UNIVERSITI PUTRA MALAYSIA

ISOLATION OF BACTERIA FROM CONTAMINATED SOIL AND THEIR BIODEGRADATION POTENTIAL

PARDIS KARIMI ALAVIJEH

FPAS 2015 5
ISOLATION OF BACTERIA FROM CONTAMINATED SOIL AND THEIR BIODEGRADATION POTENTIAL

By

PARDIS KARIMI ALAVIJEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2015
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ISOLATION OF BACTERIA FROM CONTAMINATED SOIL AND THEIR BIODEGRADATION POTENTIAL

By

PARDIS KARIMI ALAVIJEH

September 2015

Chair : Normala bt Halimoon, PhD
Faculty : Environmental Studies

Industrialization is accompanied by inevitable complications among which pollutions and global warming are of utmost importance. Oil spills are an important part of pollution and can be very hard to clean up, requiring weeks to even years. Among various different remediation methods, bioremediation is considered one of the best. Fundamental concern of this work was enhancing biodegradation capability of potential indigenous tropical soil bacteria without genetic mutations, changing soil mineral ratios or soil microbial community. Thus, in a new approach suitable bacterial isolates adapted sequentially to higher concentrations of crude oil at pH and temperature values simulating their natural habitat. Their biodegradation ability in terms of n-alkane removal analyzed both in liquid medium and soil within 28 days. In doing so, soil bacteria were isolated, enriched and selected based on their ability to grow on 5% (v/v) crude oil, leading to selection of 8 isolates. Later a simple mathematical model for their growth was calculated to monitor their growth easily and accurately. At later stages isolates were adapted sequentially to higher concentration of crude oil, i.e. 10, 20 and 50% (v/v) at the pH and temperature values similar to their natural habitat. Their growth monitored using their growth equations and exponential growth rate and doubling time of each isolate at each concentration was calculated. Only 5 out of 8 isolates could survive 50% (v/v) crude oil and the other 3 showed negative values for exponential growth indicating lack of growth at 50% (v/v). To identify the bacteria, biochemical, morphological and molecular identification techniques were conducted; Top 5 oil degraders were identified as *P. putida*, *A. lwofii*, *A. hydrophila*, *P. stutzeri*, and *A. johnsonii* by 16S rRNA sequencing; The other 3 isolates identified morphologically and biochemically only, and found to be 1 isolate from *Rhodococcus spp.* and 2 from *Bacillus spp.* Based on gas chromatography-mass spectrometry analysis adapted isolates and their consortium proved to be more efficient in n-alkane degradation as removal of C8-C33 was enhanced up to 93% in liquid cultures and 70% in artificially polluted soil after 28 days. *P. putida*, *A. lwofii*, *A. hydrophila*, *P. stutzeri*, and *A. johnsonii* removed 74%, 56%, 76%, 61%, and 67%, respectively from a liquid medium amended with 50% (v/v) crude oil. A comparison between degradation ability of 5 bacterial mixture in soil before and after sequential adaptation showed that their biodegradation ability was enhanced up to 41%
without any exposure to biological mutation or addition of nutrients. In addition ratios of n\textsubscript{17} to pristane and n\textsubscript{18} to phytane before and after degradation supported the promising bioremediation ability of the consortiums and that removal was indeed happened as a result of their activity. In general result suggests preconditioning bacterial isolates to higher oil concentration can significantly enhance their biodegradation ability especially when the isolates are applied as a consortium.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGASINGAN BAKTERIA DARI TANAH TERCEMAR DAN POTENSI BIODEGRADASI MEREKA

Oleh

PARDIS KARIMI ALAVIJEH

September 2015

Pengerusi : Normala bt Halimoon, PhD
Fakulti : Pengajian Alam Sekitar

Perindustrian disertai dengan komplikasi yang tidak dapat dielakkan diantara pencemaran dan pemanasan global adalah amat penting. Tumpahan minyak adalah salah satu bahagian penting dalam pencemaran dan boleh jadi sangat sukar untuk dibersihkan, yang memerlukan beberapa minggu hingga bertahun-tahun. Antara pelbagai kaedah pemulihan yang berbeza, bio-remediasi dianggap sebagai salah satu yang terbaik. Perhatian asas kerja ini telah meningkatkan keupayaan potensi bio-penguraian bakteria asli tanah tropika tanpa mutasi genetik, perubahan nisbah mineral tanah atau komuniti mikrob tanah. Oleh itu, dalam pendekatan baru bakteria asingan yang sesuai jujukan diadaptasikan pada kepekatan minyak mentah yang lebih tinggi pada nilai pH dan suhu yang disimulasikan habitat semulajadi. Keupayaan biopenguraiaannya dari segi analisis penyingkiran n-alkana kedua-duanya dalam medium ceair dan tanah dalam tempoh 28 hari. Dengan berbuat demikian, bakteria tanah dipencil, diperkaya dan dipilih berdasarkan kepada keupayaannya untuk tumbuh pada 5% (v/v) minyak mentah, yang membawa kepada pemilihan 8 asingan. Kemudian model matematik mudah untuk pertumbuhannya dikira bagi memantau pertumbuhannya dengan mudah dan tepat. Pada langkah seterusnya, asingan jujukan diadaptasikan pada kepekatan minyak mentah yang lebih tinggi, iaitu 10, 20 dan 50% (v/v) pada nilai pH dan suhu yang sama dengan habitat semulajadi. Pertumbuhannya dipantau menggunakan persamaan pertumbuhan dan kadar pertumbuhan eksponen serta masa gandaan setiap asingan pada setiap kepekatan dikira. Hanya 5 daripada 8 asingan boleh terus hidup pada 50% (v/v) minyak mentah dan 3 yang lain menunjukkan nilai negatif pada pertumbuhan eksponen menunjukkan vi pengurangan pertumbuhan pada 50% (v/v). Untuk mengenalpasti bakteria tersebut, teknik biokimia, morfologi dan pengenalpastian molekul telah dijalankan; 5 pengurai minyak yang tertinggi telah dikenalpasti sebagai P. putida, A. Iwoffii, A. hydrophila, P. stutzeri, dan A. johnsonii secara penjukuran rRNA 16S; 3 asingan lagi dikenalpasti morfologi dan biokimia sahaja, dan didapati 1 asingan dari Rhodococcus spp. dan 2 daripada Bacillus spp. Berdasarkan analisis gas kromatografi-spektrometri jisim asingan yang diadaptasi dan konsortiumnya terbukti lebih berkesan dalam penguraian n-alkana sebagai penyingkiran C8-C33 telah meningkat sehingga lebih dari 93% dalam kultur...
cecair dan 70% di dalam tanah buatan tercemar selepas 28 hari. *P. putida*, *A. lwoffi*, *A. hydrophila*, *P. stutzeri*, dan *A. johnsonii* menyeringkarkan 74%, 56%, 76%, 61%, dan 67%, masing-masing daripada media cecair yang dipinda dengan 50% (v/v) minyak mentah. Perbandingan diantara keupayaan penguraian 5 campuran bakteria di dalam tanah sebelum dan selepas adaptasi urutan menunjukkan bahawa keupayaan bio-penguraianannya telah meningkat sehingga lebih dari 41% tanpa sebarang pendedahan kepada mutase biologi atau penambahan nutrien. Tambahan pula, nisbah \(n_17\) pada pristane dan \(n_18\) pada phytane sebelum dan selepas penguraian menyokong keupayaan bio-remediasi yang dijanjikan bagi konsortium dan penyingkiran itu sememangnya berlaku hasil daripada aktivitinya. Secara umumnya keputusan mencadangkan keadaan awal bakteria yang diasingkan pada kepekatan minyak yang lebih tinggi secara ketara boleh meningkatkan keupayaan bio-penguraianannya terutama apabila asingan digunakan sebagai konsortium.
ACKNOWLEDGEMENTS

It gives me great pleasure in acknowledging the support and help of my committee chair, Dr. Normala Bt Halimoon, for her support, help, patience and advises over the past four years. At many stages during this project I have benefited from her advice. I am grateful, beyond words, for her understanding throughout my work whenever I faced any difficulties.

I would like to give my thanks to my committee members, Prof. Mohamad Pauzi Zakaria and Dr. Wan Lutfi. I, also would like to sincerely thank Prof. Mohamad Pauzi Zakaria for his guidance and advises for this work.

In particular, I am grateful to the Science Assistant Officer team, Mr. Zuber Mohd. Saad and Abdul Rashid Haron, Mrs. Siti Norlela Talib, Laboratory Assistant, Who helped me to perform several laboratory tasks that were required for this work.

I am forever in debt to my beloved parents, Mr. Hossein Karimi Alavijeh and Mrs. Marzieh Bakhtiari, who are all my inspiration and motivation for everything. Thank you for supporting me and allowing me to follow my ambitions through my childhood. Thank you for letting be the person I am today. Without your endless support, enduring love, constant guidance, motivation and encouragement, I could not have made it this far. I love you from the bottom of my heart.

I would also thank my beloved, adorable twin sisters, Miss. Parisa Karimi Alavijeh and Miss. Parastoo Karimi Alavijeh, for making my childhood memorable, all because of having two joyful, phenomenal sisters. Thank you for feeling responsible when I made mistakes, feeling answerable when I hurt and also for trusting me.

My sincere, deepest appreciation to my dear husband and best friend, Benjamin, who has been tolerant, actively engaged and remained willing to engage with the struggle of preparing this work whom without his help and advises completion of this thesis would not have been possible. A very special thanks to him for his practical and emotional support. Million thanks for making heavy words like compatibility and compromise seem like a breezy cakewalk in our married life.
I certify that a Thesis Examination Committee has met on 29 September 2015 to conduct the final examination of Pardis Karimi Alavijeh on her thesis entitled "Isolation of Bacteria from Contaminated Soil and their Biodegradation Potential" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Ahmad Zaharin bin Aris, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Shuhaimi bin Mustafa, PhD
Professor
Halal Products Research Institute
Universiti Putra Malaysia
(Internal Examiner)

Ahmad Makmom bin Abdullah, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Internal Examiner)

Maricar S. Prudente, PhD
Professor
De Salle University
Philippines
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 November 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Normala bt Halimoon, PhD
Senior Lecturer
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Mohamad Pauzi Zakaria, PhD
Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Member)

Wan Lutfi Wan Johari, PhD
Senior Lecturer
Faculty of Environmental Studies
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work
• quotations, illustrations and citations have been duly referenced
• the thesis has not been submitted previously or concurrently for any other degree at any institutions
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be owned from supervisor and deputy vice – chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: Pardis Karimi Alavijeh Date: 10 January 2016

Name and Matric No.: Pardis Karimi Alavijeh, GS29059
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: Normala bt Halimoon, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Mohamad Pauzi Zakaria, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Wan Lutfi Wan Johari, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Crude oil pollution and its impact on the environment</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Hydrocarbon pollution</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Bioremediation of hydrocarbon</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Effect of hydrocarbon pollutants on soil microbial community</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Microbial biodegradation of alkanes</td>
<td>10</td>
</tr>
<tr>
<td>2.6 Aerobic degradation of alkanes</td>
<td>15</td>
</tr>
<tr>
<td>2.7 Factors affecting bacterial biodegradation</td>
<td>16</td>
</tr>
<tr>
<td>2.7.1 Temperature</td>
<td>17</td>
</tr>
<tr>
<td>2.7.2 pH</td>
<td>17</td>
</tr>
<tr>
<td>2.7.3 Prior exposure to hydrocarbons</td>
<td>18</td>
</tr>
<tr>
<td>2.7.4 Bioavailability</td>
<td>19</td>
</tr>
<tr>
<td>2.8 Soil sampling techniques</td>
<td>20</td>
</tr>
<tr>
<td>2.9 Bacterial Identifications</td>
<td>20</td>
</tr>
<tr>
<td>2.10 Analysis of oil biodegradation and gas chromatography</td>
<td>23</td>
</tr>
<tr>
<td>2.11 Statistical analysis</td>
<td>25</td>
</tr>
<tr>
<td>3 MATERIALS AND METHODS</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Reagents</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Soil sampling</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1 Soil Surface Sampling</td>
<td>32</td>
</tr>
<tr>
<td>3.2.2 Depth Soil Sampling with Augers</td>
<td>32</td>
</tr>
<tr>
<td>3.3 Bacterial sample preparation</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Bacterial sample isolation</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1.1 Sample collection</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1.2 Enrichment method</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1.3 Single colony isolation</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2 Bacterial isolate selection</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2.1 First screening</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2.2 Second screening</td>
<td>34</td>
</tr>
<tr>
<td>3.3.3 Bacterial preservation and revival</td>
<td>35</td>
</tr>
<tr>
<td>3.3.3.1 Bacterial preservation</td>
<td>35</td>
</tr>
</tbody>
</table>
3.3.3.2 Bacterial revival 35
3.4 Line correlation between optical density and colony forming units of bacteria isolates 35
3.5 Determination of pH 36
3.5.1 Soil pH determination 36
3.5.2 Determination of optimum pH 36
3.6 Determination of temperature 37
3.6.1 Measuring soil temperature 37
3.6.2 Determination of optimum temperature 37
3.7 Sequential adaptation 38
3.7.1 Bacterial preparation 38
3.7.2 Sequential adaptation to different crude oil concentrations 38
3.7.3 Bacterial growth monitoring 39
3.8 Bacterial identification 39
3.8.1 Morphological test 39
3.8.2 Biochemical tests 40
3.8.3 Molecular identification using 16s rRNA sequencing
3.8.3.1 DNA extraction 42
3.8.3.2 Performing polymerase chain reaction 42
3.9 Biodegradation evaluation 43
3.9.1 Bacterial preparation 43
3.9.2 Media preparation and experimental setup 44
3.9.2.1 Liquid medium (MSM + crude oil) 44
3.9.2.2 Solid medium (soil + crude oil) 44
3.9.3 Biodegradation capability of single bacterial isolates 44
3.9.4 Biodegradation ability of consortium 45
3.9.4.1 Biodegradation capability of the consortium in MSM amended with 50% (v/v) crude oil 45
3.9.4.2 Analyzing biodegradation capability of the consortium in soil amended with 20% (w/w) crude oil 45
3.9.5 Quantitative measuring of oil degradation using GC-MS
3.9.5.1 Extraction of degraded crude oil 46
3.9.5.1.1 Extraction of crude oil from liquid medium 46
3.9.5.1.2 Extraction of crude oil from soil 46
3.9.5.3 Measuring biodegradation capability of individual isolates and the consortium using GC-MS 46
3.10 statistical analysis 47
3.10.1 Regression analysis 47
3.10.2 One-way ANOVA 47
3.10.3 Q-test 47
3.11 Qualitative controls 49
3.11.1 Controlled experimentation 49
3.11.2 Quality control during sequential adaptation 51
3.11.3 Quality control after biodegradation analysis 51

4 RESULTS AND DISCUSSION 52
4.1 Results 52
 4.1.1 Isolation of bacteria from soil 52
 4.1.1.1 Enrichment 52
 4.1.1.2 First stage of selecting isolates 53
 4.1.1.3 Final selection of potential isolates 55
 4.1.2 pH 57
 4.1.2.1 Determination of soil pH (pH-CaCl₂) 57
 4.1.2.2 Determination of Optimum pH 58
 4.1.3 Temperature 59
 4.1.3.1 Measuring soil temperature 59
 4.1.3.2 Determination of optimum temperature 61
 4.1.4 Determination of relation between optical density and number of colony forming units for selected bacterial isolates 61
 4.1.5 Sequential adaptation 67
 4.1.6 Identification of bacterial isolates 73
 4.1.7 Biodegradation evaluation 81
 4.1.7.1 Analyzing Biodegradation Capability of Individual Isolates 81
 4.1.7.2 Analyzing Biodegradation Capability of Bacterial Consortium in Soil 95
 4.1.7.3 Percentage Difference in Biodegradation Capability of Adapted Bacterial and Un-adapted Consortiums in Soil 96
 4.1.7.4 Interpretation of biodegradation ability of adapted strains 99

4.2 Discussion 102

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 110

REFERENCES 112
APPENDICES 127
BIODATA OF STUDENT 147
LIST OF PUBLICATIONS 148
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Percentage of Different Elements in Crude Oil by Weight</td>
</tr>
<tr>
<td>3.1</td>
<td>McFarland Standard Preparation Chart and Corresponding OD Values</td>
</tr>
<tr>
<td>3.2</td>
<td>Key to interpret nitrate reduction results</td>
</tr>
<tr>
<td>3.3</td>
<td>Conditions Of Polymerase Chain Reaction</td>
</tr>
<tr>
<td>3.4</td>
<td>General laboratory conditions as per record</td>
</tr>
<tr>
<td>4.1</td>
<td>Bacterial growth monitoring by obtaining CFU/mL after each enrichment</td>
</tr>
<tr>
<td>4.2</td>
<td>Growth Ability of 12 Selected Bacterial isolates</td>
</tr>
<tr>
<td>4.3</td>
<td>Doubling Time and Exponential Growth rates</td>
</tr>
<tr>
<td>4.4</td>
<td>Average temperature of the soil at the sampling location</td>
</tr>
<tr>
<td>4.5</td>
<td>Growth equation for each bacteria</td>
</tr>
<tr>
<td>4.6</td>
<td>Biochemical and morphological characteristics of isolate Aeromonas hydrophila</td>
</tr>
<tr>
<td>4.7</td>
<td>Alignment and identification results for Aeromonas hydrophila</td>
</tr>
<tr>
<td>4.8</td>
<td>Biochemical and morphological characteristics of isolate Acinetobacter johnsonii</td>
</tr>
<tr>
<td>4.9</td>
<td>Alignment and identification results for Acinetobacter johnsonii</td>
</tr>
<tr>
<td>4.10</td>
<td>Biochemical and morphological characteristics of isolate Pseudomonas putida</td>
</tr>
<tr>
<td>4.11</td>
<td>Alignment and identification of Pseudomonas putida</td>
</tr>
<tr>
<td>4.12</td>
<td>Biochemical and morphological characteristics of isolate Pseudomonas stutzeri</td>
</tr>
<tr>
<td>4.13</td>
<td>Alignment and identification of Pseudomonas stutzeri</td>
</tr>
<tr>
<td>4.14</td>
<td>Biochemical and morphological characteristics of isolate Acinetobacter lwofii</td>
</tr>
<tr>
<td>4.15</td>
<td>Alignment and identification of Acinetobacter lwofii</td>
</tr>
<tr>
<td>4.16</td>
<td>Biochemical and Morphological Characteristics</td>
</tr>
<tr>
<td>4.17</td>
<td>Pristane and phytane ratio for isolates, consortium and soil (adapted, un-adapted)</td>
</tr>
<tr>
<td>4.18</td>
<td>Difference of Alkane Removal of Adapted Isolates and Un-Adapted Isolates</td>
</tr>
<tr>
<td>4.19</td>
<td>n-alkane removal of selected bacterial isolates after sequential adaptation</td>
</tr>
<tr>
<td>4.20</td>
<td>n-alkane removal (%) before and after sequential adaptation</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of some popular alkanes</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Possible Interactions between Soil Materials and Aliphatic Hydrocarbons</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Range of bacterial uptake mechanisms for hydrocarbons in the soil</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Biodegradation of alkanes</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Aerobic degradation of hydrocarbons for the purpose of growth</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Three dimensional structure of pristine and phytane</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic representation of sampling strategy</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Location map of the sampling site at former ESSO refinery near Malaysian city of Port Dickson</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Soil polluted with crude oil</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic drawing of an auger used for soil sampling</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic Representation of Steps Taken to Adapt Bacteria to Higher Oil Concentrations and Natural Occurring Temperature and pH at Sampling Site</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Oxidase test</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>Experiment setup that was implemented in this study</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean soil pH in 0.01M CaCl2 at different depths</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Growth of bacterial consortium at different pH</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Growth of bacterial consortium at different temperature</td>
<td>61</td>
</tr>
<tr>
<td>4.4a</td>
<td>Growth equation of bacterial isolates 3 and 7 (moderate growth)</td>
<td>63</td>
</tr>
<tr>
<td>4.4b</td>
<td>Growth equation of bacterial isolates 10 and 12 (moderate growth)</td>
<td>64</td>
</tr>
<tr>
<td>4.4c</td>
<td>Growth equation of bacterial isolates 5 and 6 (moderate growth)</td>
<td>65</td>
</tr>
<tr>
<td>4.4d</td>
<td>Growth equation of bacterial isolates 8 and 9 (good growth)</td>
<td>66</td>
</tr>
<tr>
<td>4.5a</td>
<td>CFU/mL of isolates ‘3’ and ‘7’ at concentrations of 10, 20, and 50% (v/v)</td>
<td>68</td>
</tr>
<tr>
<td>4.5b</td>
<td>CFU/mL of isolates ‘10’ and ‘12’ at concentrations of 10, 20, and 50% (v/v)</td>
<td>69</td>
</tr>
<tr>
<td>4.5c</td>
<td>CFU/mL of isolates ‘5’ and ‘6’ at concentrations of 10, 20, and 50% (v/v)</td>
<td>70</td>
</tr>
<tr>
<td>4.5d</td>
<td>CFU/mL of isolates ‘8’ and ‘9’ at concentrations of 10, 20, and 50% (v/v)</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>Aliphatic hydrocarbon removal by Pseudomonas putida</td>
<td>82</td>
</tr>
<tr>
<td>4.7</td>
<td>Percentage removal of C8–C33 by Pseudomonas putida in 50% (v/v) crude oil</td>
<td>82</td>
</tr>
<tr>
<td>4.8</td>
<td>Aliphatic hydrocarbon removal by Acinetobacter lwofii</td>
<td>84</td>
</tr>
<tr>
<td>4.9</td>
<td>Percentage removal of C8–C33 by Acinetobacter lwofii in 50% (v/v) crude oil</td>
<td>84</td>
</tr>
</tbody>
</table>
4.10 Aliphatic hydrocarbon removal by *Aeromonas hydrophilla* 86
4.11 Percentage removal of C8–C33 by *Aeromonas hydrophilla* in 50% (v/v) crude oil 86
4.12 Aliphatic hydrocarbon removal by *Pseudomonas stutzeri* 88
4.13 Percentage removal of C8–C33 by *Pseudomonas stutzeri* in 50% (v/v) 88
4.14 Aliphatic hydrocarbon removal by *Acinetobacter johnsonii* 90
4.15 Percentage removal of C8–C33 by *Acinetobacter johnsonii* in 50% (v/v) crude oil 90
4.16 Aliphatic hydrocarbon removal by consortium of Adapted isolates 92
4.17 Percentage removal of C8–C33 by consortium of Adapted isolates in 50% (v/v) crude oil 92
4.18 Percentage removal of C8 – C33 by consortium of adapted and un-adapted isolates in soil in 20% (w/w) 96
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM</td>
<td>Mineral Salt Media</td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptic Soy Agar</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptic Soy Broth</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Magnesium sulfate</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Potassium dihydrogen phosphate</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>Ammonium nitrate</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>Iron(III) chloride</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>Calcium Chloride Dihydrate</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulfuric acids</td>
</tr>
<tr>
<td>BaCl₂</td>
<td>Anhydrous barium chloride</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>OD600</td>
<td>Optical Density at 600 Nanometer</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Count Unit</td>
</tr>
<tr>
<td>CFU/mL</td>
<td>Colony Count Unit per milliliter</td>
</tr>
<tr>
<td>Cell/mL</td>
<td>Bacterial cell per milliliter</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Centigrade</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per Minutes</td>
</tr>
<tr>
<td>%v/v</td>
<td>Volume per Volume percentage</td>
</tr>
<tr>
<td>mL</td>
<td>Milli Litre</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>g/L</td>
<td>Gram per Litre</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>pr</td>
<td>Pristane</td>
</tr>
<tr>
<td>ph</td>
<td>Phytane</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

In the past hundred years, a large number of ecosystems have been changed by the growing influence of human activity. As a result, we as humans become more and more aware of the need to protect our ecosystem as well as to control and reduce the extent of damage caused by various human activities. One of the most readily available examples of such risky activities are the ones that result in polluting soil, water and air. Due to insatiable hunger of humans for energy and the fact that crude oil is a relatively cheap and efficient source of energy and raw materials, oil pollutions as a result of its extraction, transportation and refining have been frequently affecting different environments and ecosystems all around the globe (Emami et al., 2014; Paiga et al., 2012).

Soil contamination with hydrocarbons causes extensive damage to local ecosystems as accumulation of pollutants in animal and plant tissues may cause infertility, unfavorable genetic mutations and catastrophic deaths (Arellano et al., 2015; Kriti and Chandra, 2014). By international and domestic laws and regulations of most countries release of petroleum into environment is strictly regulated due to its complex, non-aqueous, and hydrophobic nature of petroleum (Mandal, 2012). However in case of an inevitable accident, the pollution requires to be dealt with accordingly. Generally, various physiochemical cleanup techniques are costly, more energy demanding, and are not environmental sustainable (Liu, 2010). In some cases, their environmental impact like their adverse damage on soil structure and release of toxic elements have been reported (Sample, 2001).

Therefore it is of utmost importance to be able to constantly come up with innovative and effective measures to clean such contaminations effectively and permanently. One of the most effective and yet natural ways to clean these kinds of pollutions is with the help of biological organisms which is also known as bioremediation. The fact that petroleum is a good energy and electron source for microbes; makes use petroleum hydrocarbons an attractive food source which consequently results in complex hydrocarbons break down to the simpler forms. Hence, petroleum is both a product of microbes and also an energy source for them (Ehrlich, 1995).

The success of oil spill bioremediation depends on the ability to establish and maintain conditions that favor enhanced oil biodegradation rates in the contaminated environment, meaning that the oil degraders should be selected in a way to suite the especial environment they are going to be applied to and at
the same time should be provided with favorable conditions so they can fulfil degradation of hydrocarbon pollutants to the best of their potentials (Battikhi, 2014; Das and Chandran, 2011). There are limitations in taking both side into account however there are various methods currently being practiced and the search for better ones is ongoing.

Numerous scientific reviews have covered various factors that influence the rate of oil biodegradation. One important requirement is the presence of microorganisms with the appropriate metabolic capabilities (Adams et. al., 2015). If these microorganisms are present, then optimal rates of growth and hydrocarbon biodegradation can be sustained by ensuring that other requirements of biodegradation are at adequate level. Most existing studies have concentrated on evaluating the factors affecting oil bioremediation or testing favored conditions and external enhancers such as nutrients and supplements to act in combination with microbes to yield possible maximum hydrocarbon removal. Moreover the scope of current understanding of oil bioremediation is also limited because the emphasis of most of field studies and reviews have been on the evaluation of bioremediation technology rather than on whether these methods are environmental friendly themselves particularly in long run.

Hydrocarbon removal by bacteria is extremely dependent on the environmental situation like pH, temperature, contamination concentration extent of pollution (Bossert, 1984). The complexity of the hydrocarbon is also important in the bioremediation rate and extent; the less the complexity, the higher the extent of bioremediation would be. Although majority of petroleum hydrocarbon are degradable by bacteria; however, low molecular weight hydrocarbons are easier to be degraded and more complex compounds of petroleum hydrocarbons; for example, long-chained alkanes are not degradable instantly and completely because of their extremely hydrophobic properties (Caumette, 2004); therefore, no matter how favorable the conditions are or how strong are the metabolism of the indigenous microorganism, complete cleanup is still a matter of time.

One possible and effective solution is to generate biotechnologically improved bacterial populations as a way to enhance degradation capacity; however, this method may cause yet other complications concerning introduction of genetically modified organisms (GMO) in the environment. The introduced GM bacteria may have an unknown adverse effect on the environment by influencing ecological factors or inflicting pathogenic effects on different members of the ecosystem (Megharaj, et. al. 2011).

In another approach it was tried to improve biodegradation ability of bacteria by exposing them to biological mutation by adding specific chemical substances (Alsulami et. al., 2014; Wasify, 2014). In addition various biodegradation experiments have revealed that prior exposure of bacteria to hydrocarbon pollutants results in their genetic adaptation to hydrocarbon degradation (Das, 2015; Sangeetha and Thangadurai, 2014). Therefore it seems that for a fast, reliable, unhazardous cleaning of crude oil contamination through native bacterial bioremediation, having a native bacterial population with most
adaptability to the environmental conditions and at the same time taking advantage of their collective biodegradation capability to increase their biodegradation power and efficiency can be a promising solution (Mishamandani et al., 2015; Kostka et al., 2011; Swannell, 1996). Which can be enhanced further in extent and power by preconditioning selected bacterial isolates to gradual increase in stressful conditions that need to be overcome in order for a successful bioremediation to happen.

The purpose of this study was to ascertain if the predominant species of oil-degrading bacteria in oil contaminated soil are a potential oil-degraders and to determine how well the indigenous hydrocarbon-degrading bacteria are able to degrade crude oil. Specifically after being sequentially adapt to higher crude oil concentrations. Characterizing these microbial communities will provide the scientific community with valuable insights that can be used in the future to determine suitable remediation strategies after oil spills or determine microbial resilience in a given ecosystem.

In doing so following hypotheses were established:

- Exposing bacterial populations to higher crude oil concentrations will result in better adaptation ability in surviving through stressful environmental conditions caused by soil pollution.
- Gradual preconditioning will result in better adaptability and consequently better remediation of hydrocarbon pollutions of tropical soil.
- Combining adapted microorganism, in a consortium will help in using their collective metabolic ability which has already been enhanced through sequential adaptation, to remove crude oil hydrocarbons more extensively.

To examine these hypotheses following questions were tried to be answered in this study:

1. What are the best specific types of bacteria capable of degrading crude oil pollution in tropical soils?
2. Whether or not being sequentially preconditioned and adapted to higher crude oil concentrations will significantly enhance biodegradation ability of indigenous tropical soil bacteria?
3. Whether or not it will be a better approach if a collective set of adapted bacteria is used to remove crude oil pollution in tropical soils?

As such, following objectives were implemented:

1. Isolation, enrichment, characterization and identification of oil degrading bacteria from tropical soils.

2. Determination of pH and temperature at sampling site as well as determining the optimum pH and temperature for growth and survival of selected bacteria.

3. Sequentially adapting and preconditioning the selected isolates to higher crude oil concentrations at pH and temperature values simulating their natural habitat.

4. Biochemical and molecular identification (16S rRNA sequencing) of selected bacterial isolates.

It is worth to mention that \(n\)-alkane fraction of crude oil used as a marker for evaluation of removal ability of selected potential bacterial isolates as \(n\)-alkanes comprise the main fraction of crude oil regardless of where crude oil is originated from.
REFERENCES

bacterioplankton to the Deepwater Horizon oil spill. ISME J, 7(12), 2315-2329.

Vladimir, P.B., Gordana Gojić-Cvijović, Branimir Jovančićević and Miroslav M. Vrvić (2012) Gas chromatography in environmental sciences and

