MODULATION OF RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS SIGNAL TRANSDUCTION PATHWAY AS THERAPEUTIC OPTION FOR MALARIA THERAPY

CHUAH YAW KUANG

FPSK(m) 2015 27
MODULATION OF RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS SIGNAL TRANSDUCTION PATHWAY AS THERAPEUTIC OPTION FOR MALARIA THERAPY

By

CHUAH YAW KUANG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

April 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of
the requirement for the degree of Master of Science

MODULATION OF RECEPTOR FOR ADVANCED GLYCATION END
PRODUCTS SIGNAL TRANSDUCTION PATHWAY AS THERAPEUTIC
OPTION FOR MALARIA THERAPY

By

CHUAH YAW KUANG

April 2015

Chair : Rusliza binti Basir, PhD
Faculty : Medicine and Health Sciences

Receptor for advanced glycation endproducts (RAGE), an important receptor in the
regulation of innate immune response, has been associated with many inflammatory
related diseases such as sepsis, rheumatoid arthritis, and arteriosclerosis. Malaria
is also considered as an inflammatory disease involving excessive inflammatory
response towards parasite invasion and severe systemic inflammation occurred during
the infection has been closely linked to morbidity and mortality of the disease.
However, RAGE involvement during malaria infection has yet to be revealed. In this
study, the role and involvement of RAGE during malaria infection was investigated
and the effects of modulating RAGE on the course of the infection, the release of major
inflammatory cytokines and the histopathological consequences in major affected
organs during malaria were evaluated. Plasmodium berghei (P. berghei) ANKA
infection in male ICR mice was used as a model for malaria infection. The mice were
inoculated intraperitoneally with 2 x 10^7 parasite-infected red blood cells (PRBCs)
whereas the control mice received an equivalent dilution of normal RBCs. The plasma
levels of RAGE in malarial mice were measured by ELISA. Results showed that
RAGE was upregulated during malaria especially at the late critical phase of infection
and there is a positive correlation between RAGE concentration and parasitaemia
development suggesting that RAGE could be one of the important factors in mediating
the severity of the infection.

Modulation of RAGE expression was carried out by treatment of malarial mice with
recombinant mouse RAGE Fc chimera (rmRAGE/Fc Chimera) or mouse RAGE
polyclonal antibody (mRAGE/pAb) intravenously. Both treatments did not affect the
parasitaemia development during malaria infection. Blocking RAGE signaling pathway
during the infection period significantly result in an elevation in the plasma levels of
interleukin (IL)-4 and IL-17A, a further increase in IL-10 and IL-2 plasma levels, and
reduced secretion of interferon (IFN)-γ in the plasma. But no effect on the release of
tumor necrosis factor (TNF)-α and IL-6 was observed. Histopathological examination
was performed on five major organs affected during malaria including liver, spleen,
brain, kidney, and lung. The results showed that modulation of RAGE expression improve the histopathological conditions of malaria to some degree. Both treatment groups showed an overall better outcome in histopathological conditions of all five organs despite the lack of effect on the course of the parasitaemia. In conclusion, the findings from this study showed that RAGE is involved during immune response towards malaria infection and blocking of RAGE may prove beneficial by reducing tissue injury to a lesser degree. Hence, this suggests the potential of RAGE as an immunotherapeutic target in malaria, in which the host may benefit from its inhibition.
MODULASI RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS SEBAGAI SASARAN TERAPEUTIK UNTUK TERAPI MALARIA

Oleh

CHUAH YAW KUANG

April 2015

Receptor for Advanced glycation endproducts (RAGE), suatu reseptor penting dalam pengawalaturan gerakbalas imun semulajadi, telah dikaikat dengan banyak penyakit berkaitan inflamasi seperti septisemia, artritis reumatoid dan arteriosklerosis. Malaria juga dianggap sebagai suatu penyakit inflamasi melibatkan gerakbalas inflamasi yang berlebihan terhadap pencerobohan parasit dan inflamasi sistemik tenat yang berlaku semasa jangkitan telah dikaikat secara rapat dengan morbiditi dan mortaliti penyakit. Walau bagaimanapun, penglibatan RAGE semasa jangkitan malaria belum lagi dirungkaikan. Dalam kajian ini, peranan dan penglibatan RAGE semasa jangkitan malaria diselidiki dan kesan-kesan modulasi RAGE ke atas keadaan jangkitan, pembebasan sitokin inflamasi utama dan kesan histopatologi dalam organ-organ utama yang terkesan semasa jangkitan dinilai. Jangkitan Plasmodium berghei (P. berghei) ANKA dalam mencit ICR jantan telah digunakan sebagai model bagi jangkitan malaria. Mencit diinokulasi secara intraperitoneum dengan 2 x 10^7 sel-sel darah terjangkit parasit, manakala mencit kawalan menerima pencairan setara sel-sel darah normal. Tahap plasma RAGE dalam mencit malaria diukur menggunakan ELISA. Keputusan menunjukkan bahawa RAGE meningkat dalam mencit malaria pada fasa kritikal akhir jangkitan dan terdapat korelasi positif antara kepekatan RAGE dan perkembangan parasitaemia, yang mencadangkan RAGE mungkin salah satu faktor penting dalam memperantarakan jangkitan yang tenat.

Modulasi ekspresi RAGE dijalankan dengan merawat mencit malaria dengan RAGE Fc kimera mencit rekombinan (rmRAGE/Fc Chimera) atau antibodi poliklonal mencit (mRAGE/pAb) secara intravena. Kedua-dua rawatan tidak memberikan kesan ke atas perkembangan parasitaemia semasa jangkitan malaria. Merencat RAGE semasa jangkitan menyebabkan peningkatan secara signifikan interleukin-4 dan IL-17A pada tahap plasma, meningkatkan lagi tahap plasma IL-10 dan IL-2, dan mengurangkan pembebasan IFN-γ dalam plasma. Tetapi tiada kesan ke atas TNF-α dan IL-6 diperhatikan. Pemeriksaan histopatologi telah dijalankan ke atas lima organ utama yang terkesan semasa jangkitan malaria termasuk hati, limpa, otak, ginjal dan paru-paru. Keputusan menunjukkan modulasi ekspresi RAGE mampu memperbaiki keadaan...
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and sincerest appreciation to my supervisor Dr. Rusliza Basir for her outstanding supervision and support for this research. Special thanks to my co-supervisors, Dr Herni Talib and Dr Norshariza Nordin for excellently guiding me through with their expertise. This research would not have been successful without their valuable guidance, enthusiastic help as well as constructive criticisms throughout the research.

I would like to express my sincere thanks to my laboratory colleagues who provided me with endless support and assistance during my laboratory work for this project. Not forgetting, many thanks to the laboratory staffs for guiding me through all the technical difficulties during the project. They helped me out far more than they ever realized, their supports are very much appreciated.

I would like to express my heartiest and sincerest appreciation to my beloved parents and family members, who had supported, inspired and paved me to succeed in my research project. Finally, thank you to Universiti Putra Malaysia for funding this project under Research University Grant Scheme (RUGS) and providing me the scholarships.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rusliza binti Basir, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norshariza binti Nordin, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Herni binti Talib, PhD
Senior Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:______________________ Signature:______________________
Name of Chairman of
Supervisory Committee:
Assoc. Prof. Dr. Rsliza binti Basir Dr. Norshariza binti Nordin
Name of Member of
Supervisory Committee:
Dr. Herni binti Talib
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Hypotheses 3
1.3 Objectives 3

2 LITERATURE REVIEW

2.1 Malaria - general aspects 4
2.2 Human malarial parasites 5
2.3 Rodent model of malaria - *Plasmodium berghei* 6
2.4 Life cycle of *Plasmodium* 7
2.5 Pathogenesis of human malaria 9
 2.5.1 Fever 9
 2.5.2 Anaemia 9
 2.5.3 Cerebral malaria 10
 2.5.4 Splenomegaly 11
 2.5.5 Hepatomegaly 12
 2.5.6 Pulmonary edema 12
 2.5.7 Renal injury 13
2.6 Immune response against malaria 13
 2.6.1 Innate immunity 13
 2.6.2 Adaptive immunity 14
2.7 The involvement of cytokines in malaria infection 16
2.8 Current initiatives in treatment of malaria 21
2.9 Receptor for advanced glycation end-products (RAGE)
 2.9.1 General properties 24
 2.9.2 RAGE expression 25
 2.9.3 RAGE isoforms 26
2.10 RAGE and inflammatory responses 26
2.11 The potential of RAGE as therapeutic target 28

3 MATERIALS AND METHODS

3.1 Experimental procedures 31
 3.1.1 Animal model establishment for malaria infection 31
3.1.2 Determination of systemic RAGE concentrations during malaria infection 31
3.1.3 Evaluating effects of RAGE pathway modulation on course of malaria infection 32
3.1.4 Evaluating effects of RAGE pathway modulation on major cytokines release during malaria infection 32
3.1.5 Evaluating effects of RAGE pathway modulation on histopathological changes during malaria infection 33

3.2 Experimental animals 33
3.3 Rodent malaria parasite 35
3.4 Induction of malaria model 35
3.5 Maintenance of malaria parasite 35
3.6 Measurement of basic parameters 36
3.6.1 Body weight 36
3.6.2 Body temperature 36
3.6.3 Signs of illness 36
3.6.4 Measurement of parasitaemia 36
3.7 Plasma preparation 37
3.8 Preparation of RAGE related drugs 37
3.8.1 Recombinant mouse RAGE Fc chimera (rmRAGE/Fc Chimera) 37
3.8.2 Mouse RAGE polyclonal antibody (mRAGE/pAb) 37
3.9 RAGE enzyme-linked immunosorbent assay (ELISA) 37
3.9.1 Reagent preparation for RAGE ELISA 38
3.9.2 Assay procedure for RAGE ELISA 38
3.10 Cytometric bead array (CBA) analyses of cytokines 39
3.10.1 Reagent preparation for CBA analyses 39
3.10.2 Assay procedure for CBA analyses 39
3.11 Preparation of histology slides 39
3.12 Statistical analysis 40

4 RESULTS AND DISCUSSION 42
4.1 Animal model establishment for malaria infection 42
4.1.1 Parasitaemia development 42
4.1.2 Effect of malaria on body weight 42
4.1.3 Effect of malaria on body temperature 45
4.1.4 Visual observations on the physical signs of illness during malaria 47
4.1.5 Survival of malarial mice 49

4.2 Systemic RAGE concentrations during malaria infection 49
4.2.1 RAGE levels during malaria infection 49
4.2.2 Correlation of RAGE levels and 52
parasitaemia development

4.3 Effects of RAGE pathway modulation on course of malaria infection

4.3.1 Effects of RAGE pathway modulation on physical signs of illness during malaria

4.3.2 Effects of RAGE pathway modulation on parasitaemia level during malaria

4.4 Effects of RAGE pathway modulation on major cytokines release during malaria infection

4.5 Effects of RAGE pathway modulation on histopathological changes during malaria infection

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE STUDIES

5.1 Summary and conclusion

5.2 Limitations and recommendations

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Role of cytokines in malaria infection</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of physical signs of illness during malaria in control and malaria-infected mice</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of physical signs of illness during malaria in control and malaria-infected mice treated with RAGE-related drugs</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Life cycle of human malarial parasites, Plasmodium spp.</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental flow of the research</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Parasitaemia measured in the control and malaria-infected mice</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of malaria on body weight of control and malaria-infected mice</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of malaria on body temperature of control and malaria-infected mice</td>
<td>46</td>
</tr>
<tr>
<td>4.4</td>
<td>Survival percentages of control and malaria-infected mice following inoculation with the parasites</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>Plasma RAGE concentrations measured in the control and malaria-infected mice</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>Correlation between plasma RAGE concentrations and percentage of parasitaemia in malaria-infected mice</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>Parasitaemia measured in the control, PBS-treated and mRAGE/pAb-treated malarial mice</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Parasitaemia measured in the control, PBS-treated and rmRAGE/Fc Chimera -treated malarial mice</td>
<td>58</td>
</tr>
<tr>
<td>4.9</td>
<td>Light micrograph of peripheral blood smears in control mice treated with PBS</td>
<td>59</td>
</tr>
<tr>
<td>4.10</td>
<td>Light micrograph of peripheral blood smears in malarial mice treated with PBS</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>Light micrograph of peripheral blood smears in malarial mice treated with mRAGE/pAb</td>
<td>60</td>
</tr>
<tr>
<td>4.12</td>
<td>Light micrograph of peripheral blood smears in malarial mice treated with rmRAGE/Fc Chimera</td>
<td>60</td>
</tr>
<tr>
<td>4.13</td>
<td>Plasma levels of TNF-α measured in control and malarial mice treated with PBS and RAGE related drugs</td>
<td>62</td>
</tr>
<tr>
<td>4.14</td>
<td>Plasma levels of IFN-γ measured in control and malarial mice treated with PBS and RAGE related drugs</td>
<td>63</td>
</tr>
<tr>
<td>4.15</td>
<td>Plasma levels of IL-2 measured in control and malarial mice treated with PBS and RAGE related drugs</td>
<td>64</td>
</tr>
<tr>
<td>4.16</td>
<td>Plasma levels of IL-4 measured in control and malarial mice treated with PBS and RAGE related drugs</td>
<td>65</td>
</tr>
<tr>
<td>4.17</td>
<td>Plasma levels of IL-6 measured in control and malarial mice treated with PBS and RAGE related drugs</td>
<td>66</td>
</tr>
<tr>
<td>4.18</td>
<td>Plasma levels of IL-10 measured in control and malarial mice treated with PBS and RAGE related drugs</td>
<td>67</td>
</tr>
<tr>
<td>4.19</td>
<td>Plasma levels of IL-17A measured in control and malarial mice treated with PBS and RAGE related drugs</td>
<td>68</td>
</tr>
<tr>
<td>4.20</td>
<td>Light micrograph of brain sections from PBS-treated control mice (A), PBS-treated (B), mRAGE/pAb-treated (C) and rmRAGE/Fc Chimera-treated (D) malarial mice</td>
<td>74</td>
</tr>
<tr>
<td>4.21</td>
<td>Light micrograph of brain sections from PBS-treated malarial mice</td>
<td>75</td>
</tr>
<tr>
<td>4.22</td>
<td>Light micrograph of liver sections from PBS-treated control mice (A), PBS-treated (B), mRAGE/pAb-treated (C) and rmRAGE/Fc Chimera-treated (D) malarial mice</td>
<td>78</td>
</tr>
<tr>
<td>4.23</td>
<td>Light micrograph of liver sections from PBS-treated control mice (A), PBS-treated (B, C, D), mRAGE/pAb-treated (E) and rmRAGE/Fc Chimera-treated (F) malarial mice</td>
<td>79</td>
</tr>
</tbody>
</table>
4.24 Light micrograph of spleen sections from PBS-treated control mice (A), PBS-treated (B), mRAGE/pAb-treated (C) and rmRAGE/Fc Chimera-treated (D) malarial mice

4.25 Light micrograph of spleen sections from PBS-treated control mice (A), PBS-treated (B, C), mRAGE/pAb-treated (D) and rmRAGE/Fc Chimera-treated (E, F) malarial mice

4.26 Light micrograph of spleen sections from PBS-treated control mice (A), PBS-treated (B, C, D), and mRAGE/pAb-treated (E) malarial mice

4.27 Light micrograph of kidney (cortex) sections from PBS-treated control mice (A), PBS-treated (B), mRAGE/pAb-treated (C) and rmRAGE/Fc Chimera-treated (D) malarial mice

4.28 Light micrograph of kidney (cortex) sections from PBS-treated control mice (A, B), PBS-treated (C, D), mRAGE/pAb-treated (E) and rmRAGE/Fc Chimera-treated (F) malarial mice

4.29 Light micrograph of kidney (medulla) sections from PBS-treated control mice (A) and PBS-treated malarial mice (B, C, D)

4.30 Light micrograph of kidney (medulla) sections from PBS-treated control mice (A, B), mRAGE/pAb-treated (C) and rmRAGE/Fc Chimera-treated (D) malarial mice

4.31 Light micrograph of lung sections from PBS-treated control mice (A), PBS-treated (B), mRAGE/pAb-treated (C) and rmRAGE/Fc Chimera-treated (D) malarial mice

4.32 Light micrograph of lung sections from PBS-treated malarial mice (A, B, C, D)
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approval of the Animal Care and Use Committee, UPM.</td>
<td>136</td>
</tr>
<tr>
<td>2</td>
<td>RAGE Standard Curve for ELISA Determination of RAGE Concentration in Mouse Plasma.</td>
<td>137</td>
</tr>
<tr>
<td>3</td>
<td>Definition of the Arbitrary Scale Used for Visual Observation of Physical Sign of Illness.</td>
<td>138</td>
</tr>
<tr>
<td>4</td>
<td>Preparation of Solution and Buffer.</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>Preparation of Chemicals and Reagents for Histopathological Study.</td>
<td>140</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ADCI antibody-dependent cellular inhibition
ALI acute lung injury
ANOVA one-way analysis of variance
APCs antigen-presenting cells
ARDS acute respiratory distress syndrome
B cells B lymphocyte cells
CBA cytometric bead array
cRAGE cleaved RAGE
CTL cytotoxic T cells
DCs dendritic cells
DNA deoxyribonucleic acid
Na₂HPO₄ disodium hydrogen phosphate anhydrous
ELISA enzyme-linked immunosorbent assay
esRAGE endogenous secretory RAGE
et al. and others
fl-RAGE full length, membrane-bound form RAGE
GPI glycosylphosphatidylinositol
GM-CSF granulocytes macrophage-colony stimulating factor
Ig immunoglobulin
ICAM-1 intercellular adhesion molecule-1
IFN-γ interferon-gamma
IL- interleukin
i.p. intraperitoneal
i.v. intravenous
JAK janus kinase
μg microgram
μL microliter
μm micrometer
mM milimolar
min minute
mRAGE/pAb mouse RAGE polyclonal antibody
ng nanogram
nm nanometer
NaN₃ sodium azide
NaCl sodium chloride
NK cells natural killer cells
NMD pathway nonsense-mediated decay pathway
NO nitric oxide
iNOS nitric oxide synthase
NF-κB nuclear factor kappa B
n number of observation
PfEMP-1 *P. falciparum*-encoded erythrocyte membrane protein-1
PRBCs parasite-infected red blood cells
PBS phosphate buffer saline
pg pictogram
P. *Plasmodium*
KCl potassium chloride
KH₂PO₄ potassium dihydrogen phosphate anhydrous
PGE₂ prostaglandin E₂
RAGE-/– mice homozygous RAGE deficient mice
RBCs red blood cells
rmRAGE/Fc Chimera recombinant mouse RAGE Fc chimera
rpm revolution per minute
sRAGE soluble RAGE
STAT signal transducer and activator of transcription
s.e.m. standard error of the mean
Th1 T-helper type 1
Th2 T-helper type 2
T_h cells T helper cells
TLR toll-like receptor
TGF-β tumor growth factor-beta
TNF-α tumor necrosis factor-alpha
T regs Regulatory T cells
VCAM-1 vascular cell adhesion molecule-1
w/v weight per volume
CHAPTER 1
INTRODUCTION

1.1 Background

Although being investigated for over hundreds years, malaria still remains a tough challenge to mankind, creating an enormous social, economic, and health burden. According to World Malaria Report 2012, malaria is reported as being endemic in over 104 countries and territories, spanning all continents of the world except Antarctica and Australia, with 99 of these countries had on-going malaria transmission. Despite the extensive efforts in controlling and eradicating malaria since 1955, half of the world population or approximately 3.3 billion people remain at risk of this parasitic infection. In 2010, there were an estimated 219 million cases of malaria, causing 660 000 deaths (WHO, 2012). Every year, malaria imposes huge financial costs on afflicted persons as well as the governments of the endemic countries, putting an immense economic burden on those countries (WHO, 2012; Roll back malaria, 2010).

In Malaysia, the national malaria eradication program has been a success in recent decades, steadily reduces the incidence of malaria from 59208 cases (29.7 per 10,000 populations) in 1995 to 6650 cases (2.4 per 10,000 populations) in 2010 (Lokman, 2011). The reported malaria death cases also remain steady within 20-40 cases annually for the last decade (Western Pacific Region WHO, 2012). The majority of malaria incidences in Malaysia are reported in both Sabah and Sarawak of Malaysian Borneo, accounted for 38% and 33% respectively of all reported cases (Ministry of Health Malaysia, 2011). Noteworthy, most of the malaria cases are confined to rural and semi-rural areas no matter in Peninsular Malaysia or Malaysian Borneo (Rundi, 2011) and largely concentrated among immigrant workers (legal/illegal), workers in land schemes, and hinterland aborigines who are mostly socio-economically disadvantaged (Ministry of Health Malaysia, 2011).

The appearance of first drug resistant case to one of the most common antimalarial drug, chloroquine, along the Thai-Combodian border in late 1950s, has indicated the start of a new chapter in the history of combating malaria. Since then, more and more cases reporting the resistance of the malaria parasites to anti-malarial chemotherapy were detected worldwide. To date, resistance in vivo has been observed in almost all currently used antimalarial drugs, including chloroquine, quinine, sulphadoxine-pyrimethamine, and mefloquine (Farooq & Mahajan, 2004). To make the situation worse, not only drug resistance of malaria parasites is widespread, the vector Anopheles mosquitoes themselves also have developed resistance to insecticide used for malaria control (WHO, 2012). Since no vaccine is yet fully available and new antimalarial agents will be facing resistance problem eventually, the need to develop a new therapeutic option for malaria therapy by targeting the immune system is great indeed.
Excessive inflammatory response to the parasite invasion is the disastrous endpoint of an overstimulated immune reaction, which in turn lead to malaria susceptibility, severe immunopathological conditions, septic shock and multi organ failure due to end organ damage (Plebanski & Hill, 2000). Although not much is known for the mechanisms in the pathogenesis of severe malaria, considerable evidences have revealed that high levels of pro-inflammatory cytokines such as interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-1 (IL-1) are correlated with severity of malaria and hyperinflammation is implicated in the development of severe malaria (Lyke et al., 2004; Artavanis-Tsakonas, Tongren & Riley, 2003). These findings suggest an idea that using immunomodulatory approach to reduce the overproduction pro-inflammatory cytokines and limiting the hyperactivated immune response may be beneficial in reducing morbidity and mortality due to severe malaria. In this case, receptor for advanced glycation end products (RAGE) has potential to be an attractive immunomodulatory target because RAGE signaling and its downstream pathways has been identified to be essential in perpetuation and amplification of inflammatory reactions (Bierhaus et al., 2005) as well as in the production of various pro-inflammatory cytokine, including TNF-α, IFN-γ, and IL-6 (Lotze & Tracey, 2005; Treutiger et al., 2003).

The receptor of advanced glycation endproducts (RAGE) is a newly identified multiligand receptors and a member of the immunoglobulin superfamily. It is involved in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. The binding of RAGE ligands, including advanced glycation endproducts (AGEs) and high mobility group box protein 1 (HMGB1), to their receptor has been found to initiate a series of intracellular signal transduction pathways that leads to a sustained inflammatory reaction (Lander et al. 1997; Wautier et al. 2001; Ishihara et al. 2003; Huang et al. 2001) as well as amplify the cytokine cascade during systemic inflammation (Andersson et al. 2000).

Upregulation of RAGE occurred in the blood vessels, neurons and transformed epithelial during many inflammatory-related pathologic conditions such as septicaemia, rheumatoid arthritis, inflammatory kidney disease, arteriosclerosis, and inflammatory bowel disease (Bierhaus et al. 2005). The potential of RAGE as therapeutic target in disease conditions has been demonstrated in several studies. Blocking of RAGE signal transduction pathway for example can increase survival in experimental sepsis (Wang et al. 1999; Yang et al. 2004), reduce the signs of lung damage in acute inflammation during lung injury (Abraham et al. 2000) and increase survival after massive liver resection (Cataldeigirmen et al. 2005). The most interesting finding was that RAGE knockout mice were protected from lethal septic shock as compared with the wild-type controls (Liliensiek et al. 2004).

Most data from the previous studies suggest that RAGE perpetuates and amplifies inflammatory reactions and targeting this receptor might help curbing the hyperinflammatory responses that occur in many inflammation-associated conditions. Since malaria is also considered as an inflammatory disease involving excessive inflammatory response towards parasite invasion and severe systemic inflammation has been closely linked to morbidity and mortality of the disease, it is necessary to investigate whether modulation of RAGE signaling pathway would produce any
beneficial outcomes during malaria infection. If modulation of RAGE signaling pathways can produce impact on the pathological conditions seen during malaria infection then targeting RAGE would be beneficial and it can represent a promising new therapeutic option for malaria therapy. This can at least reduce the morbidity and mortality associated with malaria infection and may be a breakthrough in the effort of treating the disease.

1.2 Hypotheses

In this study, it is hypothesized that RAGE is involved in malaria infection and modulating the RAGE signaling pathway would give a positive impact on the pathophysiology of the disease.

1.3 Objectives

The general objective of this research is to study and determine the possible roles and involvement of RAGE during malaria infection. The specific objectives of this study are listed as follows:

1) To investigate the involvement of RAGE during malaria infection by determining its expression at systemic level.
2) To modulate the expression of RAGE \textit{in vivo} by means of neutralizing antibody against RAGE and chimera binding protein as an antagonist to RAGE ligands.
3) To evaluate the effects of RAGE pathway modulation on the pathological changes seen during malaria infection, whether blocking of RAGE pathway would improve the pathological conditions associated with disease.
4) To evaluate the modulatory effects of RAGE on the pattern of major cytokines release during the infection. This includes the pro-inflammatory cytokines IL-2, IL-6, IL-17A, TNF-\(\alpha\) and IFN-\(\gamma\), and the anti-inflammatory cytokines IL-10 and IL-4.
REFERENCES

parasitemia and cerebral lesions in malaria-infected mice. *Experimental Parasitology, 77*(2), 212-223.

Depinay, N., Franetich, J. F., Grüner, A. C., Mauduit, M., Chavatte, J. M., Luty, A. J., ... & Rénia, L. (2011). Inhibitory effect of TNF-α on malaria pre-
erythrocytic stage development: influence of host hepatocyte/parasite combinations. PLoS One, 6(3), e17464.

Gazzinelli, R. T., Wysocka, M., Hieny, S., Scharton-Kersten, T., Cheever, A., Kühn, R., ... & Sher, A. (1996). In the absence of endogenous IL-10, mice acutely infected with *Toxoplasma gondii* succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. *The Journal of Immunology, 157*(2), 798-805.

Gysin, J., Gavoille, S., Mattei, D., Scherf, A., Bonnefoy, S., Mercereau-Puijalon, O., ... & da Silva, L. P. (1993). In vitro phagocytosis inhibition assay for the
screening of potential candidate antigens for sub-unit vaccines against the asexual blood stage of *Plasmodium falciparum*. *Journal of Immunological Methods, 159*(1), 209-219.

Kai, O. K., & Roberts, D. J. (2008). The pathophysiology of malarial anaemia: where have all the red cells gone?. *BMC Medicine, 6*(1), 24.

Keller, C. C., Yamo, O., Ouma, C., Ong’echa, J. M., Onah, D., Hittner, J. B., ... & Perkins, D. J. (2006). Acquisition of hemozoin by monocytes down-regulates interleukin-12 p40 (IL-12p40) transcripts and circulating IL-12p70 through an IL-10-dependent mechanism: in vivo and in vitro findings in severe malarial anemia. *Infection and Immunity, 74*(9), 5249-5260.

experimental models of severe sepsis and systemic infection. *Critical Care, 11*(6), R122.

Lyke, K. E., Burges, R., Cissoko, Y., Sangare, L., Dao, M., Diarra, I., ... & Sztein, M. B. (2004). Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12 (p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. *Infection and immunity, 72*(10), 5630-5637.

Mohan, K., Moulin, P., & Stevenson, M. M. (1997). Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage...
Plasmodium chabaudi AS infection. *The Journal of Immunology, 159*(10), 4990-4998.

cytokines and inhibition by neomycin. Clinical & Experimental Immunology, 86(1), 22-29.

berghei infection in BALB/c and C57BL/6 mice. Parasitology Research, 105(1), 281-286.

levels of serum antibodies to activating malaria antigens. *Proceedings of the National Academy of Sciences*, 87(14), 5484-5488.

Yang, H., Ochani, M., Li, J., Qiang, X., Tanovic, M., Harris, H. E., ... & Tracey, K. J. (2004). Reversing established sepsis with antagonists of endogenous high-mobility group box 1. *Proceedings of the National Academy of Sciences, 101*(1), 296-301.

