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Drought is an insidious natural hazard that imposes serious challenges to agricultural 

activities in the world. It causes losses of major food crops, interfering food chains 

and losses of world economic worth of million dollars every year. In Malaysia, 

climate change such has El Nino has become a major problem that gives negative 

impact to environment. El Nino has an ability to bring worst drought phenomena. 

Apart from that, even though Malaysia receives an average rainfall of 2000 mm 

annually, there are certain areas still have low amount of rainfall such as Kedah and 

Perlis. The low rainfall period can prolong up to two to three months. Thus, it may 

give negative impacts to oil palm (Elaeis guineensis Jacq.) plantation, because 

adequate water is essential for healthy growth and maximum performance of oil 

palm seedlings. Therefore, this study was conducted to determine physiological and 

molecular changes of oil palm seedlings in response to different severity of drought 

stress. To achieve the objective, a study that links the symptoms under different 

drought severity with physiological and molecular responses was carried out. Five 

durations of drought treatments (7, 14, 21, 28, 35 days of water withholding; DWW) 

were given to 5-month-old seedlings. The necrosis, chlorosis and burned symptoms 

started to appear in seedling leaves at 21 DWW (severe drought). However, the leaf 

physiological data showed photosynthetic rate (A), stomatal conductance (gs) and 

transpiration rate (E) started to decrease earlier as at 7 DWW (mild drought) before 

any stress morphological symptoms in leaves were established. Drought-responsive 

element binding 1 (DREB1) belongs to AP2 superfamily of plant specific 

transcription factor (TF). Early accumulation of the oil palm EgDREB1 transcript 

(>1-fold) in roots might be associated with signaling pathway; while the significant 

up-regulation of EgDREB1 in leaves under severe drought corresponded to the high 

peroxidase (POD) antioxidant gene expression in roots. Catalase (CAT), superoxide 

dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) 

antioxidant genes which were highly up-regulated under moderate drought in leaves 

may be involved in scavenging reactive oxygen species (ROS) and ensuring water 

balance in this tissue. The ethylene responsive binding protein (EREBP), late 

embryogenesis abundant (LEA), dehydrin (DHN), cold-induced (CI), heat shock 
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protein 70 (HSP70) and metallothionein type 2 (MET2) were differentially up-

regulated in the leaves, while in roots only the LEA protein genes (LEA and DHN) 

were up-regulated. The diminishing total chlorophyll (chl) content and the ratio of 

chla to chlb (chla:chlb) were significantly observed (P<0.05). The significant reduction 

of chla was closely related to the deficiency of photosystem II (PSII). The proline 

content increased gradually in both vegetative tissues, while the total soluble protein 

content was affected by increasing drought severity. The activity of the antioxidant 

enzyme, catalase (CAT; EC 1.11.1.6) was the highest in the root under severe 

drought stress, while guaicol peroxidase (POD; EC 1.11.1.7) activity was shown to 

be the highest in the leaves under mild drought stress. The full amino acid sequence 

of the EgDREB1 was more closely related to the dicot NtDREB2. The subcellular 

localization, in vivo and in vitro DNA-protein binding assays further confirmed the 

function of EgDREB1 protein as a transcription factor (TF). Functional analysis was 

carried out in tomato by over-expressing EgDREB1, driven by a constitutive double 

cauliflower mosaic virus 35S promoter. The in vitro T0 transgenic plants showed 

slower growth and dwarf phenotype under controlled conditions (24ºC), and they 

produced parthenocarpic fruits and fruits with reduced seed numbers when grown in 

the transgenic greenhouse at ambient temperature (28-30ºC) with direct sunlight even 

though they recovered from dwarfism symptom. Expression of EgDREB1 was high 

in all transgenic fruits, but not detected in the leaves and roots. The expression of 

ethylene-responsive genes (LeACS, LeACO and LeAP2), jasmonate-responsive genes 

(LeAOS and LeAOC), auxin-responsive genes (LeARF8 and LeAux/IAA), cytokinin-

responsive genes (LeSlCKXI and LeSlIPT1), GA-responsive gene (LeGA2ox2 and 

LeGA20ox4) and ABA-responsive gene (LeAAO) was regulated in a different manner 

between the seedless and low seed number phenotypes. This suggests the complex 

interplay between the different phytohormones in contributing to the abnormal fruit 

phenotype. EgDREB1 transgene and endogenous SRGs like LePOD, LeAPX, LeGP, 

LeCAT, LeHSP70, LeLEA, LeMET2, LePCS, LeSOD, LeGR, LeAAO and LeECD 

were up-regulated in all seedlings of T1 transgenic progeny under polyethylene 

glycol (PEG) treatment and cold stress (4ºC). Hence, based on these findings, 

EgDREB1 might be involved in fruit and seed development, leaves formation, 

internodes elongation and adaptation to drought and cold stress. 
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Kemarau adalah bencana alam berbahaya yang memberikan cabaran serius kepada 

aktiviti pertanian di dunia. Ia menyebabkan kehilangan tanaman makanan utama, 

mengganggu rantaian makanan dan kerugian ekonomi dunia sebanyak jutaan dolar 

setiap tahun. Di Malaysia, perubahan iklim seperti El Nino telah menjadi masalah 

utama yang memberi kesan negatif kepada alam sekitar. El Nino mempunyai 

keupayaan untuk membawa fenomena kemarau paling teruk. Selain itu, walaupun 

Malaysia menerima purata hujan 2000 mm setahun, terdapat kawasan tertentu masih 

menerima jumlah hujan sukatan terendah seperti Kedah dan Perlis. Tempoh kadar 

hujan yang rendah boleh berpanjangan sehingga dua hingga tiga bulan. Oleh itu, ia 

boleh memberi kesan negatif kepada penanaman kelapa sawit (Elaeis guineensis 

Jacq.), kerana air yang mencukupi adalah penting untuk pertumbuhan yang sihat dan 

prestasi maksimum benih kelapa sawit. Dengan itu, kajian ini dijalankan untuk 

menentukan perubahan fisiologi dan molekul anak benih kelapa sawit sebagai tindak 

balas terhadap tahap tekanan kemarau yang berbeza. Untuk mencapai objektif ini, 

satu kajian yang menghubungkan gejala di bawah tahap kemarau yang berbeza 

dengan tindak balas fisiologi dan molekul telah dijalankan. Lima tempoh rawatan 

kemarau (7, 14, 21, 28, 35 tanpa air; DWW) telah diberikan kepada anak benih 

berusia 5 bulan. Gejala nekrosis, klorosis dan terbakar mula kelihatan di dalam daun 

anak benih pada 21 DWW (kemarau teruk). Walau bagaimanapun, data fisiologi 

daun menunjukkan kadar fotosintesis (A), kealiran stomata (gs) dan kadar transpirasi 

(E) mula berkurangan lebih awal pada 7 DWW (kemarau awal) sebelum gejala 

tekanan morfologi dalam daun kelihatan. “Drought-responsive element binding 1” 

(DREB1) tergolong dalam faktor transkripsi (TF) tumbuhan superfamili AP2. 

Pengumpulan awal transkrip EgDREB1 kelapa sawit (>1 kali ganda) di dalam akar 

mungkin dikaitkan dengan tapak jalan pengisyaratan; manakala naikkawal 

EgDREB1yang signifikan di dalam daun pada kemarau teruk adalah sepadan dengan 

ekspresi gen antioksidan peroxidase (POD) yang tinggi di dalam akar. Gen 

antioksida katalase (CAT), superoxide dismutase (SOD), askorbat peroxidase (APX) 

dan glutation reductase (GR) yang dinaikkawal pada kadar yang tinggi di dalam 

daun di peringkat kemarau sederhana mungkin terlibat dalam memerangkap spesies 

oksigen reaktif (ROS) dan untuk memastikan keseimbangan air di dalam tisu ini. 
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Protein pengikat responsif etilena (EREBP), “late embryogenesiabundant” (LEA), 

“dehydrin” (DHN), “cold-induced” (CI), “heat shock protein 70” (HSP70) dan 

“metallothionein type 2” (MET2) telah dikawalnaik secara berbeza di dalam daun, 

manakala di dalam akar hanya gen protein LEA (LEA dan DHN) telah dikawalnaik. 

Pengurangan jumlah kandungan klorofil (chl) dan nisbah chla dan chlb (chla: chlb) 

diperhatikan dengan ketara (P<0.05). Pengurangan ketara chla adalah berkait rapat 

dengan defisiensi photosystem II (PSII). Kandungan prolin telah meningkat secara 

beransur di dalam kedua-dua tisu vegetatif, manakala jumlah kandungan protein larut 

telah terjejas dengan peningkatan tahap kemarau. Aktiviti enzim antioksidan, 

katalase (CAT; EC 1.11.1.6) adalah paling tinggi di dalam akar pada peringkat 

kemarau yang teruk, manakala aktiviti guaicol peroxidase (POD; EC 1.11.1.7) 

berada pada kadar tertinggi di dalam daun pada peringkat awal tekanan. Urutan 

lengkap asid amino EgDREB1 lebih berkait rapat dengan NtDREB2 dikot. 

Penyetempatan subsel, asai pengikat DNA-protein in vivo dan in vitro mengesahkan 

lagi fungsi protein EgDREB1 sebagai faktor transkripsi (TF). Analisis kefungsian 

telah dilakukan di dalam tomato melalui pengekspresan melampau EgDREB1, 

didorong oleh dua juzukan promoter virus cauliflower mosaic 35S. Tumbuhan 

transgenik T0 in vitro menunjukkan pertumbuhan yang lebih perlahan dan fenotip 

kerdil di bawah keadaan terkawal (24ºC), dan menghasilkan buah ‘parthenocarpic’ 

dan buah kekurangan bilangan biji apabila ia ditanam di rumah hijau transgenik 

dalam suhu ambien dan cahaya matahari langsung walaupun mereka pulih daripada 

gejala kerdil. Ekspresi EgDREB1 telah dinaikkawal di dalam semua buah transgenik, 

tetapi tidak dikesan di dalam daun dan akar. Ekspresi gen responsif etilena (LeACS, 

LeACO dan LeAP2), gen responsif jasmonate (LeAOS dan LeAOC), gen responsif 

auksin (LeARF8 dan LeAux/IAA), gen responsif cytokinin (LeSlCKXI dan LeSlIPT1), 

gen responsif GA (LeGA2ox2 dan LeGA20ox4) dan gen responsif ABA (LeAAO) 

telah dikawal di dalam cara yang berbeza antara buah tanpa biji dan buah kekurangan 

bilangan biji. Ini menunjukkan interaksi kompleks antara fitohormon yang berbeza 

dalam menyumbang kepada fenotip buah tidak normal. Transgen EgDREB1 dan 

SRGs endogen seperti LePOD, LeAPX, LeGP, LeCAT, LeHSP70, LeLEA, LeMET2, 

LePCS, LeSOD, LeGR, LeAAO dan LeECD telah dinaikkawal di dalam semua 

progeni anak benih transgenik T1 di bawah rawatan polyethylene glycol (PEG) dan 

tekanan sejuk (4ºC). Maka, berdasarkan daripada penemuan-penemuan ini, 

EgDREB1 berkemungkinan terlibat di dalam pengembangan buah, pembentukan 

daun, pemanjangan internod dan penyesuaian terhadap tekanan kemarau dan sejuk.
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and 0.1 mg/L NAA, b) selection of putative transformants on 

MSB5 salts containing 2 mg/L BAP, 0.1 mg/L NAA, 300 mg/L 
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using hptII primer pair. WT: untransformed plant and L1-L14: 

putative transformed plants. M: Gene Ruler™ DNA Ladder Mix 

(Fermentas, Thermoscientific). P: positive control. 
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using CaMV 35S promoter primers. WT: untransformed plant, 
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pMDC(-32). M: MassRuler™ Low range DNA Ladder 
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grown in full strength MSB5 basal salts containing 1 mg/L IAA, 

6 mg/L hygromycin and 150 mg/L timentin. a) Wild type plant, 

b) pMDC(-32) plant, c, d and e represent independent transgenic 

line EgDREB1-L5, EgDREB1-L9 and EgDREB1-L13. 

EgDREB1-L5 showed early flowering while, EgDREB1-L9 and 
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5.10a Phenotypic observation of EgDREB1 tomatoes. a) The 

EgDREB1 tomatoes showed slow growth in controlled condition 

compared to wild type. Bar = 5 cm. 
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5.10b Phenotype of EgDREB1 tomato leaves compared to wild type 

and pMDC(-32). The EgDREB1 leaves showed rolling and 

curling inwards. Bars = 5 cm. 
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5.11 Phenotype of the T0 transgenic tomato fruits. a) Wild type, b) 

pMDC(-32), c, d, e, f, g and h represent different EgDREB1 

transgenic lines which are EgDREB1-L5, EgDREB1-L9, 

EgDREB1-L13, EgDREB1-L1, EgDREB1-L3 and EgDREB1-

L10, respectively. 
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5.12 Expression of EgDREB1 in T0 transgenic fruits. Bars represent 

standard error of the mean. 
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5.13 Expression patterns of genes that are potentially involved in the 

development of parthenocarpic transgenic tomato fruits. a) AP2-

like-ethylene transcription factor (LeAP2), b) Allene oxide 

synthase (LeAOS), c) Allene oxide cyclase (LeAOC),                          

d) Aminocyclopropane-1-carboxylic acid synthase (LeACS), e) 

1-Aminocyclopropane-1-carboxylate oxidase 1 (LeACO), f) 

Auxin responsive factor 8 (LeARF8), g) Auxin/Indole-3-acetic 

acid (LeAux/IAA), h) Cytokinin oxidase/Dehydrogenase-like 

(LeSlCKX1), i) Adenylate isopentenyltransferase (LeSlIPT1),        

j) Gibberellin 2-oxidase 2 (LeGO2), k) Gibberellin 20-oxidase 4 

(LeGO4) and l) ABA-aldehyde oxidase (LeAAO). Bars represent 

standard error of the mean. 
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transformed with EgDREB1. M: Gene Ruler™ DNA Ladder 

Mix (Fermentas, Thermoscientific). 
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harboring pMDC(-32) by PCR using CaMV 35S primer pair and 

genomic DNA from leaves as template. P: Positive control, WT: 

wild type tomato, L1, L2, L3 and L4: different T1 transgenic 

tomato plants transformed with pMDC(-32) from the seeds of 

the same To tomato. M: Gene Ruler™ DNA Ladder Mix 

(Fermentas, Thermoscientific). 
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5.16 Expression of EgDREB1 in T1 transgenic seedlings under 

 a) PEG and b) cold stress. 

 

146 

5.17 Expression patterns of drought- and cold-stress response genes.    

a) Peroxidase (LePOD), b) Glutathione peroxidase (LeGP),            

c) Ascorbate peroxidase (LeAPX), d) Catalase (LeCAT),                   

e) Superoxide dismutase (LeSOD), f) Glutathione reductase 

(LeGR), g) Heat shock protein 70 (LeHSP70), h) Late 

embryogenesis abundant (LeLEA), i) Metallothionein type 2 

(LeMET2), j) ABA-aldehyde oxidase (LeAAO), k) 9-cis-

Epoxycarotenoid dioxygenase (LeECD) and l) Delta 1-

pyrroline-5-carboxylate synthetase (LePCS) showed increased 

expression levels in relative to untreated wild type seedlings 

151 
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(Control). Wild type (WT) pMDC9-32) are treated control 

plants. EgDREB1-L1, L3, L10 and L13 are treated transgenic 

seedlings. Bars represent standard error of the mean.  
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1.1.1.1.7 LIST OF ABBREVIATIONS 

A - CO2 assimilation  

ABA - Abscisic acid 

ABRE - ABA-responsive element (ABRE) 

AD - Activation domain 

ADC - Arginine decarboxylase 

AFB - Auxin F-box 

AHK - Receptor histidine kinase 

AHP - Histidine phospho-transfer protein 

APX - Ascorbate peroxidase 

ARE - Auxin responsive element 

ARFs - Auxin response factors 

AUX/IAA - Auxin/Indole-3-Acetic Acid 

A. tumefaciens - Agrobacterium tumefaciens 

AP2/ERF - APETALA 2/ethylene-responsive factor 

AREB - ABA-responsive element binding 

BADH - Betaine aldehyde dehydrogenase 

BAP - Benzylaminopurine 

bHLH - Basic-helix-loop-helix  

BLAST - Basic Local Alignment Search Tool 

bp - Base pair 

BSA - Bovine serum albumin 

bZIP - Basic leucine zipper containing domain 

proteins 

CaMV 35S - Cauliflower Mosaic Virus 35S 

CAT - Catalase 

CaCO3 - Calcium carbonate 

Ca
2+ 

- Calcium 

CBF1 - C-repeat binding factor 1 

Chl - Chlorophyll 

Chla - Chlorophyll a 

Chlb - Chlorophyll b 

CK - Cytokinin 

CI - Cold-induced 

CO2 - Carbon dioxide 

CPPU - cytokinin N-(2-chloro-pyridin-4-yl) -N’-

phenylurea  

CRD - Completely randomized design 

CRT - C-repeat 

CTAB - Cetyltrimethyl ammonium bromide 

DEPC  Diethylpyrocarbonate 

DHAR - Dehydroascorbate reductase 

DHN - Dehydrin 

DMSO - Dimethyl sulfoxide 

DNA - Deoxyribonucleic acid 

dNTPs - Deoxynucleotide  

DREB - Drought-responsive element binding 

DRE/CRT - Dehydration-responsive element/C-repeat  

https://www.google.com.my/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CDgQFjAF&url=http%3A%2F%2Fwww.genome.gov%2F25520880&ei=SmPhVLqUMtHhuQTRu4H4Bg&usg=AFQjCNG8asKzaYNIyIgAAL2ZMJyGgcCOaQ&sig2=uIohVlImgyntNvxNPoR6mA&bvm=bv.85970519,d.c2E
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DWW - Days of water withholding 

E - Transpiration rate 

EA1332 - Unknown protein (rice) 

EABF - ABA-responsive binding factor 

EDTA - Ethylenediaminetetraacetic acid 

EIN - Ethylene insensitive 2 

EL - Electrolytic leakage 

EMSA - Electrophoretic Mobility Shift Assay 

EREBP - Ethylene-responsive binding protein 

ERF - Ethylene responsive factor 

EST - Expressed sequence tag 

ETR - Ethylene receptor 

FFB - Fresh fruit bunch 

GA - Gibberellic acid 

GAPDH - Glyceraldehydes-3-phospahte dehydrogenase 

GB - Glycine betaine 

GP - Glutathione peroxidase 

GR - Glutathione reductase 

gs - Stomatal conductance 

HDL - High-density lipoprotein 

HSPs - Heat shock proteins 

HSP70 - Heat shock protein 70 

H2O2 - Hydrogen peroxide 

IAA - Indole-3-acetic acid 

JA - Jasmonate 

Jacq. - Jacquin 

JIP - Jasmonate-induced protein 

KIN - Kinetin 

LDL - Low-density lipoprotein 

LEA - Late embryogenesis abundant 

LiCl - Lithium chloride 

LP - Lipid peroxidation 

LRR-RLKs - Leucine-rich repeat receptor like kinase 

LTRE - Low temperature-responsive element 

MAPKs - Mitogen-activated protein kinases  

MARDI - Malaysian Agricultural Research and 

Development Institute 

MET2 - Metallothionein type-2 

MDHAR - Monodehydroascorbate reductase 

MgCl2 - Magnesium chloride 

MIC - Minimal inhibitory concentration 

MS - Murashige and Skoog 

MT1 - MARDI tomato-1 

MT11 - MARDI tomato-11 

MYC - Myelocytomatosis 
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N - Nitrogen 

NAA - 1-naphthaleneacetic acid 

NAC - NAM/ATAF1/CUC2 

NACRS - NAC recognition sequence 

NaCl - Sodium chloride 

NGO - Non-government organizations 

NLS - Nuclear localization signals 

NO - Nitric oxide 

NO3
-
 - Nitrate 

NO2
-
 - Nitrite 

NR - Nitrate reductase 

OD - Optical density 

ORF - Open reading frame 

PCD - Programmed cell death 

PCI - Phenol: chloroform: isoamyl alcohol 

PCR - Polymerase Chain Reaction 

PD569 - Manganase superoxide dismutase 

PEG - Polyethylene glycol 

pI - Isoelectric point 

PSII - Photosystem II 

P5CS - ∆
1
-pyrroline-5-carboxylate synthetase 

qPCR - Quantitative real-time PCR 

RNA - Ribonucleic acid 

RNase - Ribonuclease 

RPKs - Receptor protein kinases 

RMK8 - Eight Malaysia Plan 

ROS - Reactive oxygen species 

RT-PCR - Reverse transcription-PCR 

RWC - Relative water content 

SA - Salicylic acid 

SDS - Sodium dodecyl sulfate 

SOD - Superoxide dismutase 

SPDS - Spermidine synthase 

SPS - Sucrose-phosphate synthase 

SRGs - Stress-responsive genes 

SURE - Sugar-responsive cis-element 

TAE - Tris-acetate-EDTA 

TBE - Tris-borate-EDTA 

TC - Total chlorophyll 

TDZ - Tthidiazuron 
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TE - Tris-EDTA 

TFs - Transcription factors  
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Tris - Tris [hydroxymethyl] aminomethane 

Tris-HCl - Tris-hydrochloride 

U - Unit 

UKM - Universiti Kebangsaan Malaysia 

UTR - Untranslated region 

WT - Wild type 

WUE - Water use efficiency 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Oil palm is an important oil crop commercially grown in Malaysia. Cultivation of the 

high yielding tenera hybrid (Dura X Pisifera) together with a strong infrastructure 

and technical know-how have led Malaysia to its present status as the second largest 

producer of palm oil after Indonesia (Gan and Li, 2014). There is a great demand for 

palm oil in the food sector mainly for producing cooking oil, margarines and 

shortenings and in the non-food sector as raw materials such as in producing 

detergents, cosmetics and biodiesel (Latip et al., 2013; Rashid et al., 2014; 

Siwayanan et al., 2014). Today, about 5.39 million hectares of land in Malaysia are 

being used for oil palm cultivation. (Malaysian Palm Oil Board, 2014). However, 

there are limited areas for further expansion, and available areas gazetted for 

agricultural activities in Malaysia may also be required for rubber plantations and for 

enhancing self-sufficiency in food production. Apart from that, certain oil palm 

plantations have been cleared for the development of new townships and industrial 

area as Malaysia is moving towards achieving a developed country status by the year 

2020. The search and opening of new plantations in other countries with less suitable 

climate for oil palm cultivation by Malaysian companies may be catastrophic due to 

abiotic stress faced by the trees. Abiotic stress can cause the young palm seedlings 

become stunted and even result in plant death due to the high injury index in the 

plant tissues when they are planted in the field (Cao et al, 2011). 

 

 

Abiotic stress is an adverse force or influence that tends to inhibit the biological 

system from functioning optimally in a normal plant (Mahajan and Tuteja, 2005). As 

a sessile living organism on the earth, plants are certainly affected by abiotic stresses 

like drought, flood, salinity, cold, extreme temperature and exposure to heavy metal 

ions. Extreme climate changes like El Nino, La Nina and global warming are major 

phenomena that can lead to major abiotic stress in plants. Abiotic stresses must be 

seriously addressed as they can lead to disastrous effects to agriculture and plantation 

industries due to crop loss and major drop in productivity. It was estimated that 

hundreds of million dollars are lost every year due to the effects of abiotic stresses on 

crop production (Schowalter, 2011).  

 

 

Studies on the mechanisms of abiotic stress adaptation and response have been 

explored extensively. However, most of them have been intensively investigated in a 

model plant, the Arabidopsis thaliana (Jones, 2009). There has been no in depth 

studies carried out on the oil palm on the effect of abiotic stress on its growth and 

development. Primary perception of extreme condition from their surroundings leads 

to biochemical and physiological alterations in plants and transcriptional activation 

of stress-responsive genes (SRGs) as a recovery and adaptation system. It results in 

transcriptional activation of genes involved in production of osmo-protectants such 

as proline, glycinebetaine and mannitol and antioxidant enzymes and metabolites. 

Genes encoding products involved in protein turnover especially proteases
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stress-signaling pathway like mitogen activated protein kinase and transcriptional 

regulation particularly transcription factors (Cabello et al., 2014; Danquah et al., 

2014) are also transcriptionally activated. 

 

 

Transcriptional regulation of the expression of SRGs is a critical part of the plant 

response to a range of abiotic stresses. The initial step when the SRGs are selected 

for expression during stress conditions and also during modulation of the 

transcription of the SRGs are controlled by transcription factors (TFs) (Vaahtera and 

Brosche, 2011; Prasch and Sonnewald, 2015). TFs are trans-acting proteins 

responsible for regulating expression of downstream genes. They act by binding to 

cis-acting elements in the promoters of the target genes and therefore they can 

activate or suppress the transcription of the target genes (Mizoi et al., 2011). 

Dehydration-responsive element binding (DREB) is a transcription factor commonly 

involved in regulating SRGs expression. DREB interacts with dehydration response 

element (DRE). The DREB family of transcription factors is involved in conferring 

drought, salt and cold tolerance in plants. Their protein sequences contain a highly 

conserved AP2/ERF domain of approximately 58 to 70 amino acids (Li et al., 2013; 

Zhang et al., 2014). Apart from that, the different functions of DREB family 

members such as DREB1 and DREB2 in different signaling pathways of abiotic 

stress remain controversial and not fully understood (Yoshida et al., 2014). DREB1A 

transcription factor is believed to be involved in modulation of cold stress response, 

while DREB2A is responsible in modulation of drought stress response (Nakashima 

et al., 2014). The gene functional study via ectopic expression of DREB in transgenic 

plants shows different phenotypic changes besides inducing abiotic stress tolerance. 

The phenotypic changes include growth retardation of transgenic plants and delayed 

flowering time. The changes are believed to be due to interference of gibberellic acid 

(GA) biosynthesis and metabolism (Agarwal, et al., 2006; Akhtar et al., 2012). 

However, different phenotypic changes between different transformation events and 

transformed plants are still questionable.  

 

 

In Malaysia, climate change likes prolonged hot and dry season may induce water 

deficit. Water deficit gives negative impacts to agricultural activities. In oil palm 

industry, drought stress severely reduces oil yield and productivity, which can 

decrease export revenue worth several million Ringgit Malaysia. Oil yield and 

productivity does not only depend on genetic background of the palm, but it also 

includes the interaction between palm and the environments (Cha-um et al., 2011). 

The use of susceptible oil palm seedlings in hot and dry plantation area may also 

influence the growth and productivity, in which extreme condition may contribute to 

high injury index and death of the seedlings. Thus, the aims of this study were to 

observe physiological changes of the oil palm seedlings and to screen and 

characterize potential SRGs involved in response to drought in oil palm seedlings. 

The potential SRGs can be used as a molecular marker in plant breeding and genetic 

engineering to develop abiotic stress tolerant palm. Therefore, the objectives of this 

study were: 
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1. To screen potential stress-responsive genes involved in drought stress and 

determine molecular, biochemical and physiological responses to abiotic 

stress in oil palm seedlings using EgDREB1 and other molecular and 

biochemical markers 

2. To isolate and carry out molecular characterization of oil palm EgDREB1 

encoding the complete open reading frame (ORF)  

3. To construct a recombinant vector harboring EgDREB1 and to produce 

transgenic tomato via Agrobacterium-mediated transformation 

4. To determine biochemical, physiological and phenotypic changes in response 

to abiotic stress in non-transgenic and transgenic tomatoes 
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