DETECTION, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF NANO SILVER AGAINST COCONUT YELLOW DECLINE PHYTOPLASMAS IN COCONUT AND ORNAMENTAL PALMS IN MALAYSIA

NEDA NADERALI

ITA 2015 7
DETECTION, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY
OF NANO SILVER AGAINST COCONUT YELLOW DECLINE
PHYTOPLASMAS IN COCONUT AND ORNAMENTAL
PALMS IN MALAYSIA

By

NEDA NADERALI

Thesis Submitted to the School of Graduated Studies, Universiti Putra Malaysia
In Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

DETECTION, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF NANO SILVER AGAINST COCONUT YELLOW DECLINE PHYTOPLASMAS IN COCONUT AND ORNAMENTAL PALMS IN MALAYSIA

By

NEDA NADERALI

August 2015

Chairman : Associate Professor Ganesan Vadmalai, PhD
Institute : Institute of Tropical Agriculture

Phytoplasmas are prokaryotes within the class Mollicutes and have been associated with over 700 diseases in different plant species including agricultural crops and ornamentals universally. Detection and characterization of phytoplasmas are very difficult because of the inability to culture them in vitro. They inhabit the phloem tissue of plants at a very low concentration especially in woody monocotyledonous plant hosts. Symptoms such as yellowing of fronds particularly older leaves which eventually turned brown, the crown inflorescence yellowing, stunting and decline in growth. Popular evergreen ornamental palms which are infected by phytoplasma not only lose their green and vivid appearance but they harbour this pathogen as a source for next infection. Yellowing symptoms similar to coconut yellow decline phytoplasma disease have been observed on ornamental palms in Selangor, Malaysia. Extracted DNA was amplified from 15 symptomatic lipstick palms (Cyrtostachys renda), 15 foxtail palms (Wodyetia bifurcate), 15 royal palms (Roystonea regia) and 13 Red Coconut (MRD) palms (Cocos nucifera) by PCR using phytoplasma universal primer pair P1/P7 followed by R16F2n/ R16R2. Phytoplasma presence was confirmed and a 1250 bp product of 34 positive samples (12 of 15 symptomatic foxtail palms, 10 of 15 symptomatic lipstick palms and 12 of 15 symptomatic royal palms) was cloned and sequenced. R16F2n/ R16R2 is a specific primer for phytoplasma detection and a PCR product of approximately 1250 bp should be amplified using this primer. Sequence analysis indicated that the phytoplasmas associated with yellow disease on ornamental palms were belonging to 16SrI 'Candidatus Phytoplasma asteris' and 16SrXIV 'Candidatus Phytoplasma cynodontis' groups with accession numbers: KC924727 & KC924728 for lipstick phytoplasma, KF803561 for royal phytoplasma, KC751560 & KC751561 for foxtail phytoplasma). Virtual RFLP analysis of the resulting profiles revealed that these palm-infecting phytoplasmas belonged to a subgroup most similar to 16SrI-B subgroup and a possibly new 16SrI-subgroup. In addition, because of low concentration of phytoplasma in coconut palm a real-time PCR assay with 16SCYD primer (specific primer for 16SrXIV group) was applied for sensitive detection of yellow decline phytoplasma in Malayan red coconut palms (MRD). Periwinkle phytoplasma was used as the reference gene for real-time PCR. The results revealed that this method is useful for sensitive detection of low titer phytoplasma in woody
plants such as MRD coconut palms in comparison with nested-PCR. An antimicrobial activity of nano silver was tested against phytoplasma in yellow coconut palms and resulted in a significant reduction of phytoplasma concentration within five months of nano silver injection. Nano silver antimicrobial activity analysis with real-time PCR yielded a significant fluorescence signal (P<0.05). The results of SQ values were consistent with Ct values and concentration of CYD phytoplasma was decreased after applying nano silver (from 11.00 to 30.00 ng/μl). The values showed that, after applying nano silver, the concentration of the pathogen was decreased. This reduction was significant.
Phytoplasmas adalah prokariot dalam kelas Mollicutes dan telah dikaikkan dengan lebih 700 penyakit dalam spesis tumbuhan yang berbeza termasuk tanaman pertanian dan hiasan secara universal. Pengesanan dan pencirian phytoplasmas sangat sukar kerana tidak boleh di kultur dalam vitro. Phytoplasma mendiami tisu floem tumbuhan pada kepekatan yang sangat rendah terutama di perumah tumbuhan monokot berbak. Simptom seperti kekuningan daun terutamanya daun tua yang akhirnya bertukar coklat, crown yang menguning dan berkembang, terbantut dan penurunan dalam pertumbuhan. Pokok kelapa hiasan malar hijau popular yang dijangkiti phytoplasma bukan sahaja kehilangan penampil hijau yang jelas tetapi mereka menyimpan patogen ini sebagai sumber untuk jangkitan seterusnya. Simptom kuning serupa dengan kelapa kuning penyakit komerosotan phytoplasma telah diperhatikan pada pokok kelapa hiasan di Selangor, Malaysia. DNA yang telah diekstrak daripada 15 pokok kelapa lipstick (Cyrtostachys renda), 15 pokok kelapa foxtail (Wodyetia bifurcata), 15 pokok kelapa royal (Roystonea regia) dan 13 pokok kelapa (Cocos nucifera) Red Coconut (MRD) telah diamplifikasi oleh PCR menggunakan phytoplasma pasangan primer universal P1/P7 diikuti oleh R16F2n/R16R2. Kehadiran Phytoplasma telah disahkan dan produk 1250 bp dariapai 34 sampel positif (12 daripada 15 pokok kelapa foxtail dengan simptom, 10 daripada 15 pokok kelapa lipstick dengan simptom dan 12 daripada 15 pokok kelapa royal dengan simptom) telah dikenal dan disusun. R16F2n/R16R2 adalah spesifik primer untuk mengesan phytoplasma dan produk PCR kira-kira 1250 bp harus diamplifikasi menggunakan primer spesifik ini. Analisis jujukan menunjukkan bahawa phytoplasmas dikaikkan dengan penyakit kuning pada pokok kelapa hiasan adalah dimiliki oleh 16SrI 'Candidatus Phytoplasma Asteris' dan kumpulan 16SrXIV 'Candidatus Phytoplasma cynodontis' dengan nombor kesertaan: KC924727 & KC924728 untuk lipstick phytoplasma, KF803561 untuk royal phytoplasma, KC751560 & KC751561 untuk foxtail phytoplasma). Analisis RFLP mayo profil mendedahkan bahawa phytoplasmas yang menjangkiti pokok kelapa tersebut dipunyai oleh kumpulan kecil yang paling serupa dengan 16SrI-B kumpulan kecil dan mungkin 16SrI kumpulan kecil baru. Di samping itu, kerana kepekatan phytoplasma yang rendah di dalam pokok kelapa, ‘real-time’ PCR dengan 16SCYD primer (primer khusus untuk kumpulan 16SrXIV) telah digunakan untuk pengesanan.
sensitif simptom kuning penurunan phytoplasma di pokok kelapa merah Malaya (MRD). Phytoplasma periwinkle telah digunakan sebagai gen rujukan untuk ‘real-time’ PCR. Hasil kajian menunjukkan bahawa kaedah ini amat berguna untuk pengesan sensitif phytoplasma titer rendah dalam tumbuhan berkayu seperti pokok kelapa MRD bandingan dengan ‘nested’-PCR. Aktiviti antimikrob nanosilver telah diuji terhadap phytoplasma di pokok kelapa kuning dan mengakibatkan pengurangan ketara kepekatan phytoplasma dalam tempoh lima bulan suntikan nano silver. Nano silver analisis aktiviti antimikrob dengan ‘real-time’ PCR menghasilkan isyarat pendarfluor ketara (P < 0.05). Keputusan nilai SQ adalah selaras dengan nilai-nilai Ct dan kepekatan CYD phytoplasma telah menurun selepas menggunakan nano silver (dari 11.00-30.00 ng/ul). Nilai ini menunjukkan bahawa, selepas menggunakan nano silver, kepekatan patogen telah berkurangan. Pengurangan ini adalah penting.
ACKNOWLEDGMENTS

I would like to express my gratitude towards all who helped me make this thesis possible. First of all, I would like to thank my supervisor, Assoc Prof. Dr. Ganesan Vadmalalai for all his guidance and patience through the doctoral program. His friendship and good advice have been invaluable to me during the hard times. I am extremely grateful for his support in my academic life. I also wish to thank my co-supervisors, Dr. Kong Lih Ling and Assoc Prof. Dr. Jugah Kadir, who gave me the opportunity to learn from their subtle vision. Their encouragement and support not only gave me confidence but also helped me gain insight on how to approach challenging research problems. Special thanks to Dr. Naghmeh Nejat and Assoc Prof. Dr. Tan Yee How, as my advisors, for their time and helpful suggestions. I would like to express my warm respects towards them both.

I acknowledge the academic and technical support provided by the Universiti Putra Malaysia (UPM) and Institute of Tropical Agriculture (ITA). My fellow postgraduate friends at ITA lab, Sathis, Anis, Faizah and Roslina, provided a welcoming collaborative environment. They always cheered me on and made my life so joyful. My deepest heartfelt thanks to M. Saeed Pourtahmasb for always supporting me and always being there for me. Finally I have to thank my family, my dad who has always been my academic role model and my mum who is my real life role model. I thank them for believing in me and for their endless love and support. I would not be the person I am today without them. Above all I wish to thank the almighty God for his guidance in life and giving me the opportunity to pursue my degree.
I certify that a Thesis Examination Committee has met on 4 August 2015 to conduct the final examination of Neda Naderali on her thesis entitled "Detection, Characterization and Antimicrobial Activity of Nano Silver against Coconut Yellow Decline Phytoplasmas in Coconut and Ornamental Palms in Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Wong Mui Yun, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Kamaruzaman Sijam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Lau Wei Hong, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Jeffrey B. Jones, PhD
Professor
University of Florida
United States of America
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follow:

Ganesan Vadamalai, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Jugah Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Kong Lih Ling, PhD
Senior Lecturer
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: _________________

Name and Matric No.: Neda Naderali GS33264
Declaration by Members of Supervisory committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________ Signature: ____________________________
Name of Chairman of
Supervisory Committee: Ganesan Vadmalai, PhD

Name of Member of
Supervisory Committee: Jugah Kadir, PhD

Signature: ____________________________
Name of Member of
Supervisory Committee: Kong Lih Ling, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **GENERAL INTRODUCTION**

1.1 Objectives of study

2 **LITERATURE REVIEW**

2.1 Palms (Palmae)

2.1.1 Coconut and ornamentals palms

2.1.1.1 Coconut palm (Cocos nucifera) profile

2.1.1.2 Royal palm (Roystonea regia) profile

2.1.1.3 Foxtail palm (Wodyetia bifurcata) profile

2.1.1.4 Lipstick palm (Cyrtostachys renda) profile

2.1.2 Importance of palms

2.2 Phytoplasmas

2.2.1 General characteristics of phytoplasma

2.2.2 Phytoplasma discovery

2.2.3 Genome characteristics of phytoplasma

2.2.4 Classification and diagnosis of phytoplasma

2.2.4.1 Molecular methods

2.2.4.2 Biological methods

2.2.4.3 Microscopic techniques

2.2.4.4 Serology-based techniques

2.2.4.5 DNA-based techniques

2.3 Phytoplasmas transmission (movement between and within plants)

2.3.1 Phytoplasma associations- plants and insects

2.3.2 Transmission of phytoplasma

2.3.3 Phytoplasma symptoms expression

2.3.4 Phytoplasma general symptoms

2.4 Diseases of Phytoplasma

2.4.1 Phytoplasma associated with yellow diseases

2.4.2 Phytoplasma dispersal

2.5 Control and management of phytoplasma associated diseases

2.5.1 Nano silver
3 DETECTION OF PHYTOPLASMA ASSOCIATED WITH YELLOW DECLINE OF ORNAMENTAL PALMS BY NESTED PCR AND SEQUENCING

3.1 Introduction 16
3.2 Materials and methods 16
 3.2.1 Sample collection 16
 3.2.2 Nucleic acid Extraction 19
 3.2.3 PCR primers 20
 3.2.4 Polymerase Chain Reaction amplification 21
 3.2.5 Agarose gel electrophoresis 21
 3.2.6 Staining of agarose gels 21
 3.2.7 Cloning of PCR products 21
 3.2.7.1 Purification of PCR products 21
 3.2.7.2 Ligation of DNA into cloning vector 22
 3.2.7.3 Selection of bacterial colonies with recombinant plasmids 22
 3.2.7.4 Mini-preparation of cloned plasmid 22
 3.2.8 Analysis of plasmid insert with EcoRI 23
 3.2.9 Sequence analysis 23
3.3 Results 23
 3.3.1 PCR assays 23
 3.3.1.1 Detection of phytoplasma associated with yellow decline infected Foxtail palms using Nested-PCR 21
 3.3.1.2 Detection of phytoplasma associated with yellow decline infected Lipstick palms using Nested-PCR 25
 3.3.1.3 Detection of phytoplasma associated with yellow decline infected Royal palms using Nested-PCR 26
 3.3.1.4 Detection of phytoplasma associated with yellow decline in selected palm samples using fU5/rU3 primer 27
 3.3.2 Cloning and analysis of plasmid insert with EcoRI 28
 3.3.3 Sequence analysis 29
3.4 Discussion 30
3.5 Conclusion 31

4 CLASSIFICATION OF THE PHYTOPLASMA ASSOCIATED WITH YELLOW DECLINE DISEASE OF ORNAMENTAL PALMS BY VIRTUAL RFLP

4.1 Introduction 32
4.2 Materials and methods 32
 4.2.1 Sequence analysis for phylogenetic tree 32
 4.2.2 In silico restriction digestion and virtual gel plotting 33
4.3 Results 33
 4.3.1 Phylogenetic tree analysis 33
 4.3.2 Virtual RFLP analysis 39
4.4 Discussion 44
4.5 Conclusion 45
5 REAL-TIME PCR ASSAY FOR SENSITIVE DETECTION OF YELLOW DECLINE PHYTOPLASMA IN COCONUT PALMS

5.1 Introduction
5.2 Materials and Methods
 5.2.1 Source of phytoplasma for real-time PCR assay
 5.2.2 Nucleic acid extraction
 5.2.3 PCR assay
 5.2.4 Real-time PCR primers
 5.2.5 Preparation of plasmids
 5.2.6 Real-time PCR condition
5.3 Results
 5.3.1 PCR assays
 5.3.2 Real-time PCR assays
 5.3.3 Determination of plasmid’s concentration
5.4 Discussion
5.5 Conclusion

6 NANO SILVER ACTIVITY TO CONTROL YELLOW DECLINE PHYTOPLASMA IN COCONUT PALMS

6.1 Introduction
6.2 Material and Methods
 6.2.1 Sample selection
 6.2.2 Nano silver preparation and application
 6.2.3 DNA extraction
 6.2.4 Real-time PCR assay for treated and non-treated Coconuts
 6.2.5 Data analysis
6.3 Results
 6.3.1 Real-time PCR analysis for Nano silver antimicrobial activity
6.4 Discussion
6.5 Conclusion

7 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 Summary
7.2 Conclusion
7.3 Recommendations for future research

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Standard and Nested PCR primers</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>phytoplasma strains used in this study to construct the foxtail palms phylogenetic tree</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>phytoplasma strains used in this study to construct the lipstick palms phylogenetic tree</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>phytoplasma 16S sequences used in this study to construct royal palms phylogenetic tree</td>
<td>38</td>
</tr>
<tr>
<td>5.1</td>
<td>Oligonucleotide primers for phytoplasma used in this study</td>
<td>48</td>
</tr>
<tr>
<td>5.2</td>
<td>Real-time PCR results from phytoplasma infected samples compare to nested-PCR</td>
<td>51</td>
</tr>
<tr>
<td>6.1</td>
<td>Phytoplasma concentrations in nanosilver treated coconut palm trees during five months using real-time PCR.</td>
<td>61</td>
</tr>
<tr>
<td>6.2</td>
<td>Mean of CYD phytoplasma titre (ng/µl) in nanosilver treated palms within different months</td>
<td>62</td>
</tr>
<tr>
<td>6.3</td>
<td>Mean of CYD phytoplasma variants accumulation (ng/µl) by month interval</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Phytoplasma in plant cell. A section of phloem tissue from a phytoplasma infected plant vascular bundle. (http://www.nature.com/nrmicro/journal)</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. (http://kodomo.cmm.msu.ru/~ksenia_yashina/)</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Pleomorphic phytoplasmas in sieve tubes. Phytoplasmas multiply in the sieve tubes of phloem and circulate through the sieve pores. (http://www.international.inra.fr/research/some_examples/a_national_collection_of_phloem_bacteria)</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>The Wodyetia bifurcate palm tree. A) Healthy Foxtail palm tree. B) Yellowing of lower leaves and older fronds spreading to the younger ones and crown leaves. C) Decline in growth.</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>The Cyrtostachys renda palm tree. A) Healthy lipstick palm tree. B) Lipstick palm tree, showing yellowing and small leaves on the branches. C) Decline in growth. D) Necrosis and leaf death.</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>The Roystonea regia palm tree. A) Healthy royal palm tree. B) Showing decline in growth. C) Symptoms of infected royal palm tree by phytoplasma, yellowing of leaves and crown fronds. D) Immature nut falls.</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>Amplification of infected ornamental palms samples with P1/P7 primers. Lanes (Lad) 1kb DNA ladder; (LY1, 2, 3, RY1, 2, FY1) phytoplasma yellow decline infected samples; (Peri) periwinkle aster yellows phytoplasma infected sample.</td>
<td>24</td>
</tr>
<tr>
<td>3.5</td>
<td>Nested PCR product (1250bp) of phytoplasma 16S rDNA on foxtail palms amplified with primer pair R16F2n/R16R2. Lanes (Lad) 1kb DNA ladder; (Peri) periwinkle aster yellows phytoplasma infected sample; (H) healthy foxtail palm sample; (FY1, 2, 3, 4, 5) Foxtail palm yellow decline infected sample.</td>
<td>25</td>
</tr>
<tr>
<td>3.6</td>
<td>Nested PCR product (1250bp) of phytoplasma 16S rDNA on Lipstick palms amplified with primer pair R16F2n/R16R2. Lanes (Lad) 1kb DNA ladder; (Peri) periwinkle aster yellows phytoplasma infected sample; (H) healthy Lipstick palm sample; (LY1, 2, 3, 4, 5) Lipstick palm yellow decline infected sample.</td>
<td>26</td>
</tr>
</tbody>
</table>
3.7 Nested PCR product (1250bp) of phytoplasma 16S rDNA on Royal palms amplified with primer pair R16F2n/R16R2. A) Lanes (Lad) 1kb DNA ladder; (Peri) periwinkle aster yellows phytoplasma infected sample; (H) healthy Royal palm sample; (RY1, 2, 3, 4, 5, 6) Royal palm yellow decline infected samples. B) Lanes (Lad) 1kb DNA ladder; (RY7-12) Royal palm yellow decline infected samples.

3.8 Nested PCR product (850 bp) of phytoplasma 16S rDNA on ornamental palms amplified with primer pair fU5/rU3. Lanes (Lad) 1kb DNA ladder; (1) infected lipstick palm sample; (H) Healthy lipstick palm sample; (2) phytoplasma infected foxtail palm sample (Randomly selected out of 15 infected samples).

3.9 Recombinant plasmid DNA digested with restriction endonuclease EcoRI to confirm the presence of insert (~ 500 bp and ~750 bp). A) Lanes (Lad) 1kb DNA ladder; (1, 2, 3, 4, 5, 6) royal palm plasmid DNA; (7, 8) foxtail palm plasmid DNA. B) Lanes (1, 2, 3, 4) foxtail palm plasmid DNA; (5, 6, 7, 8, 9) lipstick palm plasmid DNA (randomly selected out of 34 samples).

4.1 Phylogenetic tree derived from the 16S rDNA sequences of Foxtail palm phytoplasma and 35 other phytoplasma strains. Neighbor joining method in MEGA4 software was used for data analysis. Bootstrap analysis 1000 replications, and a distance of 0.01 substitutions per nucleotide site was displayed by the scale bar.

4.2 Phylogenetic tree constructed from analysis of Lipstick palm 16S rDNA F2n/R2 fragments by neighbour-joining method using MEGA4. The reliability of the analysis was subjected to a bootstrap test with 1000 replicates. The phytoplasma strains used in the phylogenetic tree building included phytoplasmas from our study and type strains of 16SrI subgroups.

4.3 Phylogenetic tree inferred from the 16S rDNA sequences of the current study phytoplasma (RYD) and other 28 phytoplasma strains. Analysis was conducted using neighbor joining method in MEGA4. Bootstrap replicates were 1000 times, and the scale bar displayed a distance of 0.01 substitutions per nucleotide site.

4.4 F2nr2 fragments from foxtail palms, isolate 1 (KC751561) digested by 8 restriction enzymes AluI, EcoRI, HhaI, HinfI, Hpal, KpnI, Sau3A1 and MboI, and displayed the virtual RFLP patterns that indicated current isolate from representative strains of phytoplasmas is a member of previously described subgroups in group 16SrI (16SrI-B).
4.5 Virtual RFLP patterns derived from in silico digested F2nR2 fragments of foxtail palms, isolate 2 (KC751560) by 8 restriction enzymes AluI, EcoRI, HhaI, Hinfl, Hpall, KpnI, Sau3AI and MboI. This isolate from representative strains of phytoplasmas belonging to previously delineated subgroups in group 16SrXIV (16rXIV-A).

4.6 Virtual RFLP patterns derived from in silico digested F2nR2 fragments of Lipstick phytoplasma. (A) isolate 1 (KC924727) digested by 17 restriction enzymes AluI, BamHI, BfdI, BstUI (ThaI), DraI, EcoRI, HaeIII, Hhal, Hinfl, Hpal, Hpal II, KpnI, Sau3AI, MboI, MseI, RsaI, SspI, and TaqI. (B). Unique restriction patterns by digestion of 16S rDNA with Sau3AI, differentiating LYF, isolate 2 (KC924728) from representative strains of phytoplasmas belonging to previously delineated subgroups in group 16SrI.

4.7 Virtual RFLP profiles of royal palm yellow decline phytoplasma. (A) 17 restriction enzymes AluI, BamHI, BfdI, BstUI (ThaI), DraI, EcoRI, HaeIII, Hhal, Hinfl, Hpal, Hpal II, KpnI, Sau3AI (MboI), MseI, RsaI, SspI, and TaqI were used to create the virtual RFLP patterns of F2nR2 fragments of royal palm yellow decline phytoplasma (RYD). (B) Differentiation between RYD phytoplasma from representative strains of previously delineated 16SrI subgroups by Hinfl restriction enzyme which illustrated a unique profile. MW: ϕX174DNA-HaeIII digests. pn: potentially new subgroup.

5.1 yellowing of lowermost fronds. B) inflorescence necrosis. C) foliar discoloration on the mid-crown leaves. D) premature shedding of most fruits. E) healthy coconut palm seedlings.

5.2 Faint nested PCR product band (1250bp) of phytoplasma 16S rDNA on coconut palms amplified with primer pair R16F2n/R16R2. A) Lane (1) healthy coconut palm sample; (2, 3) coconut palm yellow decline infected sample. B) Lane (4) WLBG positive control sample; (5, 6, 7) red type coconut palm yellow decline infected samples.

5.3 Ethidium bromide-stained gel of real-time PCR. Amplification of Real-time PCR products with 16SCYDf/r primer. Lanes (Lad) DNA ladder mix; (1-9) MRD coconut infected by phytoplasma yellow decline.

5.4 Sample quality using NanoDrop. A) low concentration phytoplasma DNA sample 158.2 ng/μL. B) High concentration phytoplasma plasmid sample 349 ng/μL.

5.5 Amplification profile of real-time PCR assay. A, B) Standard curve with 10-fold serial dilutions of plasmid to determine the concentration of DNA template from MRD coconut ecotypes displaying yellow decline phytoplasma symptoms. (Cq) is quantification cycle and the correlation coefficient was 0.996, and the slopes were -3.34.

6.1 The CYD disease symptoms in coconut palm trees. A,B) Yellowing
symptoms on coconut palm fronds and inflorescence tissue. C) Decline in growth.

6.2 Silver nano particles (100nm). A,B) Silver nano powder is divided into 15 ml tubes. C) The injector with the capacity of 1ml per inject.

6.3 Steps in preparing the infected coconut palm tree for injection. A, B, C, D) a 0.80cm wide and 1cm depth diameter hole was made on the frond’s midrib and stem of the plant by using a cork borer. E, F) using a shovel to make a hole in soil, around the root area.

6.4 Steps in injecting the nanosilver to phytoplasma infected coconut trees. A-F) Using an injector to shoot the nanosilver solution into the plant tissue. G, H, I) The injection area was wrapped and covered with parafilm.

6.5 Concentration level of CYD phytoplasma represented by Ct values and significant differences between means within five months of nanosilver injection.
LIST OF ABBREVIATIONS

Bp basepair
CTAB Cetyltrimethyl-ammonium bromide
CYD C oconut yellow decline
dNTP Deoxyribonucleotides (Datp, DCTP, DGTP, DTTP)
EDTA Ethylene diaminetetraacetic acid, disodium salt
gr Gram
h Hour
Kb kilobase
Min Minute
MLO mycoplasmalike organism
MRD Malayan red dwarf
MT Malayan tall
MYD Malayan yellow dwarf
µl Microliter
PCR polymerase chain reaction
PVP Polyvinylpyrrolidone
RFLP Restriction fragment length polymorphism
rDNA Ribosomal DNA gene
rRNA Ribosomal RNA
Sec Second
UV Ultraviolet
V Voltage
W/V Weight/volume
X-Gal 5-bromo-4-chloro-3-indolyl β-D- galactopyranoside
CHAPTER I

INTRODUCTION

Phytoplasmas are prokaryotes from the class *Mollicutes*, which have branched off from gram-positive bacteria (Hogenhout *et al*., 2008). Phytoplasmas have been associated with many diseases in different plant species containing agricultural crops and ornamentals universally (Lee and Davis, 2000). In Malaysia, phytoplasma have been reported to cause coconut yellow decline disease (CYD) in coconut palms. Symptoms of CYD include yellowing of fronds particularly older leaves which eventually turned brown, gradual collapse of older fronds, the crown inflorescence yellowing, stunting and decline in growth. CYD is important disease of coconut in Malaysia. Destruction of a population of susceptible coconut palms is important over the world therefore economic loss is very important and valuable. In Malaysia there were no reports of phytoplasma host range except coconut palm and periwinkle. Similar symptoms of CYD have been observed on ornamental palms in Malaysia. Popular evergreen ornamental palms which are infected by phytoplasma not only lose their green and vivid appearance as decorative and landscape used trees, but they also can harbor this pathogen as a source for next infection.

Therefore, detecting and characterization of phytoplasma associated with yellow disease on ornamental palms is important to determine the host range and its role as an alternate host for the CYD phytoplasma. Phytoplasmas detection and characterization is a troublesome procedure because of the inability to culture them *in vitro*. They reside in the phloem tissue of host plants at a very low concentration especially in woody plant hosts (Weintraub and Beanland, 2006). Conventional polymerase chain reaction (PCR), sequence analysis of PCR-amplified products, restriction fragment length polymorphism (RFLP) and virtual RFLP analysis of 16Sr DNA sequences are useful methods for detection, identification and classification of groups and subgroups of phytoplasmas (Zhao *et al*., 2009; Nejat and Vadamalai, 2013). At present, control of phytoplasma is carried out by applying compounds and antibiotics in several ways (spraying, root absorption and scion dipping), and at different concentrations, number and timing of treatments. Four antibiotics that have been tested (tetracycline, oxytetracycline, streptomycin, erythromycin A) were all capable of delaying the symptom appearance and phytoplasma multiplication although not active in blocking phytoplasma infection (Mcmanus *et al*., 2002).

However, the lack of finding of a totally active antibiotic together with the difficulty of culturing these pathogens outside their host still remains a major concern to formulate a disease management strategy of phytoplasma specially in palms. Recently, Nanoparticles have been applied as a special group of materials with unique features and extensive in diverse fields (Matei *et al*., 2008). Also, there is no report of applying silver nanoparticles against phytoplasmas which could be an alternative control method against plant pathogenic phytoplasmas. The yellowing symptoms on fronds and inflorescence have been reduced by the application of nanosilver. In addition, nanosize materials are used in small amounts in compare to other antimicrobial agents which could be economically beneficial.
OBJECTIVES

1. To detect phytoplasma from coconut and ornamental palms showing yellowing symptoms by standard and nested PCR.
2. To classify and identify of the phytoplasmas associated with disease of ornamental palm in Malaysia based on analysis of 16S rRNA sequence and RFLP.
3. To apply real-time PCR assay for sensitive detection of yellow decline phytoplasma in red coconut palms (MRD).
4. To study the nano silver antimicrobial activity on phytoplasmas associated with disease of coconut palm in Malaysia using real-time PCR.

THE HYPOTHESIS

1. Phytoplasmas are associated with yellow decline disease of ornamental and coconut palms in Malaysia
2. Silver nanoparticles are able to control plant pathogenic phytoplasmas.

Hiruki, C. 1999. Paulownia witches-broom disease important in Asia. ISHA Acta Horticulturae 495, 63-68

Jomantiene, R., Davis, R.E., Maas, J., and Dally, E.L. 1998. Classification of new phytoplasmas associated with disease of strawberry in Florida, based on

Jung, H.Y., Sawayanagi, T., Kakizawa, S., Nishigawa, H., Wei, W., Oshima, K., Miyata, S., Ugaki, M., Hibi, T. and Namba, S. 2003a DQQLGDWXV SK\WRSODVPDĮL]\LSKLĮDQRYHO SK\WRSODVPD WD[QR DVVRFLDWHG ZLWK ZLWFK.]

Lee, I.-M., Zhao, Y., Bottner, K. D. 2005. Novel insertion sequence-like elements in phytoplasma strain of the aster yellows group are putative new members of the IS3 family. FEMS microbiology letters 242, 353-360.

Nejat, N, Vadamalai, G, Davis, RE, Harrison, NA, Sijam, K., Dickinson, M., Abdullah, S.N.A & Zhao, Y. 2013&

Razin, S., D <RHY DQG <1DRW §OROHXODU ELRORJ\DQG SDWKRIHQLFSLW\RI PFRSODVPDV-0FLURELORJ\DQG0R0HFXODU%LRORJ\SILHZVYROQR pp. 1094–1156.

TranNguyen, L.T.T., Kube, M., Schneider, B., Reinhardt, R. And Gibb, K.S. 2008. &RPSDUDWLHYHQRPH DQDO\VLV RI\&DQGLGDWXV 3KWRSOL DXVWUDOLHQH-V\XEYRS\WXI; rp-A) DQG\&D 3KWRSODVPD DVWHULV-WV\DXRQXY<WB. J. Bacteriol. 190, 3979–3991.

