ASSOCIATION OF MATRIX METALLOPROTEINASE-1, 9, 12 AND TISSUE INHIBITOR OF METALLOPROTEINASE-1 GENE POLYMORPHISMS IN MALAY MALE ESSENTIAL HYPERTENSIVE SUBJECTS

FARIZEH AALAM GHOMI TABATABAEE

FPSK(m) 2015 29
ASSOCIATION OF MATRIX METALLOPROTEINASE-1, 9, 12 AND TISSUE INHIBITOR OF METALLOPROTEINASE-1 GENE POLYMORPHISMS IN MALAY MALE ESSENTIAL HYPERTENSIVE SUBJECTS

By

FARIZEH AALAM GHOMI TABATABAEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science September 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

Dedicated to My Beloved Parents
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of
the requirement for the degree of Master of Science

ASSOCIATION OF MATRIX METALLOPROTEINASE-1, 9, 12 AND TISSUE
INHIBITOR OF METALLOPROTEINASE-1 GENE POLYMORPHISMS IN
MALAY MALE ESSENTIAL HYPERTENSIVE SUBJECTS

By

FARIZEH AALAM GHOMI TABATABAEE

September 2015

Chairman: Professor Patimah Ismail, PhD
Faculty: Medicine and Health Sciences

Genetic polymorphisms are the modified sequences of the DNA and they serve as
molecular biomarkers for the detection of the individual at risk of developing the
disease. Essential hypertension (EH) are majority of hypertensive cases and diagnosed
where there is no clear evidence of medical condition predisposing to the high BP.
There have been variety of the genetic studies in relation to hypertension and some of
them showed association with occurrence of hypertension. Family of the matrix
metalloproteinases \((MMP)\) belong to the large family of the zinc-dependent
endopeptidases that are involved in many physiological disorders ranging from cancer
to cardiovascular disorders. Matrix metalloproteinases are implicated in degradation of
the extracellular matrix (ECM) which is fundamental in many aspects, both
physiologically and pathologically. These include: normal functioning of the cells from
development to growth and proliferation, as well as pathological conditions such as
cardiac remodeling and cancer development. Matrix metalloproteinases play important
role in hypertensive vascular stiffness, remodeling and dysfunction. They may be
involved in the excessive degradation of ECM components, vascular smooth muscle
cells migration and proliferation and intima layer invasion by monocytes. Besides,
ECM remodeling is largely determined by the balance of \(MMPs\) with respect to tissue
inhibitor of metalloproteinases \((TIMP)\). Several studies have been reported the
imbalanced \(MMP:TIMP-1\) ratio in hypertensive subjects, indicating the depressed
systematic degradation of collagenase in etiology of hypertension. The main objective
of this study was to determine the candidate gene polymorphisms involved in ECM
metabolism among Malaysian male subject with EH. Since, there have been variety of
genetic association studies of \(MMPs\) and \(TIMPs\) conducted on different populations,
but no study was done on Malaysian populations and in relation to hypertension. A
total of 133 newly diagnosed EH subjects and 129 unrelated healthy individuals were
required under this study. The genomic DNA of these individuals were extracted from
buffy coat and the plasma was separated for biochemical analysis. The genotyping of
the polymorphisms were done by polymerase chain reaction- restriction fragment
length polymorphism (PCR-RFLP) method. The PCR product and the restricted
fragment product were run on agarose gel electrophoresis. All the statistical analysis
were done by using Statistical Package for the Social Sciences (SPSS) version no.
21.0. The demographic characteristic of the subjects such as age, body mass index
(BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), low density
lipoprotein (LDL), triglyceride (TG) and cholesterol (Chol) were shown to be
differentially significant ($p < 0.05$) in case subjects when compared to the controls, high density lipoprotein (HDL) did not show any significance. The genotype and allelic distribution of $TIMP-1$ 372 T/C polymorphism was highly significant in hypertensive subjects as compared to the controls ($p < 0.05$). Whilst, SNPs in position -1607 (1G/2G) in the $MMP-1$ gene, position -1562 (C/T) and 279 (R/Q) of the $MMP-9$ gene as well as site -82 (A/G) in the $MMP-12$ gene did not differ significantly ($p > 0.05$) when compared to the controls. However, the data showed that the SNP in $TIMP-1$ gene at site 372 (T/C) was associated with EH in Malay male hypertensive subjects. Hence, the allele and genotype of $TIMP-1$ polymorphisms may be considered as a possible genetic biomarker and a risk factor for EH.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai memenuhi keperluan untuk Master Sains

HUBUNG KAIT ANTARA METALOPROTEINASE MATRIKS-1, 9, 12 DAN DENGAN PERENCAT METALOPROTEINASE-1 POLIMORFISME GEN DI KALANGAN PESAKIT HIPERTENSI LELAKI MELAKI MELAYU

Oleh

FARIZEH AALAM GHOMI TABATABAEE

September 2015

Polimorfisme genetik adalah urutan DNA yang diubahsuai dan boleh digunakan sebagai penanda biologi molekul untuk mengesahkan individu yang berisiko mendapat sesuatu penyakit. Tekanan darah tinggi Essential adalah antara kes yang kebanyakan tidak mempunyai bukti yang sahih dari segi kaedah perubatan tentang keberkaitannya dengan tekanan darah yang tinggi dari golongan pesakit. Terdapat beberapa kajian telah dilakukan berkaitan dengan hubung kait antara genetik dengan terjadinya penyakit hipertensi, dan beberapa kajian ini dapat membuktikan kaitan di antara kedua-duanya. Metaloproteinase matriks (MMPs) yang tergolong di dalam kumpulan zinc-dependent endopeptidases berkecenderungan kepada terjadinya gangguan fisiologi seperti kanser dan penyakit jantung. Metaloproteinase matriks terlibat dalam degradasi matriks ekstraselular (ECM) yang merupakan asas dalam banyak aspek, baik dari segi fisiologi dan patologi. Ini termasuk: fungsi normal sel-sel daripada pembentukan kepada pertumbuhan dan perkembangan, serta kondisi patologi seperti pembentukan semula jantung dan pembentukan kanser MMPs juga memainkan peranan penting dalam kekejangan vascular hipertensi, pembentukan semula dan disfungsi. Ia terlibat dalam degradasi komponen ECM yang berlebihan, migrasi vaskular licin sel-sel otot dan perkembangan, serta pencerobohan lapisan intima oleh monosit. Selain itu, sebahagian besar pembentukan semula ECM adalah ditentukan oleh baki MMPs berkenaan dengan tisu perencat metallloproteinases (TIMP). Beberapa kajian telah melaporkan ketidakseimbangan nisbah MMP:TIMP-1 di kalangan pesakit hipertensi, membuktikan degradasi sistematik kolagenase dalam etiologi hipertensi.Objektif utama kajian ini dijalankan adalah untuk menentukan calon-calon gen polimorfisme yang terlibat dalam gen metabolisma matriks tambahan selular di kalangan pesakit hipertensi primer (EH) lelaki di Malaysia. Ini kerana, terdapat pelbagai kajian mengenai hubung kait genetik MMPs dan TIMPs dijalankan dalam populasi yang berbeza, tetapi masih tiada kajian yang dijalankan mengenai hubungannya dengan hipertensi di dalam populasi Malaysia. Sebanyak 133 orang yang baru didiagnosis dengan EH dan 129 orang sihat yang tidak mempunyai hubungan dengan pesakit telah direkrut di bawah kajian ini. DNA genom individu-individu ini diekstrak daripada buffy coat manakala plasma diasarkan untuk analisis biokimia. Analisis genotip menggunakan kaedah PCR dan polimorfisme fragmen panjang restriksi (PCR-RFLP). Produk PCR dan produk RFLP dipisahkan dengan agaros gel elektroforesis. Semua analisis statistik menggunakan Statistical Package for the Social Sciences (SPSS) versi no. 21.0. Ciri-ciri demografi subjek seperti umur, indeks jisim badan, tekanan darah sistolik dan diastolik serta kadar
kolesterol lipoprotein berketumpatan rendah menunjukkan nilai perbezaan signifikan ($p < 0.05$) apabila dibandingkan antara kes dan kawalan. Manakala, kolesterol, trigliserida dan lipoprotein berketumpatan tinggi kolesterol tidak menunjukkan perbezaan yang signifikan. Pengagihan genotip dan alel 372 T/C polimorfisme daripada TIMP-1 di kalangan subjek hipertensi mempunyai nilai signifikan yang tinggi berbanding kawalan ($p < 0.05$). Sementara itu, polimorfisme seperti MMP-1: -1607(1G/2G), MMP-9: -1562 (C/T), 279(R/Q) dan MMP-12: -82(A/G) di kalangan subjek hipertensi tidak mempunyai perbezaan signifikasi ($p > 0.05$) apabila dibandingkan dengan subjek kawalan. Walau bagaimanapun, data penyelidikan menunjukkan polimorfisme TIMP-1; 372(T/C) adalah mempunyai hubungan dengan EH dalam tekanan darah tinggi untuk subjek lelaki melayu.
ACKNOWLEDGEMENTS

In the name of God, The Lord of Majesty and Bounty, The Inspirer of Faith. Praised to Him for enlightening my path and surrounding me with wonderful people.

Initially, I would like to express my sincere gratitude and appreciations to my parents, who have been compassionate friend throughout my life and always believed in my strengths and supported me emotionally and financially. The journey of life would have been impossible without your love and guidance. Thank you for always being there for me.

I would like to extend my heartfelt gratitude to my honored supervisor, Prof. Dr. Patimah Ismail as the chairman of my supervisory committee, for her precious advices, support and insightful comments during my study. Her immense knowledge, dedication and integrity has motivated many of us.

In addition, I would like to express my deepest gratefulness to my co-supervisor, Dr. Ramachandran Vasudevan, who patiently supported and encouraged me with his invaluable guidance during the research, despite of the failures. It was a great opportunity for many of us to work under his supervision.

Furthermore, I would like to extend my appreciation and gratefulness to the Molecular Biology lab stuff members that had helped me during my research. And my individual thanks to my friends Dr. Ali Etemad, Dr. Farzad Heidari, Nur Fasihah, Maryam Jamilah Yousoff and Somyeh Khazaei for being supportive friends and made the lab environment peaceful and organized.
I certify that a Thesis Examination Committee has met on 7 September 2015 to conduct the final examination of Farizeh Aalam Ghomi Tabatabaee on her thesis entitled "ASSOCIATION OF MATRIX METALLOPROTEINASE-1, 9, 12 AND TISSUE INHIBITOR OF METALLOPROTEINASE-1 GENE POLYMORPHISMS IN MALAY MALE ESSENTIAL HYPERTENSIVE SUBJECTS" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the University Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Member of the Thesis Examination Committee were as follows:

Name of Chairperson, PhD
Associate Professor Dr. Sabrina Sukardi
Faculty of Medicine
Universiti Putra Malaysia
(Chairman)

Name of Examiner, PhD
Dr. Abdah Md Akim
Faculty of Medicine
Universiti Putra Malaysia
(Internal Examiner)

Name of External Examiner, PhD
Title (e.g., Professor/Associate Professor/Ir; omit if irrelevant)
Name of Department and/or Faculty
Name of Organisation (University/Institute)
Country
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 5 November 2015
The thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of the Master of Science. The members of the Supervisory Committee were as follows:

Patimah Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

R. Vasudevan, PhD
Research Fellow
Institute of Gerontology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration By Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012.
- The thesis has undergone plagiarism detection software.

Signature: ____________________ Date: ____________________

Name and Matric No.: Farizeh Aalam Ghomi Tabatabaee, GS33248
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

<p>| Signature: | ___________________________ | Signature: | ___________________________ |
| Name of Chairman of Supervisory Committee: | ___________________________ | Name of Member of Supervisory Committee: | ___________________________ |
| Name of Chairman of Supervisory Committee: | ___________________________ |</p>
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Background of the Study
 1.2 Problem Statement
 1.3 Significance of the Study
 1.4 Hypothesis
 1.5 Main objective
 1.6 Specific objective(s)

2 LITERATURE REVIEW
 2.1 Hypertension and its Types
 2.2 Essential Hypertension
 2.3 Links between Hypertension and Cardiovascular Disease
 2.3.1 Etiology
 2.3.2 Risk Factors
 2.3.2.1 Smoking
 2.4 Genetic Factors
 2.5 Candidate Gene Approach
 2.6 Matrix Metalloproteinases
 2.6.1 MMPs physiological role
 2.6.2 MMPs Dysregulations and Hypertension
 2.7 Genetic Polymorphisms
 2.8 Genetic Polymorphisms and Hypertension
 2.9 MMP Gene Polymorphisms
 2.9.1 MMP-1 -1607 1G/2G Polymorphism
 2.9.2 MMP-9-1562 C/T and MMP-9R279Q Gene Polymorphisms
 2.9.3 MMP-12 –82A/G Gene Polymorphism
 2.10 TIMP-1 372 T/C Polymorphism
 2.11 Polymerase Chain Reaction
 2.12 PCR- Restriction Fragment Length Polymorphism
 2.13 Statistical analysis of case-control study
 2.14 Chi square test (X2)
 2.15 Hardy-Weinberg equilibrium

3 MATERIAL AND METHODS
 3.1 Study Design
 3.2 Ethical Approval
 3.3 Duration of Study
 3.4 Sample Size
3.5 Sampling
 3.5.1 Case Subjects 21
 3.5.2 Control Subjects 21
 3.5.3 Forms 22
3.6 Sampling Method 23
3.7 Blood Pressure 23
3.8 Body Mass Index 23
3.9 Biochemical Analysis 23
3.10 DNA Extraction 24
3.11 DNA Quantification 24
3.12 PCR Amplification 24
 3.12.1 PCR Optimizations 25
 3.12.2 Positive and Negative Controls 25
3.13 PCR-RFLP 25
3.14 Agarose Gel Electrophoresis of PCR and RE products 27
3.15 Visualization of PCR and RFLP products 27
3.16 DNA Sequencing 27
3.17 Statistical Analysis 27

4 RESULTS AND DISCUSSIONS 29
4.1 Clinical and Biochemical Characteristics of Study Subjects 29
4.2 Genomic DNA Extraction and Quantification 32
4.3 Optimization of PCR and RFLP 32
4.4 MMP-1-1607 1G/2G Polymorphism 33
4.5 MMP-9 Gene variants 39
 4.5.1 MMP-9 -C1562T polymorphism 39
 4.5.2 R279Q polymorphism of MMP-9 gene 44
4.6 -82A/G polymorphism of MMP-12 gene 50
4.7 372 T/C polymorphism of TIMP-1 gene 55
4.8 Study Limitations 59

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 60

REFERENCES 61
APPENDICES 76
BIODATA OF STUDENT 90
LIST OF PUBLICATIONS 91
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. 2X3 contingency table derived from SNP association case-control study design (2df)</td>
<td>16</td>
</tr>
<tr>
<td>3.1. Oligonucleotides for amplification and screening for five polymorphisms using PCR- RFLP method</td>
<td>26</td>
</tr>
<tr>
<td>4.1. Clinical and Biochemical parameter of EH patients and control subjects</td>
<td>30</td>
</tr>
<tr>
<td>4.2. Pearson Correlation matrix for clinical and biochemical characteristics</td>
<td>31</td>
</tr>
<tr>
<td>4.3. Clinical and biochemical characteristics of the subjects with the impact of -1607 1G/2G polymorphism of MMP-1 gene</td>
<td>35</td>
</tr>
<tr>
<td>4.4. Genotype and Allele frequencies of -16071G/2G polymorphism of MMP-1 gene</td>
<td>36</td>
</tr>
<tr>
<td>4.5. Frequency of MMP-1-16071G/2G polymorphism in different disease and populations</td>
<td>38</td>
</tr>
<tr>
<td>4.6. Genotype and Allele frequencies of -C1562T polymorphism of MMP-9 gene</td>
<td>40</td>
</tr>
<tr>
<td>4.7. Clinical and biochemical characteristics of the subjects with the impact of -C1562T polymorphism of MMP-9 gene</td>
<td>43</td>
</tr>
<tr>
<td>4.8. Clinical and biochemical characteristics of the subjects with the impact of R279Q polymorphism of MMP-9 gene</td>
<td>46</td>
</tr>
<tr>
<td>4.9. Genotype and Allele frequencies of R279Q polymorphism of MMP-9 gene</td>
<td>47</td>
</tr>
<tr>
<td>4.10. The result of MMP-9 variants studies in different population</td>
<td>49</td>
</tr>
<tr>
<td>4.11. Genotype and Allele frequencies of -82A/G polymorphism of MMP-12 gene</td>
<td>51</td>
</tr>
<tr>
<td>4.12. Clinical and biochemical characteristics of the subjects with the impact of -82A/G polymorphism of MMP-12 gene</td>
<td>53</td>
</tr>
<tr>
<td>4.13. Clinical and biochemical characteristics of the subjects with the impact of 372 T/C polymorphism of TIMP-1 gene</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Table

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Schematic representative of the steps whereby hypertension may bring about arterial remodeling</td>
</tr>
<tr>
<td>2.2.</td>
<td>MMP-1 Gene location on the chromosome</td>
</tr>
<tr>
<td>2.3.</td>
<td>MMP-9 gene location on the chromosome</td>
</tr>
<tr>
<td>2.4.</td>
<td>MMP-12 gene location on the chromosome</td>
</tr>
<tr>
<td>2.5.</td>
<td>TIMP-1 gene location on the X chromosome</td>
</tr>
<tr>
<td>3.1.</td>
<td>Flow Chart of the study</td>
</tr>
<tr>
<td>4.1.</td>
<td>PCR optimization of MMP-9 -C1562T polymorphism with different volume of mastermix</td>
</tr>
<tr>
<td>4.2.</td>
<td>PCR optimization of TIMP-1 372 T/C polymorphism at different Ta</td>
</tr>
<tr>
<td>4.3.</td>
<td>Optimization of RFLP conditions for MMP-9 R279Q polymorphism</td>
</tr>
<tr>
<td>4.4.</td>
<td>PCR product of -1607 1G/2G polymorphism of MMP-1 gene, resolved at 2% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.5.</td>
<td>Restricted fragment of -1607 1G/2G polymorphism of MMP-1 gene resolved at 3% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.6.</td>
<td>PCR product of -C1562T polymorphism of MMP-9 gene, resolved at 2% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.7.</td>
<td>Restricted fragment of -C1562T polymorphism of MMP-9 gene resolved at 2% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.8.</td>
<td>PCR product of R279Q polymorphism of MMP-9 gene, resolved at 2% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.9.</td>
<td>Restricted fragment of R279Q polymorphism of MMP-9 gene resolved at 2% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.10.</td>
<td>PCR product of -82A/G polymorphism of MMP-12 gene, resolved at 2% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.11.</td>
<td>Restricted fragment of -82A/G polymorphism of MMP-12 gene resolved at 4% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.12.</td>
<td>PCR product of 372 T/C polymorphism of TIMP-1 gene, resolved at 2% agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.13.</td>
<td>Restricted fragment of 372 T/C polymorphism of TIMP-1 gene resolved at 4% agarose gel electrophoresis</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix A: Ethical Approval ... 76
Appendix B: Questionnaire ... 77
Appendix C: Consent form ... 80
Appendix D: Gel electrophoresis 84
Appendix E: DNA Sequencing Results 85
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>Chol</td>
<td>Cholesterol</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary Heart Disease</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic Blood Pressure</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EH</td>
<td>Essential Hypertension</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>HET</td>
<td>Heterozygous</td>
</tr>
<tr>
<td>HOM</td>
<td>Homozygous</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>mm Hg</td>
<td>millimeter of mercury</td>
</tr>
<tr>
<td>MMP-1</td>
<td>Matrix Metalloproteinase-1</td>
</tr>
<tr>
<td>MMP-12</td>
<td>Matrix Metalloproteinase-12</td>
</tr>
<tr>
<td>MMP-9</td>
<td>Matrix Metalloproteinase-9</td>
</tr>
<tr>
<td>MMPs</td>
<td>Matrix Metalloproteinases</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PCR-RFLP</td>
<td>PCR- Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RE</td>
<td>Restriction Enzyme</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic Blood Pressure</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>Ta</td>
<td>Annealing Temperature</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>TIMP-1</td>
<td>Tissue Inhibitor of Metalloproteinase-1</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting Temperature</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very Low Density Lipoprotein</td>
</tr>
<tr>
<td>VSMC</td>
<td>Vascular Smooth Muscle Cell</td>
</tr>
<tr>
<td>WT</td>
<td>Wild Type</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Hypertension is defined as the force exerted by the blood pressure (BP) to the walls of arteries as a result of heart beat, and when it is ≥ 140 millimeter of mercury (mm Hg) for systolic and ≥ 90 mm Hg for diastolic. While the normal BP of the individual is measured 120/80 mm Hg and below, the range above the normal and ≤139/89 mm Hg is considered as pre-hypertension (Clinical Practice Guidelines Management of Hypertension III, 2008). Hypertension can be classified as essential hypertension and secondary hypertension. Essential hypertension (EH) makes up to 95% of the cases of the hypertension and is diagnosed where there is no clear evidence of medical condition predisposing to the high BP (Chern and Chiang et al., 2004). Whereas, the secondary hypertension making up the minority of the cases and are due to conditions such as Cushing syndrome, chronic renal failure or Conn's syndrome (Whelton, 1994).

There are number of factors contributing to hypertension such as life style, eating habits, genetic factors and presence of other medical complications leading to high BP. Less physical activity, high alcohol consumption, high salt intake, smoking and obesity are associated with elevated BP (Carretero and Oparil, 2000). While the role of environment had been known to impact the BP, the underlying genetic basis cannot be neglected. Essential hypertension is referred to as a complex genetic trait caused by multiple genes and these polygenic effects are controlled by gene-gene and gene-environment interactions (Chern and Chiang et al., 2004).

Hypertension is characterized by increased vessel wall stress that leads to vascular remodeling and causing vascular resistance augmentation (Castro et al., 2010). The vascular remodeling and augmented peripheral resistance in hypertension is marked by change in extracellular matrix (ECM) modification, accompanied by hypergenesis of vascular smooth muscle cells, leading to vascular stiffness as a result of thickened vessels (Intengan and Schiffrin, 2001, 2000).

Matrix metalloproteinases (MMPs) are a family of structurally related, zinc-dependent enzymes involved in excessive degradation of ECM components, vascular smooth muscle cell migration and proliferation (Visse and Nagase, 2003). Impaired MMP activity is involved in many clinical conditions affecting the cardiovascular system and plays an important role in hypertensive vascular remodeling and dysfunction including hypertension (Brionesa et al., 2010; Humphrey, 2008; Raffetto and Khalil, 2008). Studies have shown that, the rise in MMP activity and expression is persistently
involved with vascular remodeling in hypertensive individuals and imbalance in \(MMP\); Tissue Inhibitor of Metalloproteinases (\(TIMP\)) ratio particularly \(TIMP-1\), may contribute to EH and hypertensive heart disease (Onal \textit{et al.}, 2009; Ahmed \textit{et al.}, 2006; Yasmin \textit{et al.}, 2005; Laviades \textit{et al.}, 1998).

The most stable variation of the genome occurs in the form of single nucleotide polymorphisms (SNPs) which make 90\% of the common variations in the genome (Doris, 2002). Analyzing SNPs for the identification of loci associated with complex diseases are common in susceptibility to hypertension and other disorders. The SNPs association/candidate gene studies have revealed promising results in the genetic studies of complex diseases particularly in hypertension (Yagil and Yagil, 2009).

1.2 Problem Statement

Hypertension is a major risk factor for cardiovascular, cerebrovascular and renal diseases and it is considered as a polygenic disease and results from multiple gene-gene and gene-environment interaction (Deng, 2007; Chem and Chiag, 2004). Hypertension affects about 1 billion of worldwide population, and in Malaysia 4.8 million of individuals are hypertensive. The prevalence of the hypertension according to National Health and Morbidity Survey (NHMS) III issued on 2006 was more than 43\%, included individuals aged ≥ 30 and the prevalence had shown to have increment of 30\% from that reported 10 years earlier (NHMS III, 2006). However, the prevalence has increased only slightly from 32.2\% in 2006 to the current 32.7\%, an increase of about 0.5\% (NHMS IV, 2011). In general, the prevalence of hypertension in the individuals aged ≥15 was shown to be 27.8\% with higher prevalence in males (Rampal \textit{et al.}, 2008).

Hypertension is characterized by increased vascular stress that leads to vascular resistant and remodeling (Humphrey, 2008). The hypertensive vascular remodeling is accompanied by reformation of ECM and vascular smooth muscle cells (VSMCs), bringing about vascular stiffness (Intengan and Schiffrin, 2000, 2001). While, the role of \(MMP\) and \(TIMP\) genes in normal ECM metabolism is well documented. Some studies have reported the imbalance in \(MMP/TIMP\) ratio in plasma level of hypertensive individuals, suggesting the impaired ECM metabolism (Androulakis \textit{et al.}, 2012; Castro \textit{et al.}, 2010; Flammant \textit{et al.}, 2007). Taking this into account, the present study was initiated to determine the association of genetic variations of \(MMPs\) and \(TIMP-1\) genes in Malaysian male hypertensive subjects. Since, there are lack of information in relation to ECM metabolism gene polymorphism in relation to hypertension in Malaysian population.
1.3 Significance of the Study

The candidate gene analysis would provide a better approach for identifying the genotype/phenotype and their probable correlations (Tabor et al., 2002). The identification of the contributing genes for EH will allow the physicians to recognize the weak individuals. Also, classify the patients in subgroups with defining genetic and pathogenic mechanism which might enable the use of genotypes to identify more specific therapeutic and preventive measures.

Several studies have proposed the candidate genes for the susceptibility to hypertension in various populations (Agarwal et al., 2005; Ruppert and Maisch, 2003). However, there are controversies in the results obtained from those studies and majority of these studies did not evaluate any possible interaction between different candidate genes. Hence, more studies using different population are needed in order to provide more information on genetic susceptibility of hypertension. Furthermore, to our knowledge there are lack of studies on the association of MMPs and TIMP-1 gene polymorphisms with hypertension among Malaysians.

Genetic association analysis is to test whether an allele or genotype frequency differs between two groups and examines the statistical correlation between a person’s genotype with his phenotype or disease. Most commonly the genetic association involves a study of the SNPs genotype frequency in a case-control study. According to this, association analysis can be used as a useful approach in studying the role of candidate genes in the development of multifactorial diseases (Lewis, 2002). The current study will enhance the management of hypertension among hypertensive subjects by choosing suitable drugs based on their genotypes.

1.4 Hypothesis

Gene polymorphisms of the MMPs and TIMP-1 enzymes may be associated with the development of EH in Malay male hypertensive subjects.

1.5 Main objective

To determine if polymorphisms in MMP-1, 9,12 as well as TIMP-1 genes are associated with essential hypertension in Malay male subjects.
1.6 **Specific objective(s)**

1) To determine the genotypic and allelic frequency for -C1562T and R279Q polymorphisms of the *MMP-9* gene in Malay male subjects.

2) To determine the genotypic and allelic frequency for -1607 1G/2G polymorphism of the *MMP-1* gene in Malay male subjects.

3) To determine the genotypic and allelic frequency of -82A/G polymorphism of the *MMP-12* gene in Malay male subjects.

4) To determine the genotypic and allelic frequency of 372 T/C polymorphism of the *TIMP-1* gene in Malay male subjects.

5) To determine the relationship between genotypic, phenotypic and biochemical differences among Malay male subjects.
REFERENCES

gene C677T polymorphisms with essential hypertension?. *Cytotechnology*, 67(1), 115-122.

Higaki, J., Baba, S., Katsuya, T., Sato, N., Ishikawa, K., Mannami, T., ... and Ogihara, T. (2000). Deletion allele of angiotensin-converting enzyme gene increases risk of

Kumar, A. (2014). Correlation between anthropometric measurement, lipid profile, dietary vitamins, serum antioxidants, lipoprotein (a) and lipid peroxides in known cases of 345 elderly hypertensive South Asian aged 56-64 yA hospital based study. *Asian Pacific journal of tropical biomedicine, 4*(Suppl 1), S189.

infarction in Mexican patients. *Journal of Atherosclerosis and Thrombosis* 19(8):718-727

Timms, P. M., Wright, A., Maxwell, P., Campbell, S., Dawnay, A. B., and Srikanthan, V. (2002). Plasma tissue inhibitor of metalloproteinase-1 levels are elevated in

