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Urban areas consist of a wide range of man-made and natural features, which 
lead to a high level of spectral and spatial confusions in detecting roofing 
materials and other urban land cover features. These heterogeneities and 
confusions result in erroneous thematic maps that use spectral information only. 
Reliable and new approaches that combine the spectral and spatial 
characteristics of urban land covers are necessary to extract accurate detailed 
maps of urban features in different regions.  
 

Airborne hyperspectral images with very high spatial and spectral discrimination 
capabilities can be considered to characterize urban land-cover classes; 
however, the frequent use of airborne hyperspectral images is infeasible 
because of the limited spatial coverage and high cost of data acquisition. 
Consequently, pan-sharpened WorldView-2 (WV-2) multispectral images with a 
spatial resolution of 0.5 m were used as the main data for this research, whereas 
hyperspectral images were included as supplementary data to indicate the 
productivity of the proposed approach in decreasing the dimensionality of such 
images. 
  

Object-based image analysis (OBIA) was implemented to delineate urban 
surface materials. OBIA was performed in a rule-based structure that requires 
selecting and identifying rules. In a subsection of the thesis, OBIA was supported 
by including ancillary information, such as LiDAR data. 
  

The reproducible and transferable novel models were proposed based on (1) 
user-defined OBIA rule sets and (2) data mining (DM) techniques. In the first 
case, the rule sets were manually developed from the first study site and then 
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transferred to the second study site, which had a wider coverage. Overall 
accuracies of 88.05% and 87.78% were achieved for the first and second study 
sites, respectively. In the second case, available training data from the first study 
site were used to conduct the DM task. The proposed OBIA rule sets were 
automatically organized from the C4.5 algorithm to form a decision tree structure 
that explores a wide range of spectral, spatial, and textural attributes. The rule-
based classification of the first study site obtained an overall accuracy of 
87.90%. Finally, the generated model was validated in the second study site to 
prove that its performance was reproducible and applicable to an area with a 
wider geographic coverage. This transferability analysis was performed without 
including any training data from the second study site and an overall accuracy of 
85.16% was achieved.  
 

Apart from the analysis of the transferability of OBIA rule sets, this thesis 
contained two subsections. First, the OBIA of a WV-2 image and LiDAR height 
information was employed to improve urban surface material classification. This 
data integration resulted in an improvement of 7% in the overall classification 
accuracy of the WV-2 image. Second, the dimensionality of OBIA attributes in 
hyperspectral images was reduced. Numerous OBIA attributes were explored 
using the C4.5 algorithm on the Universiti Putra Malaysia (with 20 bands) and 
Kuala Lumpur (with 128 bands) hyperspectral images. These images obtained 
overall accuracies of 93.42% and 88.36%, respectively. 
 

The manually developed OBIA rule-sets achieved the transferable land cover 
classification in different areas. In this research, to eliminate the manual 
developments of the rule-sets, the supervised DM technique was used to identify 
the appropriate selection of attributes for object-based classification. This 
algorithm represents the decision tree knowledge model, enables fast 
classification of intra-urban classes, and disables subjectivities related to the 
interaction with analysts. The proposed integration of DM algorithm and OBIA 
provides the opportunity to generate the transferable OBIA rule-sets based on 
the available training area which can be re-used in other study areas. The 
generated rule sets can be applied in different WV-2 images to extract similar 
land-cover environments by providing an automated procedure. Furthermore, 
supervised DM-based DT overcomes complexities related to a high level of 
dimensionality in hyperspectral OBIA attributes and the bias of analysts in 
creating rule sets. The OBIA enhancement of WV-2 image was performed by 
adding LiDAR height information as an ancillary data. LiDAR data was effective 
to improve the productivity of OBIA and reduce the complexity of the OBIA rule-
sets. The detailed land cover maps of this study could support the environmental 
applications related to water quality assessment, urban microclimate and urban 
health assessment. 
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Kawasan bandar terdiri daripada pelbagai ciri-ciri buatan manusia dan semula 
jadi, yang membawa kepada tahap kekeliruan spektrum yang tinggi dalam 
proses mengenalpasti bahan bumbung dan lain-lain butiran litupan bumi di 
kawasan bandar. Kepelbagaian butiran dan kekeliruan yang berlaku telah 
menyebabkan kesalahan pada peta tematik yang hanya menggunakan 
maklumat spektrum sahaja. Oleh itu, pendekatan baru dan boleh dipercayai 
yang menggabungkan ciri-ciri spektrum dan spatial litupan bumi di kawasan 
bandar adalah perlu untuk mengekstrak secara terperinci dan tepat perincian 
bandar di kawasan-kawasan yang berbeza.  
 
 
Imej hyperspectral bawaan udara dengan ciri spatial dan keupayaan 
mendiskriminai spektrum yang sangat tinggi boleh digunakan untuk perincian 
kelas-kelas litupan bumi di kawasan bandar; Walau bagaimanapun, 
penggunaan imej hyperspectral bawaan udara adalah tidak praktikal kerana ia 
mempunyai liputan spatial yang terhad dan kos pemerolehan data yang tinggi. 
Oleh itu, data imej multispectral ‘pan-sharpened’ Wordview-2 (WV-2) yang 
mempunyai resolusi spatial 0.5 m telah digunakan sebagai data utama dalam 
kajian ini. Manakala imej hyperspectral telah dimasukkan sebagai data 
tambahan untuk menunjukkan produktiviti kepada pendekatan yang 
dicadangkan dalam mengurangkan kedimensian imej tersebut. Analisis imej 
berasaskan objek (OBIA) telah dilaksanakan untuk menggambarkan bahan 
permukaan di kawasan bandar. Teknik OBIA ini dilaksanakan menggunakan 
struktur  berasaskan peraturan yang memerlukan pemilihan dan 
pengenalpastian peraturan. Di dalam subseksyen tesis ini, OBIA boleh 
disokong dengan memasukkan maklumat tambahan, seperti data LiDAR.  
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Dalam kajian ini, model baru yang boleh diulang dan dipindah milik telah 
dicadangkan berdasarkan (1) set peraturan OBIA yang ditentukan oleh 
pengguna dan (2) teknik perlombongan data (DM). Dalam kes pertama, set 
peraturan telah dibangunkan secara manual dari kawasan kajian pertama dan 
kemudian dipindahkan ke kawasan kajian yang kedua yang mempunyai liputan 
lebih luas. Ketepatan keseluruhan sebanyak 88.05% dan 87.78% telah dicapai 
untuk kawasan kajian pertama dan kedua. Dalam kes kedua, data latihan yang 
diperoleh dari kawasan kajian pertama telah digunakan untuk mengendalikan 
tugas DM. Peraturan set OBIA yang dicadangkan telah disusun secara 
automatik dari algoritma C4.5 untuk membentuk struktur pepohon keputusan 
yang meneroka pelbagai atribut seperti spektrum, spatial, dan tekstur. 
Ketepatan keseluruhan untuk klasifikasi berasaskan peraturan di kawasan 
kajian yang pertama ialah 87.90%. Akhir sekali, model yang dihasilkan telah 
diuji di kawasan kajian yang kedua untuk membuktikan bahawa tahap 
pencapaiannya boleh diulang dan boleh diaplikasi kepada kawasan yang 
mempunyai liputan geografi yang lebih luas. Analisis kebolehtukaran ini 
dilakukan tanpa memasukkan sebarang data latihan dari kawasan kajian 
kedua dan ketepatan keseluruhan sebanyak 85.16% telah dicapai.  
 

Selain daripada analisis pindah milik daripada set peraturan OBIA, tesis ini 
juga mengandungi dua subseksyen. Subseksyen yang pertama menunjukkan 
OBIA daripada imej WV-2 dan maklumat ketinggian LiDAR telah digunakan 
untuk memperbaiki klasifikasi bahan permukaan di kawasan bandar. Integrasi 
antara data tersebut telah menunjukkan peningkatan keputusan klasifikasi, di 
mana ketepatan keseluruhan untuk imej WV-2 telah meningkat sebanyak 7%. 
Kedua, kedimensian atribut OBIA dalam imej hyperspectral telah berkurang. 
Kebanyakan atribut untuk OBIA telah diterokai menggunakan algoritma C4.5 
pada kawasan Universiti Putra Malaysia (dengan 20 jalur) dan imej 
hyperspectral Kuala Lumpur (dengan 128 jalur). Imej-imej ini masing-masing 
memperoleh ketepatan keseluruhan sebanyak 93.42% dan 88.36%.  
 

Set peraturan OBIA yang telah diperoleh secara manual boleh dipindah guna 
kepada aplikasi klasifikasi di kawasan kajian yang lain. Dalam kajian ini, untuk 
menyingkirkan pembangunan set peraturan secara manual, algoritma DM telah 
digunakan untuk mengenal pasti pilihan atribut yang sesuai untuk pengelasan 
berasaskan objek. Algoritma ini mewakili pengetahuan model pepohon 
keputusan yang membolehkan klasifikasi yang cepat untuk kelas antara 
bandar dan melumpuhkan kesubjektifan yang berkaitan dengan interaksi 
dengan penganalisis.  Oleh itu, cadangan integrasi antara algoritma DM dan 
OBIA telah memberi peluang untuk menghasilkan set peraturan OBIA yang 
boleh dipindah guna berdasarkan kawasan latihan sedia ada dan boleh 
digunakan semula dia kawasan kajian yang lain. Set peraturan yang dihasilkan 
boleh diaplikasi pada imej WV-2 yang lain untuk tujuan pengekstrakan 
persekitaran litupan bumi yang sama dengan menyediakan prosedur 
automatik. Tambahan pula, ‘supervised’ berasakan DM DT mengatasi 
kerumitan yang berkaitan dengan tahap dimensi yang tinggi pada atribut OBIA 
hyperspectral dan juga masalah berat sebelah penganalisis dalam 
mewujudkan set peraturan. Penambahbaikan OBIA pada imej WV-2 telah 
dilakukan dengan menambahkan informasi ketinggian dari data LIDAR. Data 
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LIDAR merupakan data yang efektif untuk menambahbaik produktiviti OBIA 
dan mengurangkan kerumitan pada set peraturan OBIA. Pemetaan litupan 
tanah secara terperinci yang diperoleh dari kajian ini boleh digunakan untuk 
menyokong aplikasi terhadap alam sekitar yang berkaitan dengan penilaian 
kualiti air, mikroiklim kawasan bandar dan penilaian kesihatan di kawasan 
bandar. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the Study 
 

Globally, more people occupy urban areas than rural areas. In fact, 54% of the 
world’s population in 2014 was found in urban areas. By 2050, 66% of the 
world’s population is expected to live in urban areas. Numerous structures 
have been constructed over the last few decades. Malaysia is one of the 
countries that is experiencing a rapid urbanization rate (Yaakup et al., 2005). 
Over 70% of the population in Malaysia has been projected to live in urban 
areas from 2010 to 2015, particularly in Peninsular Malaysia (Abazov, 2009). 
The rapid increase in the number of man-made structures can be considered a 
sign of urbanization and the rapid conversion of natural environment into man-
made features (also known as impervious surfaces).  The extensive range of 
man-made and natural urban surface materials can influence ecological 
(Arnold & Gibbons, 1996), climatic, and energy (Oke, 2002) conditions. Recent 
changes in urban areas should be identified in detail to improve management 
and sustainable planning of urban expansion. Consequently, urban mapping 
must provide accurate information on features, structures, and geography, as  
well  as  on  the  relationships  between  features  in  urban  and  suburban  
areas  (Shafri et al., 2012). Therefore, new methods are necessary to replace 
traditional field observation and the acquisition of detailed information on the 
coverage of man-made and natural features.  
 

Remote sensing technology provides the opportunity to collect data from urban 
land use/cover without direct contact with the features. This technology can be 
considered an alternative to traditional field survey. The development and 
availability of very high resolution (VHR) sensors have opened a new prospect 
in the remote sensing community to monitor imperviousness and natural 
features effectively at the fine and detailed scale. 
 

The urban environment comprises a wide range of impervious features and 
natural surface materials. The detailed mapping of urban areas has received 
considerable attention in the last decades because of the challenges and 
requirements of parcel-level information in fine-scale decision making and 
management. 
 

An impervious surface (also known as an impermeable feature) is defined as a 
surface where water cannot penetrate soil, such as road pavements, 
sidewalks, roofs, and parking lots. These surfaces are considered major 
contributors to environmental condition and quality (Arnold & Gibbons, 1996; 
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Weng, 2012). In the present study, methodologies for detecting detailed urban 
land covers, including different roofing materials, roads, and natural land 
covers, are proposed. Detailed knowledge on  the  distribution  and  types  of  
imperviousness  is  vital  in  recognizing  the effects of man-made structures on 
a natural surroundings. For example, roofing types can contribute to status of 
health, pollution, and microclimate. Asbestos rooftops cause a critical health 
hazard. Recent researches have highlighted mesothelioma as a type of cancer 
that caused by the exposure to asbestos materials (Egilman & Menéndez, 
2011; Kanarek, 2011). Roof runoff pollution deteriorates urban surface water 
quality. Previous researchers have identified roofing runoff as one of the 
substantial pollutants in streams and rivers (Göbel et al., 2007; Slonecker et al., 
2001; Yusop et al., 2007). Urban growth has caused variations in the patterns 
of air temperature in urban areas. Dark impervious features, such as concrete 
and metal roofs, and pavements, absorb significant quantities of heat and 
release it to the environment (Elsayed, 2012). Appropriate urban planning, 
which require comprehensive knowledge of urban surface materials, should be 
employed to ensure the well-being status in an urban environment. 
 

VHR images are required to characterize urban land cover at the material level 
(Zhou & Troy, 2008). Such images can be acquired using airborne 
hyperspectral and multispectral sensors. The supervised classification of urban 
surface materials at the material level requires adequate training data. 
Collecting training data on roofing types is one of the limitations in material 
characterization because of the restricted access to roofs and the difficulty in 
obtaining permission in many areas. Prior to this research, numerous studies 
have used airborne hyperspectral images to detect urban surface materials 
(Ben-Dor et al., 2001; Heiden et al., 2001; Heiden et al., 2007; Herold et al., 
2003b; Taherzadeh & Shafri, 2011). This choice can be attributed to the very 
high spectral resolution of hyperspectral data, which provides detailed spectra 
and narrow bands compared with broadband-width multispectral images (Platt 
and Goetz, 2004). However, the limited coverage of airborne hyperspectral 
images and the high cost of data acquisition add to the challenges in 
characterizing surface materials. 
 

In this study, VHR multispectral WorldView-2 (WV2) images were used to 
detect urban surface materials. With the improvement in sensor technology 
from IKONOS, QuickBird, GeoEye-1, and recently, WV2 and WorldView-3 
(WV-3), identifying small sized land covers such as buildings, vehicles, parking 
areas, and pavements is possible. Analysts tend to consider spatial resolution 
more important than spectral resolution (Myint et al., 2011) because the 
detailed characterization of urban surface materials (with impervious and 
pervious surfaces) requires high spatial discrimination. Previous studies have 
employed IKONOS, QuickBird, and GeoEye-1 to detect urban classes under a 
general classification scheme, which excludes details on material type. These 
remotely sensed data are limited to four spectral bands, which can lead to 
restrictions and confusion in detailed land-cover classification. WV2 was the 
first accessible VHR multispectral satellite containing eight bands. WV2 images 
provide stronger spectral discrimination because of their sharper multispectral 
bands, which results in more detailed information on urban surface materials. 
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Image analysis of VHR data is difficult because of the spatial and spectral 
heterogeneities of urban surface materials. Man-made features such as 
rooftops and road asphalt have the same component materials, which causes a 
high degree of spectral confusion (Myint et al., 2011). Previous studies have 
indicated that within-class spectral diversity can be observed among urban 
targets, and spectral similarities among different classes pose additional 
difficulties in extracting detailed features (Myint et al., 2011; Zhou & Troy, 
2008). These spectral heterogeneities and confusions result in erroneous 
thematic maps created by spectral-based image classifiers (Blaschke & Strobl, 
2001). Restrictions  in  spectral  information  cause failure  in  accurately  
mapping  urban  classes  despite  the  automated procedure  and  reduced  
effort  required  by  spectral-based  classifiers (Aplin et al., 1999; Blaschke, 
2010; Blaschke et al., 2014; Blaschke & Strobl, 2001; Whiteside et al., 2011). 
In addition, selecting reliable training data is a time-consuming task because 
repeated training samples are required to classify additional areas of the same 
image, which are not transferable to new images. Object-based image analysis 
(OBIA) has been proven as a better alternative for analyzing VHR images. 
Compared with spectral-based methods, various studies have demonstrated 
the superiority of OBIA in terms of high quantitative accuracy and improved 
qualitative accuracy. OBIA utilizes spectral characteristics along with textural 
and spatial characteristics to avoid problems related to traditional pixel-based 
classifications. OBIA can be performed under a supervised approach that 
requires training segments of pixel groups. Moreover, OBIA can be performed 
under knowledge-based (rule-based) rule sets, which allow transferring rule 
sets to other images with similar land cover classes. 
  

Nevertheless, prior knowledge, which is difficult to obtain, is required to detect 
feature classes by rule-based classification. Fully formalizing relevant 
information and effectively reusing them in other images is time-consuming 
because rule-based classification mostly addresses the experience and 
interaction of analysts. Therefore, the lack of transferable rule sets can be 
observed in literature. A previous study (Taherzadeh & Shafri, 2013) defined 
the generic OBIA rule sets for roofing types within a limited coverage of urban 
areas, which cannot be considered a transferable approach. Several studies 
have demonstrated the transferability of urban classes by including manual 
editing of rule sets (Kohli et al., 2013; Taubenböck et al., 2010). However, few 
studies in literature have explored urban mapping at the material level using 
VHR multispectral images with a wide spatial coverage. Furthermore, 
transferable and reproducible approaches that effectively utilize spatial, 
spectral, and textural information inherited from VHR images are still unable to 
perform remote sensing of urban surface materials. 
 
At present, apart from VHR image data, other geospatial and geographic data, 
such as LiDAR, road, land use, and parcel data are available to support image 
analysis. Several studies have used LiDAR data and its products, such as high-
resolution digital surface model (DSM), normalized digital surface model 
(nDSM), and digital elevation model (DEM), as ancillary information to reduce 
the spatial and spectral heterogeneities of urban areas. Ancillary data can help 
improve results in land cover classification.  
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In case of OBIA of hyperspectral images, difficulties in attribute extraction and 
the dimensionality of OBIA attributes make rule-based classification a complex 
and time-consuming process (Cavalli et al., 2008). Hyperspectral data analysis 
was considered a supplementary section of this thesis to mitigate the 
complexities caused by data directionality in rule-based OBIA. Airborne 
hyperspectral images with pixel sizes of 1 m and 0.68 m were considered for 
urban surface material classification. 
 

1.2 Problem Statement 
 

Urban areas consist of spectrally and spatially heterogeneous features. Very 
high resolution remotely sensed images provide wealth amount of information 
on spectral and geometrical characteristics regarding urban land cover 
environment. This detailed information gives more challenges for material-level 
land cover classification. Obtaining detailed land cover maps from VHR data 
will require not only the development of tools for efficient data analysis, but also 
improved feature extraction accuracy. Spectral-based (pixel-based) images 
classification techniques are not effective enough to handle these data due to 
the restriction on spectral information. Furthermore, these techniques are not 
spatially transferable because of the necessity to collect training area (region of 
interest) within different study sites. In recent years, although rule-based OBIA 
has been proven as an effective alternative for traditional spectral-based 
classifiers, there are some challenges with regard to this advanced image 
classifier. Since this technique requires lots of manual interactions for the 
image analyst in rule-sets development, it is time consuming and difficult to 
transfer the rule-sets to another images even from the same multispectral 
sensor. This may cause manual adjustment in the structure of OBIA rule-set. 
Furthermore, considering hyperspectral images with huge number of bands, it 
is time consuming and labor intensive to manually select the best combination 
of OBIA attributes in the rule-set development. Therefore, it is important to 
design and develop new methodologies for transferable mapping of 
multispectral VHR images and dimensionality reduction of hyperspectral 
images in rule-based OBIA. In addition, considering a complex urban 
environment, because of the diverse spectral and spatial heterogeneity, 
unclassified objects or misclassifications in the boundary of land cover classes 
could occur. Therefore, multi-sensor data fusion could be also considered to 
enhance the classification output. 
 
 
 
1.3 Research Objectives 
 

In general, this research investigates VHR remote sensing data in 
characterizing urban feature classes (with emphasis on roofing types) at the 
material level and proposes transferable models based on the spatial, spectral, 
and textural information of large-coverage WV-2 satellite. 
 
Meanwhile, the specific objectives of this research are as follows: 
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 To develop a fusion-based OBIA technique that utilizes LiDAR and 
WV-2 data to improve urban surface material mapping; and 

 
 To design and validate transferable OBIA rule sets to other study areas 

with wider coverage using WV-2 images;  
 

 To utilize the integrated OBIA and DM technique for airborne 
hyperspectral data over urban areas. 
 

1.4 Scope and Limitations of the Study 
 

This study aims to characterize detailed urban land covers at material level 
according to transferable urban land cover mapping, data dimensionality 
reduction, and classification result enhancement. Transferable urban land 
cover classification was employed based on WorldView-2 satellite images. For 
data dimensionality reduction, airborne hyperspectral images were investigated 
due to the large number of spectral bands. Enhancing of the classification 
result was performed by the data fusion of WorldView-2 image and LiDAR 
data. In this study, detailed urban land cover classes of metal roofs, dark 
concrete/asbestos roofs, medium tone concrete roofs, roads, bare soil, 
pond/river, swimming pool, grass, trees, and shadow were considered. The 
limitation of the study was the limited spatial coverage of hyperspectral images 
(with different number of bands) and LiDAR data. Therefore, the transferability 
analysis of urban land cover classes were not performed for the hyperspectral 
images and the data fusion of WorldView-2 image and LiDAR data. 
 

1.5 Organization of the Remaining Chapters 
 

The second chapter is the literature review section. This chapter presents the 
definitions of remote sensing technology, urban remote sensing, and 
impervious surface, as well as the application of VHR multispectral and 
hyperspectral data to achieve a detailed characterization of urban areas. This 
chapter also discusses current trends in image analysis, including pixel-based 
techniques and OBIA. The summary and gaps of previous studies are 
discussed in the last part of the chapter. 
 
The third chapter presents the materials and methods used to achieve the 
objectives of this research. The first section of this chapter discusses the 
methodologies applied in the WV-2 image, including spectral-based 
classification techniques [e.g., maximum likelihood (ML) and support vector 
machine (SVM)] and the developed OBIA techniques and models to classify 
urban surface materials. The section continues to discuss the characteristics of 
the LiDAR data used in the study and its integration with the WV-2 image in 
OBIA to improve OBIA conducted using only the WV-2 image as well as 
spectral-based classification using the WV-2 image fused with LiDAR data. The 
next section of this chapter discusses the developed OBIA technique based on 
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transferable models from WV-2 images. The last part of this chapter focuses on 
hyperspectral data analysis using OBIA to extract urban surface materials.  
 

The fourth chapter presents the results and discussion of the study. The first 
section discusses the results and discussion of the WV-2 image, including 
those of spectral-based methods (ML and SVM) and the developed OBIA 
techniques. The next part of this section describes the improvement of the 
OBIA result when LiDAR data are added to the WV-2 image. In addition, the 
results of the spectral-based techniques (SVM and ML) using the fused data 
sets of WV-2 and LiDAR are also provided. The results and discussion of 
determining transferable OBIA approaches using different WV-2 images are 
presented. The last part of this chapter presents the results and discussion of 
the hyperspectral images from the automated OBIA classification.  
 

The fifth chapter provides the conclusions drawn from the study and 
recommendations for future research. The overview and implications of the 
findings, as well as the limitations and benefits of this research, are discussed. 
Finally, the future research direction is explained in the recommendation part of 
the chapter. 
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