 

properties and the thermal reliability 

of the nanocapsules 

 

187 

 9.3 Results and discussion  188 

 

 

9.3.1 Influence of the St to MMA mass 

ratio and initiator to shell mass ratio 

on the morphology and the particle 

size distribution of the nanocapsules 

 

188 



© C
OPYRIG

HT U
PM

xvi 

 

 
 

9.3.2 Chemical properties of the 

nanocapsules 
 

194 

  9.3.3 XRD patterns of the nanocapsules  194 

 
 

9.3.4 Thermal properties of the 

nanocapsules 
 

195 

  9.3.5 Thermal stability of the nanocapsules  197 

 
   

9.3.6 Thermal reliability and chemical 

stability of the nanocapsules 
 

199 

 9.4 Summary  203 

 
 

Copyright permission/Acceptance 

letter/Submission letter 
 

204 

      

10 THERMAL PERFORMANCE CHARACTERISTICS OF 

NANOCAPSULES PHASE CHANGE 

MATERIAL/GYPSUM COMPOSITE BOARD  

 

205 

 10.1 Introduction  205 

 10.2 Experimental  208 

  10.2.1 Materials  208 

  10.2.2 Preparation of n-octadecane 

nanocapsules 
 

208 

  10.2.3 Preparation of smart gypsum 

composite boards 
 

209 

  10.2.4 Experimental method and equipment  209 

 10.3 Results and discussion  211 

 
 

10.3.1 The properties of the n-octadecane 

nanocapsules 
 

211 

 
 

10.3.2 Properties of gypsum composite 

boards 
 

216 

 
 

10.3.2.1 Morphology of gypsum composite 

boards 
 

216 

 

 

10.3.2.2  Effect of n-octadecane nanocapsules 

contents on the density and porosity 

of the gypsum composite boards 

 

218 

 

 

10.3.2.3  Effect of n-octadecane nanocapsules 

contents on the thermal properties of 

gypsum composite boards 

 

 

220 

 
 

10.3.2 Thermal behaviour of gypsum 

composite boards 
 

222 

 10.4 Summary  225 

 
 

Copyright permission/Acceptance 

letter/Submission letter 
 

226 

      

11 CONCLUSION AND SUGGESTIONS FOR FUTURE 

WORK 
 

227 

 11.1 Conclusion  227 

 11.2 Significant findings  229 

 11.3 Suggestions for future works  230 

 
 

11.3.1 Thermal performance evaluation 

under the real condition 
 

230 

  11.3.2 Integration of nano-encapsulated  230 



© C
OPYRIG

HT U
PM

xvii 

 

OPCM into building material based 

on cellulosic material 

      

REFERENCES  231 

APPENDICES  266 

BIODATA OF STUDENT  284 

LIST OF PUBLICATIONS   285 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

xviii 

 

LIST OF TABLES 

 

Table  Page 

   

2.1 Thermal capacities at 20 
o
C of some common TES based on 

sensible heat storage materials (Norton 1992).  

10 

   

2.2 Comparison of latent heat storage media with sensible heat 

storage media (stored energy = 10
6
 kJ, ΔT= 15 

o
K) (Hasnain, 

1998). 

12 

   

2.3 Advantages and disadvantages of OPCMs, IOPCMs and EPCMs 

(Zalba et al., 2003; Tyagi et al., 2011). 

14 

   

2.4 Thermal properties of paraffin and fatty acids with different 

carbon numbers and PEGs with different PEG molecular weights 

(Qian et al., 2015 (c); Yuan et al., 2014; Sarier and Onder, 2012). 

16 

   

2.5 IOPCMs substances with potential use as TES material (Tyagi et 

al., 2007; Liu et al., 2012). 

17 

   

2.6 Organic-organic, organic-inorganic and inorganic-inorganic 

eutectics with potential used as PCMs (Kalnaes et al., 2015; Liu 

et al., 2012; Sharma et al., 2009).  

18 

   

2.7 List of the physico-mechanical, chemical, and physico-chemical 

methods used for micro- or nano-encapsulation of OPCMs. 

37 

   

2.8 Properties of micro-encapsulated OPCMs prepared using 

different chemical method 

40 

   

2.9 Properties of nano-encapsulated OPCMs prepared using different 

chemical methods 

43 

   

2.10 Thermal properties of the OPCMs composite prepared using 

supporting material based on inorganic materials. 

65 

   

2.11 Advantages and disadvantages of OPCMs stabilized by polymer 

as a supporting material 

66 

   

2.12 Advantages and disadvantages of OPCMs stabilized by inorganic 

framework as a supporting material 

66 

   

3.1 The composition of nanocapsules containing n-alkanes as a core 

encapsulated using different St and MMA mass ratios 

 

75 

3.2 The composition of nanocapsules containing n-octadecane as a 

core encapsulated using different shell to core mass ratios 

 

76 

   



© C
OPYRIG

HT U
PM

xix 

 

3.3 PSAC prepared using different impregnation ratio of H3PO4 and 

different carbonization time 

78 

   

3.4 PSAC prepared using different impregnation ratio of ZnCl2 and 

different carbonization time 

 

78 

4.1 Proximate, ultimate, and main components of peat soils (% dry 

basis) 

 

89 

4.2 AC prepared using H3PO4 and ZnCl2 activation agent at 500 
o
C 

for 3 hour 

 

90 

4.3 Characteristic of the porous structure of the PSAC-P and PSAC-

Z 

98 

   

4.4 Effect of activation methods and the BET specific surface area on 

the yields of AC 

99 

   

5.1 n-Octadecane and PSAC compositions used for the preparation of 

the SSOAC composites. 

 

109 

5.2 Characteristic of the porous structure of the PSAC, PCM-1, 

PCM-3 and PCM-5. 

  

119 

5.3 Thermal properties of the SSOAC composite of Sample PCM-5. 

 

124 

5.4 Thermal properties of the SSOAC composite of Sample PCM-5 

before and after thermal cycling. 

 

127 

5.5 Thermal conductivity of the n-octadecane, PSAC and PCM-5 in 

melting and freezing state. 

127 

   

6.1 Characteristics of the ACs and their n-octadecane-encapsulated 

AC nanocomposites 

135 

   

6.2 Latent heat of fusion and encapsulation efficiency 137 

   

7.1 Composition of the shape-stabilised n-octadecane/AC 

nanocomposites and thermally regulated gypsum composite 

boards 

143 

   

7.2 Summary of the physical and thermal properties of the SOAC 

nanocomposites  

148 

   

7.3 Summary of weight and latent heat of the SOAC nanocomposites 

before and after the leaching test. 

149 

   

7.4 Thermal conductivity of the pure n-octadecane, AC and n-

octadecane/AC nanocomposite 

 

158 



© C
OPYRIG

HT U
PM

xx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.1 The composition of nanocapsules containing n-octadecane as a 

core synthesized by miniemulsion in-situ polymerization method. 

164 

   

8.2 Particle size distribution (PSD) of n-octadecane/St-MMA 

nanocapsules produced using different St/MMA mass ratio at the 

fixed shell/core mass ratio of 3. 

169 

   

8.3 Thermal properties of n-octadecane/St-MMA nanocapsules 

synthesized at different St/MMA mass ratios. 

174 

   

8.4 TGA/DTG data of n-octadecane, copolymer shell and n-

octadecane/St-MMA nanocapsules. 

177 

   

8.5 The changes in thermal properties of the n-octadecane/St-MMA 

nanocapsules (Sample A4) with respect to the thermal cycling 

test number. 

179 

   

9.1 Average particle size distribution of n-nonadecane/St-MMA 

nanocapsules (PCM-1) determined using DSL and TEM and 

FESEM images. 

193 

   

9.2 The changes in the thermal properties of the n-nonadecane/St-

MMA nanocapsules (PCM-1) with respect to the thermal cycling 

test number. 

201 

   

9.3 The changes in the thermal properties of the pure n-nonadecane 

with respect to the thermal cycling test number. 

 

202 

10.1 Changes in the thermal properties of n-octadecane nanocapsules 

with respect to thermal cycling test number. 

213 

   

10.2 Thermal properties of pure n-octadecane, n-octadecane 

nanocapsules and gypsum composite boards. 

221 

   



© C
OPYRIG

HT U
PM

xxi 

 

LIST OF FIGURES 

 

Figure  Page 

 

2.1 Classifications of TES (Tyagi et al., 2011; Rathod and 

Banerjee, 2013). 

 

8 

2.2 a) The Bangsar District Cooling Plant, and (b) UKM District 

Cooling Plant (Dincer and Rosen, 2011; www.kjeng.com.my). 

 

10 

2.3 Comparative values storage capacity of building materials 

under the same conditions of temperature variation and of wall 

thickness (Kuznik et al., 2011). 

 

12 

2.4 SEM micrograph of microencapsulated PCM in gypsum 

wallboard (Shossig et al. 2005). 

 

23 

2.5 SEM micrograph of microencapsulated PCM-concrete 

composite (Pomianowski et al. 2014). 

 

25 

2.6 Illustration of the self-made design small test room for 

simulation of the heat storage effect (Li et al., 2013). 

 

28 

2.7 A T-t curves device scheme experimental setup for simulation 

of heat storage effect (Barreneche et al., 2013). 

 

29 

2.8 An Experimental set up for the materials thermal behavior 

tests (Borreguerro et al., 2014b). 

 

30 

2.9 Illustration of the self-made design thermal analyzer for study 

the thermal behaviour of the PCM composite sample (Serrano 

et al., 2015). 

30 

2.10 A design of a small test room for simulation of temperature 

controlling of microencapsulated-paraffin/gypsum composites 

panel (Su et al., 2012). 

 

31 

2.11 The encapsulation methods and supporting materials that can 

be used to encapsulate OPCMs. 

 

36 

2.12 Structure of core-shell of micro- or nano-encapsulated OPCMs 

(a) which has similar structure to a mangoesteen (b). 

 

37 

2.13 SEM micrograph of n-octacosane microcapsules (Sari et al., 

2009). 

 

39 

2.14 Encapsulation of OPCMs into the porous network of inorganic 

framework. 

 

49 

2.15 SEM micrographs of composite shape-stabilized PEG/PMMA 

with various mass fractions of graphite nanoplatelets: (a) 0, (b) 

51 



© C
OPYRIG

HT U
PM

xxii 

 

1%, (c) 2%, (d) 4%, (e) 6% and (f) 8%. (The arrows is the 

figure denoted the graphite nanoplatelets dispersed in the 

composites) (Zhang et al., 2012). 

 

2.16 SEM micrographs of (a) EG and (b) n-octadecane/EG 

composite (Zhang et al., 2013) 

 

56 

2.17 Nitrogen (N2) adsorption-desorption isotherms of ACs (a), n-

octadecane/AC nanocomposites (b) and BJH desorption of n-

octadecane/AC nanocomposites (c). 

 

59 

2.18 BET specific surface area (m
2
g

-1
) versus encapsulation 

efficiency (%) and latent heat of fusion (Jg
-1

) (Hussein et al., 

2015). 

 

60 

2.19 Structure diagram of intercalation process. 

 

67 

2.20 List of common method used for characterization of 

encapsulated OPCMs. Note: PSD = particle size distribution; 

DLS = dynamic light scattering. 

 

68 

3.1 Schematic diagram showing the devices used to perform the 

thermal performance evaluation testing. 

 

85 

4.1 (a) TGA thermograms of peat soil sample, peat soil 

impregnated with 30% H3PO4 (PS-PI) and peat soil 

impregnated with 30% ZnCl2 (PS-ZI); and (b) DTG 

thermograms of peat soil sample, peat soil impregnated with 

30% H3PO4 (PS-PI) and peat soil impregnated with 30% 

ZnCl2 (PS-ZI) 

 

92 

4.2 FESEM images of (a) peat soil; (b) peat soil impregnated with 

30% ZnCl2,  followed by carbonization at 500 
o
C for 3 h (PS-

ZIC), (c) peat soil impregnated with 30% H3PO4, followed by 

carbonization at 500 
o
C for 3 h (PS-PIC), (d) peat soil 

activated carbon prepared using ZnCl2 (30%) activation 

method (PSAC-Z-30), and (e) peat soil activated carbon 

prepared using H3PO4 (30%) activation method (PSAC-P-30). 

94 

   

4.3 N2 adsorption-desorption isotherm of (a) peat soil activated 

carbon prepared using H3PO4 activation method (PSAC-P) and 

(b) peat soil activated carbon prepared using ZnCl2 activation 

method (PSAC-Z) at different concentrations of H3PO4 and 

ZnCl2. The samples were carbonized at 500 
o
C for 3 h.  

 

96 

4.4 Pore size distribution based on BJH desorption method of (a) 

PSAC-P and (b) PSAC-Z prepared using different H3PO4 and 

ZnCl2 concentrations, respectively. 

 

97 

4.5 Raman spectra of PSAC prepared using different 100 



© C
OPYRIG

HT U
PM

xxiii 

 

concentrations of (a) H3PO4 and (b) ZnCl2. 

 

4.6 Plot of ID/IG value of PSAC prepared using different 

concentrations of H3PO4 and ZnCl2 activation methods. 

 

101 

4.7 FTIR spectra of PSAC prepared using different concentrations 

of (a) H3PO4 and (b) ZnCl2. 

 

102 

4.8 XRD patterns of PSAC prepared using 1, 5, 10, 20, and 30% 

of (a) H3PO4 and (b) ZnCl2 

 

103 

5.1 FTIR spectra of peat soil and PSAC. 

 

112 

5.2 (a) Nitrogen adsorption-desorption isotherm of PSAC and (b) 

pore size distribution of PSAC. 

 

113 

5.3 Raman spectra of the PSAC. 

 

114 

5.4 FTIR spectra of (a) n-octadecane, (b) PSAC and SSOAC with 

(c) 10 wt.%, (d) 30 wt.%, (e) 50 wt.%, (f) 70 wt.% and (g) 90 

wt.% n-octadecane. 

 

115 

5.5 XRD patterns of (a) PSAC and SSOAC composite with (b) 10 

wt.%, (c) 30 wt.%, (d) 50 wt.%, (e) 70 wt.% and (f) 90 wt.% 

n-octadecane. 

 

116 

5.6 FESEM images of the (a) peat soil, (b) PSAC, (c) PCM-5. 

 

118 

5.7 N2 adsorption-desorption isotherms of (a) PCM-1, (b) PCM-3 

and (c) PCM-5. Insert is the pore size distribution of (a) PCM-

1, (b) PCM-3 and (c) PCM-5. 

 

120 

5.8 Particle size distributions of (a) PSAC and (b) PCM-5. 

 

121 

5.9 DSC thermograms of (a) PSAC and (b) the pure n-octadecane 

and PCM-5 

 

123 

5.10 TGA/DTG thermograms of (a) n-octadecane, (b) PSAC, and 

(c) PCM-5. 

 

125 

5.11 DSC thermograms of the SSOAC composite of Sample PCM-

5 before and after thermal cycling. 

 

126 

5.12 FTIR spectra of the SSOAC composite of Sample PCM-5 

before and after thermal cycles. 

 

126 

6.1 N2 adsorption-desorption isotherms of ACs; PSAC-P, PSAC-C 

and CAC. 

 

133 

6.2 N2 adsorption-desorption isotherm of (a) n-octadecane/PSAC- 133 



© C
OPYRIG

HT U
PM

xxiv 

 

P nanocomposite, (b) n-octadecane/CAC nanocomposite and 

(c) n-octadecane/PSAC-C nanocomposite (inset). 

 

6.3 BJH desorption pore size distribution of ACs; PSAC-P, 

PSAC-C and CAC  

 

134 

6.4 BJH desorption pore size distribution of n-octadecane/PSAC-

C, n-octadecane/PSAC-P and n-octadecane/CAC 

nanocomposites.  

 

134 

6.5 DSC thermograms of (a) pure n-octadecane and shape-

stabilized n-octadecane with different pore structures of ACs: 

(b) n-octadecane/PSAC-P, (c) n-octadecane/PSAC-C and (d) 

n-octadecane/CAC. 

 

137 

6.6 Plot of (a) BET specific surface area (m
2
g

-1
) versus 

encapsulation efficiency (%) and latent heat of fusion (Jg
-1

) 

and (b) encapsulation efficiency (%) versus latent heat of 

fusion (Jg
-1

). 

 

138 

7.1 Schematic diagram showing the devices used to perform the 

thermal performance evaluation testing. 

 

145 

7.2 FTIR spectra of (a) pure n-octadecane, (b) AC, (c) SPCM1, (d) 

SPCM2, (e) SPCM3, (f) SPCM4 and (g) SPCM5 (The 

symbols on FTIR spectra of c-g are assigned to FTIR 

adsorption peaks; ♦ = 2956 cm
-1

, ⃰ = 2853 cm
-1

, # = 1472 cm
-1

 

and ♥ = 1465 cm
-1

). 

 

146 

7.3 DSC thermogram of pure n-octadecane and the SOAC 

nanocomposites prepared using different n-octadecane/AC 

mass percentages. 

 

148 

7.4 FESEM images of (a) AC and (b) SPCM5.  

 

150 

7.5 TEM images of (a) AC and (b) SPCM5.  

 

150 

7.6 N2 adsorption-desorption isotherms of (a) AC and (b) SPCM5. 

Inserts are the pore size distribution of AC and SPCM5.  

 

152 

7.7 Raman spectra of (a) AC and (b) SPCM5. 

 

153 

7.8 TGA/DTG thermograms of pure n-octadecane, AC and 

SPCM5. 

 

154 

7.9 The mass loading percentages of n-octadecane in SPCM5 

sample determined using DSC, TGA/DTG and pyrolysis 

methods. 

155 

   

7.10 DSC thermograms (a) and FTIR spectra (b) of SPCM5 after 157 



© C
OPYRIG

HT U
PM

xxv 

 

1000 thermal cycles.  

 

7.11 Indoor temperature variation curves of the small test rooms 

where the top boards contained different mass percentages of 

SPCM5.   

 

159 

8.1 FESEM micrographs of n-octadecane/St-MMA nanocapsules: 

(a) Sample A1; (b) Sample A2; (c) Sample A3; (d) Sample A4 

and (e) Sample A5 (a composition of the samples is described 

in Table 8.1). 

 

168 

8.2 TEM image of the n-octadecane/St-MMA nanocapsules of 

Sample A4 at two different TEM setting views (a) 

magnification 100k (b) magnification 30k and (c) particle size 

distribution studied using DLS. 

 

169 

8.3 FTIR spectra of n-octadecane, copolymer shell and n-

octadecane/St-MMA nanocapsules of Sample A4. 

 

170 

8.4 XRD patterns of copolymer shell, n-octadecane/St-MMA 

nanoparticles of Sample A4 at 28-30 
o
C and 20-27 

o
C, 

respectively. 

 

171 

8.5 DSC thermograms of n-octadecane, copolymer shell and n-

octadecane/St-MMA nanocapsules of Sample A4. 

 

173 

8.6 TGA/DTG thermograms of (a) n-octadecane, (b) copolymer 

shell and (c) n-octadecane/St-MMA nanocapsules of Sample 

A4. 

 

176 

8.7 DSC thermograms of the n-octadecane/St-MMA nanocapsules 

(Sample A4) before and after thermal cyclings. 

 

178 

8.8 FTIR spectra of the n-octadecane/St-MMA nanocapsules 

(Samples A4) before and after thermal cyclings. 

 

178 

9.1 FESEM images of n-nonadecane/St-MMA nanocapsules 

prepared using (a) 0.05 g, (b) 0.10 g, (c) 0.15 g, (d) 0.20 g, (e) 

0.25 g and (f) 0.30 g of AIBN for every 10 mL of monomer in 

the polymerisation system. 

 

189 

9.2 The pictures of n-nonadecane St/MMA nanocapsules samples 

in the emulsion solution form when prepared using (a) 0.1 g 

AIBN, (b) 0.3 g AIBN and the picture of sample in the dried 

form when they were prepared using (c) 0.1 g AIBN and (d) 

0.3 g AIBN for every 10 mL of monomer in the 

polymerization system. 

 

190 

   

9.3 FESEM images of n-nonadecane/St-MMA nanocapsules 191 



© C
OPYRIG

HT U
PM

xxvi 

 

prepared using St/MMA mass ratio of (a) 2:1; (b) 3:1; (c) 3.5:1 

and (d) 5:1. The n-nonadecane/St-MMA nanocapsules 

prepared using St/MMA mass ratio of 4:1 (PCM-1) is shown 

in Figure 9.1b. 

 

9.4 TEM images of (a) n-nonadecane/St-MMA nanocapsules 

(PCM-1) and (b) particle size distribution of PCM-1 

determined using DLS method. 

 

192 

9.5 Average particle size of n-nonadecane/St-MMA nanocapsules 

(PCM-1) determined using DSL after 6, 12, 18 and 24 month 

synthesis. 

 

193 

9.6 FTIR spectra of (a) pure n-nonadecane, (b) nanocapsules 

synthesised without cores and (c) n-nonadecane/St-MMA 

nanocapsules (PCM-1). 

 

194 

9.7 XRD patterns of (a) nanocapsules without cores and (b) n-

nonadecane/St-MMA nanocapsules (PCM-1). 

 

195 

9.8 DSC thermograms of (a) pure n-nonadecane and n-

nonadecane/St-MMA nanocapsules (PCM-1) and (b) 

nanocapsules synthesised without cores. 

 

196 

9.9 TGA/DTG thermograms of nanocapsules without cores (a), 

pure n-nonadecane (b) and the n-nonadecane/St-MMA 

nanocapsule (PCM-1) (c). 

 

198 

9.10 DSC thermograms of the n-nonadecane/St-MMA 

nanocapsules (PCM-1) before and after the thermal cycling 

test. 

 

200 

9.11 FTIR spectra of n-nonadecane/St-MMA nanocapsules (PCM-

1) before and after the thermal cycling test. 

 

200 

10.1 Schematic diagram showing the devices used to test thermal 

performance of smart gypsum boards.  

 

210 

10.2 DSC thermograms of pure n-octadecane and n-octadecane 

nanocapsules. 

212 

   

10.3 DSC thermograms of the n-octadecane nanocapsules before 

and after thermal cycling test. 

213 

   

10.4 FTIR spectra of the pure n-octadecane, St/MMA copolymer 

and n-octadecane nanocapsules before and after the thermal 

cycling test. 

 

214 

   

10.5 FESEM micrograph of the n-octadecane nanocapsules. Insert 215 



© C
OPYRIG

HT U
PM

xxvii 

 

shows the TEM micrograph of the core-shell structure of n-

octadecane nanocapsules.  

 

10.6 FESEM micrograph of the n-octadecane nanocapsules after 

1000 thermal cycling test. Insert shows the FESEM 

micrographs of n-octadecane nanocapsules with the collapse 

structures.  

 

216 

10.7 Pictures of gypsum board containing 0, 1, 5, 10, 20 and 30 

wt.% n-octadecane nanocapsules. 

 

217 

10.8 FESEM images of a broken gypsum composite board prepared 

using 10 wt.% n-octadecane nanocapsules. 

 

217 

10.9 Apparent and true densities of gypsum board containing n-

octadecane nanocapsules at various mass percentages (0, 1, 5, 

10, 20 and 30 wt.%). 

 

218 

10.10 Porosities of gypsum board containing n-octadecane 

nanocapsules at various mass percentages (0, 1, 5, 10, 20 and 

30 wt.%). 

 

219 

10.11 DSC thermograms of gypsum boards containing (a) 0 wt.%, 

(b) 1 wt.%, (c) 10 wt.% and (d) 30 wt.% n-octadecane 

nanocapsules. 

 

220 

10.12 Temperature profiles of gypsum composite board containing 

(a) 0 and (b) 10 wt.% n-octadecane nanocapsules.  Channel A 

= temperature of laboratory environment; Channel B = 

temperature of the external surface of the gypsum boards 

(outside wall); Channel C = temperature of the inside wall of 

the gypsum boards; Channel D = temperature of the indoors 

(centre of the test room). 

 

223 

10.13 Temperatures of melting and freezing of the gypsum boards 

containing 0, 1, 5, 10, 20 and 30 wt.% n-octadecane 

nanocapsules  and the indoor temperature reduction of the 

small test room where the top boards consist of gypsum boards 

containing 0, 1, 5, 10, 20 and 30 wt.%. 

 

224 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

xxviii 

 

LIST OF ABBREVIATIONS 

 

AC  activated carbon 

AIBN  2,2-azobisisobutyronitrile 

ASAP  Accelerated surface area and porosimetry 

BET  Brunauer-Emmert-Teller method 

BJH  Barret-Joyner-Halenda method 

CAC  commercial activated carbon 

DLS  dynamic light scattering 

DSC  differential scanning calorimetry 

EPCMs  eutectic phase change materials 

FESEM  field emission scanning electron microscopy 

FTIR  Fourier transforms infrared spectroscopy 

∆Hm   enthalpy of melting 

H3PO4  phosphoric acid 

HNO3  nitric acid 

IOPCMs  inorganic phase change materials 

J/kg K  joule per kilogram Kelvin 

J/m
3
 K  joule per cubic meter Kelvin 

J/g  joule per gram 

kJ  kilo joule 

kJ/kg  kilojoule per kilogram 

kg/m
2
  kilogram per square meter 

K  Kelvin 

MMA  methyl methacrylate 

MgSO4  magnesium sulphate 

nm  nanometer 

NaOH  Sodium hydroxide 

OPCMs  organic phase change materials 

PSAC  peat soil activated carbon 

PSAC-C  PSAC prepared using H3PO4 chemical activation method 

PSAC-P  PSAC prepared using physical activation method 

PSAC-Z  PSAC prepared using ZnCl2 chemical activation method 

PCM  phase change material 

PSD  particle size distribution 

PSt  polystyrene 

rpm  revolution per minute 

SSOAC  shape-stabilised octadecane/AC  

SOAC  shape-stabilised octadecane/AC 

SDS  sodium dodecyl sulphate 
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SiO2  silicone dioxide 

SEM  scanning electron microscope 

ΔT  temperature change 

Triton-X 114  polyethylene glycol tert-octylphenyl ether  

Tm  temperature of melting 

Tc  temperature of cooling 

TGA  thermal gravimetric analyzer 

TGA/DTG  Thermal gravimetric analyzer/derivative thermogravimetry 

TEM  transmission electron microscopy 

TES  Thermal energy storage 

V  volume of storage material 

ρ  density 

W/mK  watt per meter Kelvin 

W  watt 

XRD  x-ray diffraction 

ZnCl2  Zinc chloride 

µm  micrometer 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background of research 

 

Buildings are responsible for about 40 % of the total world energy consumption, in 

which a large portion of energy is used for heating and cooling purpose of the 

buildings. It is responsible for one-third of green gas emission around the world which 

cause depletion of the conventional energy resources (Waqas and Din, 2013; Tyagi et 

al., 2011). In addition, the energy consumption by buildings was targeted to be 

increased to 60 % in the future due to increasing of the urbanization worldwide. One 

way to combat this problem in the future is to design buildings with a combination of 

green and smart technology. Therefore, it is a great demand to develop building 

materials with improving energy efficiency, which has a function to maintain internal 

building comfort, reduce the energy usage and indirectly could protect the environment 

from CO2 emission. To achieve this, thermal energy storage (TES) based on organic 

phase change materials (OPCM) could offer the solution. 

 

TES based on OPCM is a material which has ability to absorb, store and release a large 

amount of heat at small temperature fluctuation (Zhang et al., 2012a; Abhat, 1983). 

These properties could be used to improve the mismatch between the energy supply 

and demand in buildings.  The incorporation of TES based on OPCM into building 

components likes walls, ceilings, roofs, and floors shows a potential to shift the 

electricity peak load which is beneficial to reduce energy usage in buildings. This 

technology provides realistic solution to improve the efficiency of the energy 

utilization and management in buildings, which would reduce the dependency towards 

conventional energy resources. 

 

However, a good incorporation technique of OPCM into building materials is required 

to make sure that the OPCM are function.  There are varies ways to incorporate OPCM 

into building materials either for passive or active energy storage systems applications. 

Passive energy storage system has advantages to the buildings, because it can be 

automatically absorb, store or release energy if the surrounding temperature is above or 

below the melting point of OPCM. In addition, passive energy storage system provided 

large heat transfer area, easily fabricated and installed with existing building facilities 

(Zhou et al., 2012). These properties will improve the thermal inertia of the buildings 

by minimizing internal building temperature fluctuation, in which it would increase the 

potential of energy saving (Schossig et al., 2005; Alawadhi, 2008). Therefore, passive 

energy storage system attracts worldwide attention to be researched further. 

 

In passive energy storage system, OPCM can be integrated directly (direct 

incorporation or immersion) into the building materials or can be incorporated as 

separate components in buildings. Direct incorporation is the method in which OPCM 

are directly mixed with the building materials for example gypsum, cement, mortar or 

concrete during construction work (Hawes et al., 1989; Feldman et al., 1991). Dipping 

processes of building materials for example wall boards into the liquid OPCM refer to 

the immersion technique. Both techniques are the simplest, practicable and economical, 

but the OPCM may leak, especially after subjected to large number of thermal cycles 
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(Zhou et al., 2012; Soares et al., 2013) in which this may affect the mechanical 

properties and durability of the building materials.  

 

Previous technology used macroencapsulation of OPCM to incorporate OPCM into 

building materials. Macroencapsulation technology refers to the encapsulation of 

OPCM using any type of container such as tubes, spheres, cylinder, cell or panels 

which can be integrated into building materials (Raj and Velraj, 2010; Cabeza et al., 

2011). Example of this technique includes phase change material panels installed 

below finished flooring (Rodriguez-Ubinas et al., 2012).  This technique could 

overcome the liquid leakage problem of OPCM during phase change processes, but it 

suffers from low thermal conductivity which cause low heat exchange. In addition, the 

complicated integrating processes to the building materials making this system more 

expansive, and could also disturb the mechanical strength of the building materials due 

to the big size of the capsule, and has to be protected against the destruction while the 

building is in used, such as cannot be simply drilled holes or nails. Due to all the 

problems, none of these technologies was successfully available in the wider markets.  

 

Microencapsulation of OPCM has extensively developed to overcome the problem 

mentioned above. Other advantages of micro-encapsulated OPCM include the 

increased of surface area, which could increase the heat transfer. Incorporation of 

micro-encapsulated OPCM into building materials reported can reduce indoor 

temperature fluctuation (Shossig et al. 2005; Su et al., 2012) and do not need additional 

protection from destruction (Tyagi et al., 2011), but tend to be costly (Borreguero et al., 

2010a). In addition, the diameter of micro-encapsulated phase change material is same 

size with most of the building materials, which could be adversely affected the 

structure integrity (Norvell et al., 2013).  

 

Recently, studies focus on the development of shape-stabilised OPCM. Shape-

stabilised OPCM refer to the composite OPCM which retain a maximum percentage of 

OPCM in the pores of porous materials such as expanded graphite (EG) (Zhang et al., 

2013), graphene oxide (GO) (Li et al., 2013), carbon nanotube (CNT) (Wang et al., 

2009a), etc., and maintained the OPCM shape (no leakage) even above melting 

temperature of OPCM. This shape-stabilised OPCM materials have reported can 

improve thermal conductivity (Sari and Karaipekli, 2009; Wang et al., 2009a). 

Unfortunately, the study about incorporation of this material into building materials is 

scarce. In addition, preparation of shape-stabilised OPCM using EG, GO and CNT 

incur high cost, which make this system expansive, thus not practical and not 

economical for building applications.  Other porous material use for preparation of 

shape-stabilised OPCM is porous building materials including expanded clay (EC), 

expanded perlite (EP), expanded fly ash (EF), etc. However, different type of OPCM 

infiltrated into the porous building material has different melting and freezing 

properties. For example, OPCM based fatty acid will have strong interaction with 

porous building material due to the functional group (-COOH) in fatty acids, which 

will effect on increasing or decreasing the melting or freezing temperatures. 

 

Not all OPCM can be used as TES medium for building application. Among OPCM, 

paraffin (n-alkanes) is more preferred to be used as TES material especially for 

building applications (Zalba et al., 2003; Farid et al., 2004). This is because it offers a 

lot of advantages. The advantages of n-alkanes includes high latent heat of fusion, high 

density, congruent melting, small volume changes during phase transition, little or no 
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supercooling during freezing, chemical stability, low vapor pressure, non-corrosive, 

non-toxic, commercial availability, abundant and low cost (Dincer and Rosen, 2011; 

Zalba et al., 2003). Unfortunately, OPCM based n-alkanes suffer from liquid leakage 

during their phase change processes, low thermal conductivity which will leads to low 

and decreasing heat storage and discharge powers and flammable. This weakness will 

limit their application for TES medium (Farid et al., 2004).  

 

Considering the problems mentioned above, therefore various encapsulation 

technology should be explored.  Encapsulation of OPCM using the pores of activated 

carbon (AC) has a good promising for TES application. AC can be used as an 

alternative to EG, CNT and GO. AC can be produced from a variety of carbonaceous 

materials including agricultural waste (González-Garía et al., 2013) and industrial 

waste (Kong et al., 2013). AC is relatively cheap and easy to prepare compared to EG, 

CNT and GO. Therefore, the shape-stabilised OPCM/AC nanocomposite has a good 

future to be used as TES medium for building application. 

 

Recently, nanoencapsulation technology has attracted a lot of attention by researcher 

worldwide (Fang et al., 2014a). This technology is relatively new and able to produced 

novel phase change material. No report was found on the utilization of 

nanoencapsulated OPCM as TES medium on the building application. An ultra-small 

size of the nanocapsules (<1000 nm) could provide interesting thermo-physical and 

chemical properties. In addition, due to their ultra-small diameter, they can easily 

incorporate and penetrate into the matrix of building materials (Pasupathy et al., 2008). 

Due to the ultra-small diameter of the OPCM nanocapsules, the surface area to volume 

ratio is very high, therefore higher heat transfer speed.  

 

 

1.2 Problem Statements 

 

Recently, various encapsulated OPCM have been developed using both porous carbon-

based material and polymer. Among porous carbon-based material used as a 

framework to encapsulate OPCM are expanded graphite (EG) (Py et al., 2001; Sari and 

Karaipekli, 2009), graphene oxide (GO) (Mehrali et al., 2013a), graphene nanoplatelets 

(Mehrali et al., 2013b) and carbon nanotube (CNT) (Yu et al., 2014). Porous carbon-

based material offers a lot of advantages, such as low density, good thermal 

conductivity, chemical stability, well-defined pore structure, and high specific surface 

area. However, they are difficult to synthesis, therefore fairly expensive, thus not 

economical to be used for building applications.  

 

AC shows a promising property as porous carbon-based material framework for the 

preparation of shape-stabilised OPCM nanocomposite due to its easy to synthesis and 

low cost. However, the effectiveness of AC as porous carbon-based material depends 

on their pore size distribution, geometrical shape, network inner-connection and the 

functional groups on the internal surface (Zhang et al., 2007a). Nevertheless, these 

properties depend on the type of carbon precursor and activation method (González-

Garía et al., 2013). In addition, very limited study was reported on the use of AC as 

porous carbon-based material framework to encapsulate OPCM.  Previous studies 

indicate that they used commercial AC (Feng et al., 2011, Chen et al., 2012), which 

lack with the information regarding the carbon precursor and type of activation method 

used.  The information on the carbon precursor and type of activation method is 
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important in the preparation of a shape-stabilised OPCM/AC nanocomposite. This is 

because different type of carbon precursor and activation method could give different 

physico-chemical properties of the resulting AC, which later would affect the physico-

chemical and thermal properties of the shape-stabilised OCPM/AC nanocomposite. 

Furthermore, the study on shape-stabilised OPCM/AC nanocomposite as TES medium 

for building application has not yet reported. Therefore, the preparation of AC from 

tropical peat soil using physical and chemical activation method as porous carbon-

based material framework for preparation of shape-stabilised OPCM nanocomposite 

will be reported. Commercial AC was used as comparison. Then, the ability of the 

shape-stabilised OPCM nanocomposite obtained in maintaining internal building 

temperature will be also verified.  

 

On the other hand, the encapsulations of OPCM into micro-sized polymer shell have 

been frequently reported (Rahman et al., 2012; Qiu et al., 2014), however the works on 

the encapsulated OPCM into nano-sized polymer shell are still lacking. In addition, the 

encapsulation method that was developed previously was non-selective because the 

size of the capsules obtained is non-homogeneous composed of mixtures of micro- and 

nano-capsules (Sari et al., 2014a; Bayes-Garcia et al., 2010). Non-homogeneous 

particle size of the capsule is believed to later disturb the TES performance. In addition, 

some of the polymer materials which were previously used as capsules may exist 

ineluctable remnant formaldehyde, especially polymer-based melamine- and urea 

formaldehyde, which will cause health and environmental problems. These could limit 

their used, especially for building applications (Norvell et al., 2013).  

 

Encapsulation of OPCM into micro-sized (Micro-encapsulated OPCM) has been 

reported to be not effective to be used as TES medium when they are incorporated into 

building materials (Borreguero et al., 2014a).  Borreguero et al. (2014a) used 

commercial micro-encapsulated OPCM with the average particle size of 7.10 ± 2.32 

µm, and the latent heat of fusion was 116.20 ± 4.11 J/g to prepare gypsum composite 

board. The result obtained shows that the microcapsules were not completely melt thus 

given lower value of TES. In addition, most of the average particle sizes of the micro-

encapsulated OPCM are similar to the particle size of the building material. This could 

be adversely affects the structure integrity of the buildings (Norvell et al., 2013). 

Therefore, nano-encapsulated OPCM is more preferred. Due to the ultra-small 

diameter of the nanocapsules, the surface area to volume ratio is very high, therefore 

higher heat transfer speed, and can be easily incorporated and penetrated into the 

matrix of the building materials (Pasupathy et al., 2008) or other matrix such as textiles.  

 

The used of polystyrene (PSt) to encapsulate OPCM, based n-alkanes has been 

extensively discussed previously (Sánchez et al., 2007; Fang et al., 2013a). 

Nevertheless, to obtained encapsulated n-alkanes into nano-sized with high 

encapsulation efficiency is difficult, due to the fact that both n-alkanes and PSt have 

high hydrophobicity properties (Chen et al., 2012a). Therefore the designated styrene-

methyl methacrylate (St-MMA) copolymer shell is the way of compromised. Studies 

have shown that the n-alkanes have been successfully encapsulated into micro-sized 

capsules using St-MMA copolymer shell by suspension-like polymerization method 

(Sánchez-Silva et al., 2010). Combination of St and MMA at certain ratio will reduce 

the interfacial surface tension, which could overcome the hydrophobicity of PSt. 

Moreover, the higher solubility of MMA in water compared to St would improve the 

efficiency of n-alkanes encapsulation (Tiarks et al., 2001). In addition, the final 
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capsules morphology obtained is strongly dependent on the hydrophilicity and 

reactivity ratios between the monomers (Stubbs and Sundberg, 2008).  The use of 

MMA as the shell system of this study could improve the characteristic of n-alkanes 

capsules. However, the encapsulation of n-alkanes into nano-sized capsules using St-

MMA copolymer shells by one-step miniemulsion in-situ polymerization has not yet 

reported. The encapsulated OPCM into nano-sized polymer capsules could benefit in 

term of the increasing of the heat transfer rate of the n-alkanes as TES materials.  

 

 

1.3 Scope of study 
 

Previous study shows that porous carbon-based material and polymer are suitable to be 

used to encapsulate OPCM. Unfortunately, there are a lot of barriers, which make the 

encapsulated OPCM products either in the form of shape-stabilised or capsule fail to 

function as TES medium for building applications, due to expensive encapsulation 

processes, and therefore not economical to be used for building applications. Other 

barrier is the size of capsule, which fail to provide enough surface area, thus decrease 

the heat transfer rate during melting and freezing processes of OPCM due to poor heat 

transfer coefficients (poor conductivity) of OPCM.  Therefore this study was carried 

out to find out the way to reduce the barriers.  

 

The scope of this study is to prepare and characterize porous carbon-based material, 

which is AC derived from tropical peat soil to be used as frameworks to encapsulate 

OPCM. The AC was prepared using the physical and chemical activation methods. 

Different activation methods are expected could produce AC with different physico-

chemical properties. These properties would be very beneficial to study their physico-

chemical and thermal behavior of the OPCM, after they were infiltrated into the pores 

of AC. The commercial AC was also used as framework for comparison. n-Octadecane 

was used as OPCM throughout this study. The samples obtained from this study are 

known as shape-stabilised OPCM nanocomposites.  

 

Other scope of this study is to encapsulate OPCM into nano-sized styrene (St)-methyl 

methacrylate (MMA) copolymer shell. The parameters of polymerization processes; St 

to MMA mass ratio, shell to core mass ratio and shell to initiator mass ratio were 

extensively studied. Two different n-alkanes (n-octadecane and n-nonadecane) were 

used as a core. The study also covers the ability of polymerization method developed 

in this study (one-step miniemulsion in-situ polymerization) to encapsulate two n-

alkanes (n-octadecane and n-nonadecane) with different thermo-chemical properties. 

The term OPCM nanocapsules was used for OPCM encapsulated into nano-sized St-

MMA copolymers shells.  

 

The shape-stabilised OPCM nanocomposite and OPCM nanocapsules samples with 

high latent heat of fusion were chosen to develop the thermally regulated gypsum 

composite board (smart gypsum board). The thermal behaviour of the thermally 

gypsum composite boards was characterized using in-house method, which was 

developed for this study.  

 

The n-alkanes with C18 (n-octadecane) and C19 (n-nonadecane) were chosen as an 

OPCM because both n-alkanes are the most suitable n-alkanes used for building 
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industries application. This is because their melting temperatures are within the human 

comfort temperatures zone of 18-36 
o
C (Khosrojerdi and Mortazavi, 2013). 

 

 

1.4 Objectives 

 

The main objective of this study is to prepare novel nano-encapsulated OPCM based 

on shape-stabilised and core-shell nano-capsules materials with excellent physico-

chemical and thermal properties for thermal energy storage. The specific objectives are 

as listed below: 

 

1) to prepare and characterize activated carbon (AC) derived from peat soil using 

physical and chemical activation methods, to be used as porous carbon-based  

frameworks. 

2) to prepare and characterize shape-stabilised organic phase change materials 

(OPCM) using AC prepared in (1) by one-step impregnation method. 

3) to prepare and characterize shape-stabilised OPCM using commercial AC by 

one-step impregnation method as comparison with the shape-stabilised 

OPCM prepared in (2). 

4) to synthesis and characterize nano-encapsulated OPCM using styrene (St)-

methyl methacrylate (MMA) copolymer shell by one-step miniemulsion in-

situ polymerization method. 

5) to explore the physico-chemical behavior of the shape-stabilised OPCM and 

OPCM  nanocapsules incorporated with gypsum board. 

6) to investigate the thermal performance effect of thermally regulated gypsum 

composite board prepared in (5) in maintaining the internal building 

temperature.  
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