PREDICTORS OF MALARIA AMONG PREGNANT WOMEN ATTENDING ANTE-NATAL CLINIC IN GENERAL HOSPITAL IN ZAMFARA STATE, NIGERIA
PREDICTORS OF MALARIA AMONG PREGNANT WOMEN ATTENDING ANTE-NATAL CLINIC IN GENERAL HOSPITAL IN ZAMFARA STATE, NIGERIA

By

KALLAMU HADIZA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PREDICTORS OF MALARIA AMONG PREGNANT WOMEN ATTENDING ANTE-NATAL CLINIC IN GENERAL HOSPITAL IN ZAMFARA STATE, NIGERIA

By

KALLAMU HADIZA

November 2015

Chair : Assoc. Prof. Hejar Binti Abd Rahman, PhD
Faculty : Medicine and Health Sciences

Introduction: Malaria is a major health problem with global concern. It is one of the world’s most prevalent serious infectious diseases, with approximately 250 million cases and one million deaths per year. Nigeria is included among the 45 countries that are endemic for malaria, and about 97% of the population were at risk especially children and pregnant women.

Objectives: To determine the predictors of malaria among pregnant women attending ante-natal clinic in general hospitals Zamfara State, Nigeria.

Methodology: A case control study was conducted among pregnant women attending ante-natal clinic in general hospital Zamfara State, Nigeria. A total of 522 pregnant women 261 cases and 261 controls were selected using multistage random sampling. Cases and controls in this study were defined as a pregnant woman attending ante-natal clinic from the selected general hospitals in Zamfara, confirmed with and without malaria respectively, using giemsa staining method based on their medical records. Face to face interview and self-administered pretested questionnaire in English and Hausa languages was used to obtain information based on their socio demographic characteristics, maternal history, knowledge, attitude and preventive practices regarding malaria from May to August 2014. The data was analysed using SPSS version 21, chi square test was used to determine the association between the group’s case and controls, and logistic regression was used to determine the predictors of malaria. Significant level (p) was set at 0.05.

Results: The overall response rate was 89.8%. Chi square results shows that pregnant women ≤ 25 years of age were more significantly associated with malaria than those with older age (\(\chi^2 = 17.835, df = 3, p < 0.001 \)), informal education (\(\chi^2 = 166.619, df = 4, p < 0.001 \)), unemployment (\(\chi^2 = 220.519, df = 2, p < 0.001 \)), monthly income < 5000 naira (\(\chi^2 = 353.841, df = 2, p < 0.001 \)), first trimester (\(\chi^2 = 27.754, df = 2, p < 0.001 \)). Other essential significant variables include low level of knowledge on malaria (\(\chi^2 = 96.632, df = 1, p < 0.001 \)), negative attitude (\(\chi^2 = 248.309, df = 1, p < 0.001 \)) and low level of preventive practices (\(\chi^2 = 148.761, df = 1, p < 0.001 \)).
significantly associated with malaria. Predictors of malaria include informal education (AOR = 8.340, 95% CI = 3.170, 21.947), unemployment (AOR = 8.437, 95% CI = 1.695, 42.007), monthly income < 1000 naira (AOR = 18.809, 95% CI = 3.829, 92.393), low knowledge (AOR = 5.363, 95% CI = 2.130, 13.501), negative attitude (AOR = 33.831, 95% CI = 12.749, 89.778) and no practice (AOR = 44.622, 95% CI = 3.829, 92.392).

Conclusion: This study has identified informal education, unemployment, low monthly income, low level of knowledge, negative attitude and poor preventive practices as predictors of malaria among pregnant women attending ante-natal clinic in general hospitals in Zamfara State, Nigeria. The findings in this study can be used by policy makers to plan how to tackle the risk factors of malaria among pregnant women in the State.

Keywords: Malaria, predictors, pregnancy, Zamfara State, Nigeria
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PERAMAL MALARIA DALAM KALANGAN WANITA HAMIL YANG MENGHADIRI KLINIK ANTENATAL DI HOSPITAL BESAR DI ZAMFARA NEGERI, NIGERIA 2014

Oleh

KALLAMU HADIZA

November 2015

Pengerusi : Prof. Madya Hejar Binti Abd Rahman, PhD
Fakulti : Perubatan dan Sains Kesihatan

Pengenalan: Malaria merupakan masalah kesihatan utama dengan kebimbangan global. Ia merupakan salah satu penyakit berjangkit yang serius paling lazim di dunia, dengan kira-kira 250 juta kes dan satu juta kematian setiap tahun. Nigeria adalah termasuk di kalangan 45 negara yang endemik malaria, dan kira-kira 97% daripada populasi berisiko terutamanya kanak-kanak dan wanita hamil.

Objektif: Untuk menentukan peramal malaria dalam kalangan wanita hamil yang menghadiri klinik antenatal di Hospital besar Zamfara Negeri, Nigeria.

Metodologi: Satu kajian kes-kes kawalan telah dijalankan dalam kalangan wanita hamil yang menghadiri klinik antenatal di Hospital besar Zamfara Negeri, Nigeria. Seramai 522 wanita hamil 261 kes dan 261 kawalan telah dipilih menggunakan pensampelan rawak pelbagai peringkat. Kes dan kawalan dalam kajian ini ditakrifkan sebagai seorang wanita hamil yang menghadiri klinik antenatal di Hospital besar terpilih di Zamfara, disahkan dengan dan atampa malaria masing-masing menggunakan kaedah pewarnaan giemsa berdasarkan rekod perubatan mereka. Temuduga bersemuka dan soal selidik praujian tadbir sendiri dalam Bahasa Inggeris dan Bahasa Hausa telah digunakan untuk mendapatkan maklumat berdasarkan kepada ciri-ciri sosio demografi mereka, sejarah keibuan, pengetahuan, sikap dan amalan pencegahan mengenai malaria dari Mei hingga Ogos 2014. Data dianalisis dengan menggunakan SPSS versi 21, ujian khi kuasa dua telah digunakan untuk menentukan hubungan antara kumpulan kes dan kawalan, dan regresi logistik telah digunakan untuk menentukan peramal malaria. Aras signifikan (p) telah ditetapkan pada 0.05

Hasil: Kadar sambutan keseluruhan adalah 89.8%. Keputusan khi kuasa dua menunjukkan bahawa wanita hamil ≤ 25 tahun mempunyai hubungan lebih signifikan dengan malaria berbanding mereka yang lebih berusia (5= 17.835, df = 3, p < 0.001), pendidikan tidak formal (5= 166.619, df = 4, p < 0.001), pengangguran (5= 220.519, df = 2, p < 0.001), pendapatan bulanan < 5000 naira (5= 353.841, df = 2, p < 0.001), trimester pertama (5= 27.754, df = 2, p < 0.001). Pembolehubah signifikan penting yang lain termasuk tahap pengetahuan yang rendah mengenai malaria (5= 96.632, df = 1, p < 0.001), sikap negatif (5= 248.309, df = 1, p < 0.001) dan tahap
amalan pencegahan yang rendah ($^{(5)}\chi^2 = 148.761, \text{df} = 1, p < 0.001$) adalah berhubung secara signifikan dengan malaria. Peramal malaria termasuk pendidikan tidak formal (AOR = 8.340, 95% CI = 3.170, 21.947), pengangguran (AOR = 8.437, 95% CI = 1.695, 42.007), pendapatan bulanan <1000 naira (AOR = 18.809, 95% CI = 3.829, 92.393), pengetahuan rendah (AOR = 5.363, 95% CI = 2.130, 13.501), sikap negatif (AOR = 33.831, 95% CI = 12.749, 89.778) dan amalan miskin (AOR = 44.622, 95% CI = 3.829, 92.392).

Kesimpulan: Kajian ini telah mengenal pasti pendidikan tidak formal, pengangguran, pendapatan bulanan yang rendah, tahap rendah pengetahuan, sikap negative dan amalan pencegahan miskin sebagai peramal malaria dalam kalangan wanita hamil yang menghadiri klinik antenatal di Hospital besar di Zamfara Negeri, Nigeria. Penemuan dalam kajian ini boleh digunakan oleh pembuat dasar dalam merancang bagaimana untuk menangani faktor-faktor risiko malaria dalam kalangan wanita hamil di negeri ini.

Kata kunci: Malaria, peramal, kehamilan, Zamfara Negeri, Nigeria
ACKNOWLEDGEMENT

I wish to express my deepest appreciation to my supervisor Associate Professor (Dr) Hejar Binti Abdul Rahman whose despite her tight schedule was always available and helpful. Special thanks to my co-supervisor Dr Hayati Kadir @ Shahar for her warm support and guidance throughout the programme.

I also wish to thank the Ministry of Health Zamfara State, P.M.O’S, nurses and student nurses and my siblings Fadalu A.A Gusau, Mubarak Kallamu, Bello Ismaila Gusau and Baba Audu’s family for their kind assistance during the data collection.

Words cannot really express my gratitude to my husband Dr. Usman Ismaila Gusau, without him, I wouldn’t have been part of the programme. My deepest appreciation to my parents Arch. A. A. Gusau, Hajiya Rabi and Hajiya Ummu A. A. Gusau who laid the foundation, their support, prayers and the responsibility of taking care of the kids throughout the programme. Warmest thanks to my lovely kids Waleed, Amina and Rukayya Usman Ismaila for the sacrifice of bearing our absence.

Finally, my appreciation to my colleagues and friends Dr. Tayo Martins, Dr. Jamila U. Garba, Zubaida Mahmud, Safiyya Kalgo, Kubrah Usman, Hadiza Anka and all those who contributed one way or the other during the programme.
I certify that a Thesis Examination Committee has met on 18 November 2015 to conduct the final examination of Kallamu Hadiza on her thesis entitled "Predictors of Malaria among Pregnant Women Attending Ante-Natal Clinic in General Hospital in Zamfara State, Nigeria" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Ahmad Azuhairi Ariffin, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Huda binti Zainuddin, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Mohamad Ikhsan bin Selamat, PhD
Senior Lecturer
Universiti Teknologi MARA
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 January 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Hejar Binti Abdul Rahman; M.D, Master Community Health
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairperson)

Hayati Kadir @ Shahar M.D., PhD
Senior Lecturer (Medical)
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Kallamu Hadiza, GS36517
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman Supervisory Committee: Hejar Binti Abdul Rahman; M.D, Master Community Health

Signature: ____________________________
Name of Member of Supervisory Committee: Hayati Kadir @ Shahar M.D., PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Background 1
1.2 Problem statements 2
1.3 Significance of the Study 2
1.4 Objectives 3
1.4.1 General Objectives 3
1.4.2 Specific Objectives 3
1.5 Research Hypotheses 3

2 LITERATURE REVIEW
2.1 Epidemiology of malaria worldwide 4
2.2 Epidemiology of malaria in Africa 5
2.3 Epidemiology of malaria in Nigeria 5
2.4 Aetiology of malaria 6
2.5 Mode of Transmission 6
2.6 Susceptibility and resistance 7
2.6.1 Susceptibility 7
2.6.2 Resistance 7
2.7 Life Cycle of Malaria Parasite 7
2.8 Clinical Signs and Symptoms 8
2.9 Diagnosis of malaria 9
2.10 Treatment of malaria 10
2.11 Prevention and control of malaria 10
2.11.1 Primary prevention of malaria 10
2.11.1.1 Insecticide-treated mosquito nets (ITNs) 10
2.11.1.2 Indoor residual spraying (IRS) 11
2.11.1.3 Intermittent preventive treatment in pregnancy 11
2.11.2 Secondary prevention of malaria 12
2.11.2.1 Early diagnosis 12
2.11.2.2 Prompt treatment 12
2.11.3 Tertiary prevention of malaria 13
2.11.3.1 Pharmaceutical and commodity management 13
2.11.3.2 Advocacy, communication, and social mobilization 13
2.12 The association between malaria and pregnancy 14
2.12.1 Malaria in Pregnancy 14
2.12.2 Natural Immunity against Malaria in Pregnancy 15
2.12.3 Malaria in Pregnancy with HIV 16
2.13 Risk factors of malaria during pregnancy

2.13.1 Socio demographic characteristics

2.13.1.1 Age

2.13.1.2 Educational status

2.13.1.3 Monthly income

2.13.1.4 Gravidity

2.13.1.5 Trimester

2.13.2 Knowledge of malaria

2.13.3 Attitude towards malaria

2.13.4 Practice regarding malaria

2.13.4.1 Insecticide Treated Nets (ITNs)

2.13.4.2 Intermittent Preventive Treatment (IPT)

2.14 Conceptual Framework

3 METHODOLOGY

3.1 Study Location

3.2 Study Duration

3.3 Study Design

3.4 Study Population

3.5 Selection Criteria

3.5.1 Case group

3.5.1.1 Inclusion Criteria for Cases

3.5.1.2 Exclusion Criteria for Cases

3.5.2 Control group

3.5.2.1 Inclusion Criteria for Control

3.5.2.2 Exclusion Criteria for Control

3.6 Sampling frame

3.6.1 Case group

3.6.2 Control group

3.7 Sampling unit

3.8 Sample size estimation

3.9 Sampling method

3.10 Instrument of the study

3.10.1 Questionnaire

3.10.2 Components of questionnaire

3.10.2.1 Socio demographic characteristics

3.10.2.2 Maternal history

3.10.2.3 Knowledge

3.10.2.4 Attitude

3.10.2.5 Preventive practices

3.11 Data Collection

3.12 Variables of the study

3.12.1 Dependent Variable

3.12.2 Independent Variables

3.13 Operational definition of terms

3.13.1 Cases

3.13.2 Controls

3.13.3 Socio demographic characteristic

3.13.4 Gravidity

3.13.5 Primigravida

3.13.6 Gravida 2
3.13.7 Multigravida
3.13.8 Trimester
3.13.9 Maternal history
3.14 Quality control
3.14.1 Validity
3.14.1.1 Content validity
3.14.1.2 Face validity
3.14.2 Reliability
3.15 Data analysis
3.16 Ethical considerations

4 RESULTS
4.1 Response rate
4.2 Test of normality
4.2.1 Test of normality for knowledge
4.2.2 Test of normality for attitude
4.2.3 Test of normality for practice
4.3 Socio-demographic characteristics of the pregnant women
4.4 Maternal history of the pregnant women
4.5 Knowledge on Malaria
4.5.1 Knowledge of malaria based on causes, symptoms, breeding sites and people at high risk
4.5.2 Knowledge on mode of transmission and prevention of malaria
4.5.3 Knowledge on effects, seasons and diagnosis of malaria
4.5.4 Level of knowledge of the pregnant women
4.6 Attitude regarding Malaria
4.6.1 Attitude regarding malaria on causes and breeding sites
4.6.2 Attitude regarding malaria on mode of transmission and seasons
4.6.3 Attitude regarding malaria on treatment and control
4.6.4 Level of attitude of the respondents
4.7 Practices towards Malaria
4.7.1 Preventive practices towards malaria
4.7.2 Level of practices of the pregnant women
4.8 Association between socio demographic characteristics of the respondents and malaria
4.9 Association between maternal history of the pregnant women and malaria
4.10 Association between level of knowledge of the pregnant women and malaria
4.11 Association between attitude of the pregnant women and malaria
4.12 Association between practices of the respondents and malaria
4.13 Risk factors for malaria
4.14 Multiple logistic regression analysis showing the Predictors of malaria
4.15 Model based on Log. Regression

5 DISCUSSION
5.1 Socio demographic characteristics of the respondents
5.2 Maternal history of the respondents
5.3 Knowledge on malaria
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 Attitude towards malaria</td>
<td>63</td>
</tr>
<tr>
<td>5.5 Practices related to malaria</td>
<td>64</td>
</tr>
<tr>
<td>5.6 Factors associated with malaria</td>
<td>64</td>
</tr>
<tr>
<td>5.7 Predictors of malaria</td>
<td>65</td>
</tr>
<tr>
<td>6 SUMMARY, CONCLUSION AND RECOMMENDATION</td>
<td>67</td>
</tr>
<tr>
<td>6.1 Summary and conclusion</td>
<td>67</td>
</tr>
<tr>
<td>6.2 Strengths and limitations of the study</td>
<td>67</td>
</tr>
<tr>
<td>6.2.1 Strength of the study</td>
<td>67</td>
</tr>
<tr>
<td>6.2.2 Limitations of the study</td>
<td>67</td>
</tr>
<tr>
<td>6.3 Recommendations</td>
<td>68</td>
</tr>
</tbody>
</table>

REFERENCES 69
APPENDICES 80
BIODATA OF STUDENT 104
PUBLICATION 105
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1:</td>
<td>Average attendance of ante-natal clinic ANC and deliveries for the selected hospitals from May – July 2014</td>
<td>25</td>
</tr>
<tr>
<td>3.2:</td>
<td>Knowledge range of scores</td>
<td>30</td>
</tr>
<tr>
<td>3.3:</td>
<td>Attitude range of scores</td>
<td>31</td>
</tr>
<tr>
<td>3.4:</td>
<td>Reliability test results</td>
<td>34</td>
</tr>
<tr>
<td>4.1:</td>
<td>Response rate from the selected General Hospitals in Zamfara State, Nigeria</td>
<td>35</td>
</tr>
<tr>
<td>4.2:</td>
<td>Socio-demographic characteristics of the pregnant women (N=522)</td>
<td>38</td>
</tr>
<tr>
<td>4.3:</td>
<td>Maternal history of the pregnant women (N=522)</td>
<td>38</td>
</tr>
<tr>
<td>4.4:</td>
<td>Knowledge regarding causes and symptoms of malaria, breeding sites and people at high risk (N=522)</td>
<td>40</td>
</tr>
<tr>
<td>4.5:</td>
<td>Knowledge on mode of transmission and prevention of malaria</td>
<td>42</td>
</tr>
<tr>
<td>4.6:</td>
<td>Knowledge on effects, seasons and diagnosis of malaria</td>
<td>43</td>
</tr>
<tr>
<td>4.7:</td>
<td>Level of knowledge of the respondents (N=522)</td>
<td>45</td>
</tr>
<tr>
<td>4.8:</td>
<td>Attitude regarding malaria on causes and breeding sites (N=522)</td>
<td>46</td>
</tr>
<tr>
<td>4.9:</td>
<td>Attitude regarding malaria on mode of transmission and seasons</td>
<td>47</td>
</tr>
<tr>
<td>4.10:</td>
<td>Attitude regarding malaria on treatment and control (N=522)</td>
<td>49</td>
</tr>
<tr>
<td>4.11:</td>
<td>Level of attitude of the pregnant women (N=522)</td>
<td>51</td>
</tr>
<tr>
<td>4.12:</td>
<td>Practices towards malaria (N=522)</td>
<td>52</td>
</tr>
<tr>
<td>4.13:</td>
<td>Level of practices of the pregnant women (N=522)</td>
<td>52</td>
</tr>
<tr>
<td>4.14:</td>
<td>Association between socio demographic characteristics of the respondents and malaria (N=522)</td>
<td>53</td>
</tr>
<tr>
<td>4.15:</td>
<td>Association between maternal history of the pregnant women and malaria (N=522)</td>
<td>54</td>
</tr>
<tr>
<td>4.16:</td>
<td>Level of knowledge of the pregnant women and malaria (N=522)</td>
<td>55</td>
</tr>
<tr>
<td>4.17:</td>
<td>Level of attitude of the pregnant women (N=522)</td>
<td>56</td>
</tr>
<tr>
<td>4.18:</td>
<td>Level of practices of the respondents</td>
<td>56</td>
</tr>
<tr>
<td>4.19:</td>
<td>Logistic regression analysis showing the risk factors associated with malaria among pregnant women</td>
<td>57</td>
</tr>
<tr>
<td>4.20:</td>
<td>Multiple logistic regression showing adjusted odds ratio (AOR) of predictors of malaria</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Global areas of elevated risk of malaria</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Life cycle of mosquito</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Life cycle of malaria parasite</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Areas where symptoms of malaria occur</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>The conceptual framework of factors associated with malaria among pregnant women attending ANC in Zamfara.</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Map of Nigeria showing Zamfara State</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Map of Zamfara State showing local government areas</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Flow chart showing multi-stage sampling technique of pregnant women attending ANC in Zamfara State, Nigeria</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Test of normality for knowledge</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Test of normality for attitude</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Test of normality for practice</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>≤</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>AOR</td>
<td>Adjusted odds ratio</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>COR</td>
<td>Crude odds ratio</td>
</tr>
<tr>
<td>DF</td>
<td>Degree of freedom</td>
</tr>
<tr>
<td>F</td>
<td>Frequency</td>
</tr>
<tr>
<td>FMOH</td>
<td>Federal Ministry of Health</td>
</tr>
<tr>
<td>IPT</td>
<td>Intermittent Preventive Treatment</td>
</tr>
<tr>
<td>IRS</td>
<td>Insecticide Residual Spray</td>
</tr>
<tr>
<td>ITNs</td>
<td>Insecticide Treated Nets</td>
</tr>
<tr>
<td>LLINs</td>
<td>Long Lasting Insecticide Nets</td>
</tr>
<tr>
<td>MDGs</td>
<td>Millennium Development Goals</td>
</tr>
<tr>
<td>N</td>
<td>Total number</td>
</tr>
<tr>
<td>NDHS</td>
<td>National Demographic and Health Survey</td>
</tr>
<tr>
<td>NMCP</td>
<td>National Malaria Control Programme</td>
</tr>
<tr>
<td>NMCSP</td>
<td>National Malaria Control Strategic Plan</td>
</tr>
<tr>
<td>NPC</td>
<td>National Population Commission</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>RBM</td>
<td>Roll Back Malaria</td>
</tr>
<tr>
<td>SP</td>
<td>Sulfadoxine pyrimethamine/Fansidar</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Malaria is the world’s most prevalent serious infectious disease with major health problems, and has attracted global concern. There were approximately 198 million cases and 584,000 deaths in 2013 (WHO, 2014), and it was estimated that more than 80% of the cases were in Sub-Saharan Africa. Approximately one death occurs every 30 seconds with 90% of the mortality rate occurring in Sub-Saharan Africa, and 90% of malaria deaths are of children less than five years of age and pregnant women (Tillotson, 2012).

Control of malaria still remains a challenge in Africa, as evidenced by the 163 million estimated cases and 528,000 deaths in 2013. Nigeria and the Democratic Republic of the Congo together accounted for 39% and 34% of the global total of estimated malaria deaths and cases respectively in 2013 (WHO, 2014). Nigeria, which is included among the 45 countries that are endemic for malaria, has a population of over 170 million, and 97% of the population are at risk particularly pregnant women and children. The statistics indicate that Nigeria alone accounts for 45% of the prevalence in the African continent (Agomo, Oyibo, Anorlu, & Agomo, 2009; Aregawi, Cibulskis, Otten, & Williams, 2009; Duffy & Fried, 2005). Malaria in pregnancy is a serious health problem both in pregnant women and her foetus with 11% maternal deaths annually in Nigeria (Nzeako, Nduka, & Origie, 2013; World Health Organization, 2012).

The Nigerian climate makes malaria transmission suitable throughout the country, due to geographic location of the country; only 3% of the populace who live at an altitude ranging from 1,200 to 1,400 metres in the Southern Jos, Plateau State are at relatively low risk of malaria. Similarly, it has been estimated that about 140 million people are living in areas of high malaria transmission due to large population of Nigeria (Polsa, Spens, Soneye, & Antai, 2011). About 30 million women in malaria-endemic areas of Africa become pregnant each year, and are at risk of infection with *Plasmodium falciparum*. The prevalence of malaria infection in the north-western part of Nigeria, Sokoto State is 27.29%, as malaria is endemic in Nigeria with seasonal variation in different geographic regions of the country; it has been described as moderately high (Abdullahi et al., 2009; Steketee, Nahlen, Parise, & Menendez, 2001).

Pregnancy complications have been associated with increased incidence and severity of malaria. In Sub-Saharan Africa, the effects of the disease are anaemia, spontaneous abortion, prematurity and stillbirths are effects of the disease (Okpere, Enabudosu, & Osemwenkha, 2010). The increased susceptibility of pregnant women to malaria is as a result of decreased immunity caused by pregnancy which makes them more vulnerable to anaemia, still birth, placental parasitisation and increasing the risk of illness leading to death. Maternal malaria also affects the unborn babies by increasing the risk of spontaneous abortion, stillbirth, premature delivery and low birth weight, and is a leading cause of child mortality (World Health Organization, 2010).
Malaria is usually linked with poverty and may also be a major burden to economic development (Aregawi et al., 2009). The prevalence of the disease is higher in Sub-Saharan Africa than in many other regions of the world, more than 75% of the cases in this region are due to *P. falciparum*, while in most other countries the disease transmission is as a result of the other less virulent plasmodial species. It has however been reported that the majority of the mortality recorded as a result of malaria is caused by *P. falciparum* (Aregawi et al., 2009).

The increased risk of malarial infection could be related to illiteracy, low educational status, unemployment, low income and gravidity of the pregnant women. The other risk factors are environment, such as the presence of unclean gutters, residence in swamps that are favourable conditions for the breeding of Anopheles mosquitoes, poor knowledge, attitude and preventive practices towards the prevention and control measures of malaria (Amuta, Houmsou, Wama, & Ameh, 2014; Bawa, Auta, & Liadi, 2014; Oyefabi, Sambo, & Sabitu, 2015).

1.2 Problem statements

Malaria still remains an important public health concern globally; about 3.3 billion people were at risk of malaria infection in 2013. It has been indicated by the World Malaria Reports that Africa bears the heaviest burden and the highest risk of malaria infection. Africa accounted for about 82% and 90% of the reported malaria cases and deaths respectively, with pregnant women and children below five years suffering the most (WHO, 2014).

High prevalence rates of malaria among pregnant women have been reported by many studies in different parts of Nigeria, (namely Kogi, Katsina, Kano, Benue, Osun and Rivers States) ranging from 30.0% to 72.5% (Adefioye, Adeyeba, Hassan, & Oyeniran, 2007; Amuta, Houmsou, Wama, & Ameh, 2014; Bawa, Auta, & Liadi, 2014; Gajida, Iliyasu, & Zoakah, 2010; Mofolorunsho, Audu, & Omatola, 2014; Nzeako, Nduka, & Origie, 2013). More than 90% of the Nigerian population were at risk of malaria and at least 50% of the total population experience an incidence of malaria yearly. The disease also affects the general population, beyond the effects on pregnant women and children (Federal Ministry of Health, 2004; Roll Back Malaria, 2013).

Each year up to 10,000 maternal deaths were recorded as a result of maternal malaria and it contributes to high maternal morbidity rates; that is, severe anaemia, fever, and placental parasitaemia especially in first time mothers (Falade, Tongo, Ogunkunle, & Orimadegun, 2010; Savage, Msyamboza, Gies, D’Alessandro, & Brabin, 2007). It has also been attributed to between 75,000 to 200,000 infant deaths annually (Steketee et al., 2001).

1.3 Significance of the Study

The significance of the study is to identify the predictors of malaria among pregnant women, and highlight areas for possible management modification and further research based on the findings of current predictors of malaria among pregnant women in Zamfara State. Identifying the predictors and implementing prevention of malaria during pregnancy is one of the major interventions in helping to reduce maternal and infant mortality and morbidity.
Since no research has been reported so far on the predictors of malaria among pregnant women in Zamfara State, this study will provide more information. Hence, information that will be gathered from the study will be used by the Ministry of Health, Zamfara State, to improve programmes dealing with prevention services against malaria in the State.

1.4 Objectives

1.4.1 General Objectives

The general objective is to determine the predictors of malaria among pregnant women attending ante-natal clinic in general hospitals Zamfara State.

1.4.2 Specific Objectives

i. To determine the socio-demographic factors (such as age, ethnicity, religion, marital status, educational status, occupation and monthly income) of pregnant women among cases and controls.

ii. To determine the maternal history (such as gravidity and trimester) of pregnant women among cases and controls.

iii. To determine the level of knowledge (such as causes, signs and symptoms, breeding sites, people at risk, mode of transmission, prevention and control, effects, seasonal variation and diagnosis), attitude (such as mode of transmission, treatment, prevention and control) and preventive practices (using LLIN, repellent spray, long sleeves, mosquito coil and good hygiene) on malaria in pregnant women among cases and controls.

iv. To determine the association between socio-demographic factors, maternal history, knowledge, attitude and practices of pregnant women and malaria.

v. To determine the predictors of malaria in pregnant women among cases and controls.

1.5 Research Hypotheses

i. There is a significant association between the socio-demographic factors of cases as compared to controls with regards to malaria in pregnancy.

ii. There is a significant association between the maternal histories of cases compared to controls with regards to malaria in pregnancy.

iii. There is a significant association between the levels of knowledge of cases compared to controls with regards to malaria in pregnancy.

iv. There is a significant association between the levels of attitude of cases compared to controls with regards to malaria in pregnancy.

v. There is a significant association between the levels of practice of cases compared to controls with regards to malaria in pregnancy.

vi. Socio-demographic factors, maternal history, level of knowledge, attitude and practice are risk factors of malaria among pregnant women.

vii. Socio-demographic factors, maternal history, level of knowledge, attitude and practice are predictors of malaria among pregnant women.
REFERENCES

