UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF OIL HEAT TREATMENT PROCESS TO ENHANCE RUBBERWOOD PROPERTIES USING RESPONSE SURFACE METHODOLOGY

S.S. UMAR IBRAHIM

FH 2015 4
OPTIMIZATION OF OIL HEAT TREATMENT PROCESS TO ENHANCE RUBBERWOOD PROPERTIES USING RESPONSE SURFACE METHODOLOGY

By

S.S. UMAR IBRAHIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

I specially dedicate this thesis to

My Supervisor
Prof. Dr. Zaidon Bin Ashaari

My Mother
K.M. Sirajunisha

My Father
Dr. S.E.S.A. Khader

My Wife
K.S. Ayisha Siddiqua
OPTIMIZATION OF OIL HEAT TREATMENT PROCESS TO ENHANCE RUBBERWOOD PROPERTIES USING RESPONSE SURFACE METHODOLOGY

By

S.S. UMAR IBRAHIM

March 2015

Chairman: Professor Zaidon Bin Ashaari, PhD
Faculty: Forestry

Rubberwood is an eco-friendly wood. Natural rubber is considered as the excellent agricultural product and it was utilized in many industries. The natural durability is very low in rubberwood. In dry as well as in green condition, it can be affected by wood borers and fungus. The objectives of this study are to determine the effect of resistance to white rot fungus, to assess the significant changes on the physical properties, chemical properties and mechanical properties of rubberwood after the heat treatment (172 - 228°C) in palm oil and to optimize the heating variables to enhance the properties of rubberwood treated with oil using response surface methodology. The colour of oil heat-treated rubberwood becomes uniformly darker. Hydrophobicity, dimensional stability and fungal resistance were improved by the heat treatment with respect to increase in treatment temperature. However, the mechanical properties of treated rubberwood were reduced compared to the untreated wood. The treatment resulted in changes to the wood chemical constituents, mainly the degradation of hemicelluloses which is believed to be principal reason for alterations in wood properties. The oil heat treatment reduced the chemical constituents by 11.7 % in total in the rubberwood. The depolymerization of hemicellulose results in reduction on bending strength of wood. The maximum reduction in Modulus of Rupture, Modulus of Elasticity, Compression and Shear were approximately 47%, 8%, 21% and 33% respectively compared to the control specimen.

This study shows that there is some reduction in density and equilibrium moisture content and positive high in moisture excluding efficiency values. The density of rubberwood was decreased gradually from 629 kgm⁻³ (untreated) to about 591 kgm⁻³ (at 228°C/180min). The Equilibrium Moisture Content also decreased from 12.42 % to 7.97 % (at 228°C/180min). The density reduction was probably due to the hemicelluloses and cellulose degradation. The higher moisture excluding efficiency value indicated that the wood is stable and excludes water after oil heat treatment process. The treated wood has moisture excluding efficiency value in the range between 28-50% depending upon the treatment temperature and time. The fungal resistance effect on the treated
rubberwood was examined by exposing the wood to white rot fungi (*Pycnoporus sanguineus*) for 12 weeks and the weight loss was determined. The samples were tested at 13 different treatment conditions. Among those conditions, the lowest weight loss (8.23 %) was observed at 228°C and 180 min, with the decay by *Pycnoporus sanguineus* for rubberwood species. This research helps in improving various properties of rubberwood and biological durability by oil heat treatment process. Thus with the outcome of this research, the optimized heat treatment conditions could be suggested by the response surface methodology models to enhance the quality of rubberwood.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
Sebagai memenuhi keperluan untuk ijazah Master Sains

PENGOPTIMUMAN PROSES RAWATAN HABA MINYAK UNTUK
MENINGKATKAN SIFAT-SIFAT KAYU GETAH YANG MENGGUNAKAN
KAEDAH PERMUKAAN TINDAK BALAS

Oleh

S.S. UMAR IBRAHIM

Mac 2015

Pengerusi: Profesor Zaidon Bin Ashaari, PhD
Fakulti: Perhutanan

air selepas proses rawatan haba minyak. Kayu yang dirawat mempunyai kelembapan yang tidak termasuk nilai kecekapan dalam julat antara 28-50% bergantung pada rawatan suhu dan masa.

Kesan rintangan kulat kayu getah yang dirawat telah diperiksa dengan mendedahkan kayu untuk kulat putih reput (Pycnoporus sanguineus) untuk 12 minggu dan penurunan berat badan yang telah ditentukan. Sampel yang telah diuji di 13 rawatan berbeza keadaan. Antara syarat itu, kehilangan berat badan paling rendah (8.23%) ini dilihat di 228° C dan 180 min, dengan kerosakan oleh Pycnoporus sanguineus spesies kayu getah. Kajian ini membantu dalam meningkatkan sifat-sifat pelbagai kayu getah dan ketahanan biologi dengan proses rawatan haba minyak. Oleh itu hasil kajian ini, syarat-syarat yang optima rawatan haba boleh dicadangkan oleh model permukaan kaedah maklum balas untuk meningkatkan kualiti kayu getah.
ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude for Prof. Dr. Zaidon Ashaari, for his supervisions, guidance, comments and critics throughout this study.

I would like to take this opportunity to express my uncountable thanks to my parents and my wife for their encouragements and supports.

Special thanks to Malaysian government for providing me the Commonwealth Scholarship and Fellowship Plan (CSFP) scholarship.

Last but not least, special thanks to all my friends and staffs of Institute of Tropical Forestry and Forest Products and Faculty of Forestry, who had assist me in the completion of this study.
I certify that a Thesis Examination Committee has met on 30.3.2015 to conduct the final examination of S.S. Umar Ibrahim on his thesis entitled “Optimization of oil heat treatment process to enhance the properties of rubberwood using Response Surface Methodology” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Jegatheswaran Ratnasingam, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Edi Suhaime Bakar, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Jamaludin bin Kasim, PhD
Professor
Faculty of Applied Science
Universiti Teknologi MARA
Malaysia
(External Examiner)

Zulkarnain Zainal, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zaidon bin Ashaari, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Rasmina binti Halis, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: S.S UMAR IBRAHIM & GS36308

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Dr. Zaidon bin Ashaari

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Rasmina binti Halis
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
1.1. General Background 1
1.2. Justification 2
1.3. Objectives 3

2. LITERATURE REVIEW
2.1. Global Distribution of Rubberwood 4
2.2. Rubberwood in Malaysia 5
2.3. Characteristics of Rubberwood 6
2.4. Properties of Rubberwood 6
 2.4.1. Physical Properties 6
 2.4.2. Mechanical Properties 9
 2.4.3. Chemical Composition 12
 2.4.4. Natural Durability 12
2.5. Wood Modification 13
 2.5.1. Chemical Modification of Wood 13
 2.5.2. Heat Treatment 14
2.6. Properties of Heat Treated Wood 16
 2.6.1. Chemical Properties 16
 2.6.2. Physical Properties 18
 2.6.3. Mechanical Property 19
 2.6.4. Biological Durability 19
2.7. Applications of Thermal Treated Wood 19
2.8. Various Heat Treatment Processes 20
 2.8.1. Plato Technology 20
 2.8.2. Retification Process 21
 2.8.3. Les Bois Perdure Process 22
 2.8.4. Finnflorest ThermoWood Process 22
 2.8.5. Oil Heat Treatment Process 23
2.9. Principles of Oil Heat Treatment 25
2.10. Benefits of Oil Heat Treatment 25
2.11. Description of the Technology 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12.</td>
<td>Properties of Oil Heat Treated Wood</td>
<td>27</td>
</tr>
<tr>
<td>2.12.1.</td>
<td>Biological Durability</td>
<td>27</td>
</tr>
<tr>
<td>2.12.2.</td>
<td>Dimensional Stability</td>
<td>27</td>
</tr>
<tr>
<td>2.12.3.</td>
<td>Strength Reduction</td>
<td>27</td>
</tr>
<tr>
<td>2.13.</td>
<td>Palm Oil</td>
<td>28</td>
</tr>
<tr>
<td>2.13.1.</td>
<td>Background</td>
<td>28</td>
</tr>
<tr>
<td>2.13.2.</td>
<td>Chemical Composition</td>
<td>29</td>
</tr>
<tr>
<td>2.14.</td>
<td>Response Surface Methodology (RSM)</td>
<td>31</td>
</tr>
<tr>
<td>2.14.1.</td>
<td>First Order Model</td>
<td>32</td>
</tr>
<tr>
<td>2.14.2.</td>
<td>Second Order Model</td>
<td>33</td>
</tr>
<tr>
<td>2.14.3.</td>
<td>Linear Response Surface Model</td>
<td>33</td>
</tr>
<tr>
<td>2.14.4.</td>
<td>Quadratic Response Surface Model</td>
<td>33</td>
</tr>
<tr>
<td>2.14.5.</td>
<td>Polynomial Response Surface Model</td>
<td>34</td>
</tr>
<tr>
<td>2.14.6.</td>
<td>Objectives of RSM</td>
<td>34</td>
</tr>
<tr>
<td>2.14.7.</td>
<td>Response Surface Designs</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>MATERIALS AND METHODS</td>
<td></td>
</tr>
<tr>
<td>3.1.</td>
<td>Introduction</td>
<td>40</td>
</tr>
<tr>
<td>3.2.</td>
<td>Optimization of OHT conditions</td>
<td>41</td>
</tr>
<tr>
<td>3.3.</td>
<td>Materials</td>
<td>43</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Palm Oil</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Sample Preparation</td>
<td>43</td>
</tr>
<tr>
<td>3.4.</td>
<td>Heat Treatment Technique</td>
<td>43</td>
</tr>
<tr>
<td>3.5.</td>
<td>Properties Evaluation</td>
<td>45</td>
</tr>
<tr>
<td>3.5.1.</td>
<td>Evaluation of Physical Properties in Treated Rubberwood</td>
<td>45</td>
</tr>
<tr>
<td>3.5.2.</td>
<td>Evaluation of Chemical Properties in Treated Rubberwood</td>
<td>47</td>
</tr>
<tr>
<td>3.5.3.</td>
<td>Evaluation of Mechanical Properties in Treated Rubberwood</td>
<td>50</td>
</tr>
<tr>
<td>3.5.4.</td>
<td>Resistance Against Fungal Decay</td>
<td>53</td>
</tr>
<tr>
<td>3.6.</td>
<td>Statistical Analysis</td>
<td>56</td>
</tr>
<tr>
<td>4.</td>
<td>RESULTS AND DISCUSSIONS</td>
<td></td>
</tr>
<tr>
<td>4.1.</td>
<td>Evaluation of Physical Properties of OHT</td>
<td>57</td>
</tr>
<tr>
<td>4.2.</td>
<td>Evaluation of Chemical Properties of Oil Heat</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Holocellulose Content</td>
<td>74</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Cellulose Content</td>
<td>74</td>
</tr>
<tr>
<td>4.2.3.</td>
<td>Hemicellulose Content</td>
<td>75</td>
</tr>
<tr>
<td>4.2.4.</td>
<td>Lignin Content</td>
<td>76</td>
</tr>
<tr>
<td>4.3.</td>
<td>Evaluation of Mechanical Properties of Oil Heat</td>
<td>77</td>
</tr>
<tr>
<td>4.4.</td>
<td>Resistance of Oil Heat Treated Rubberwood to White Rot Fungus</td>
<td>82</td>
</tr>
</tbody>
</table>
5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions 88
5.2. Recommendations 90

REFERENCES 91
BIODATA OF STUDENT 107
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Rubber plantation Area Report</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanical and Physical Properties of Rubberwood</td>
</tr>
<tr>
<td>2.3</td>
<td>Durability status of various heat treatment processes</td>
</tr>
<tr>
<td>2.4</td>
<td>Composition of Fatty Acid in Palm Oil</td>
</tr>
<tr>
<td>2.5</td>
<td>Fatty Acid Content of Palm Oil</td>
</tr>
<tr>
<td>3.1</td>
<td>Actual and Coded Values Tabulation</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental Conditions using Central Composite Design</td>
</tr>
<tr>
<td>3.3</td>
<td>Categorization of various resistance classes with respect to weight loss caused by white rot fungus</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical Properties of Oil Heat Treated Rubberwood</td>
</tr>
<tr>
<td>4.2</td>
<td>ANOVA for Response Surface Linear Model – Density</td>
</tr>
<tr>
<td>4.3</td>
<td>ANOVA for Response Surface Reduced Quadratic Model – EMC</td>
</tr>
<tr>
<td>4.4</td>
<td>ANOVA for Response Surface Linear Model – MEE</td>
</tr>
<tr>
<td>4.5</td>
<td>Chemical Constituents of Oil Heat Treated Rubberwood</td>
</tr>
<tr>
<td>4.6</td>
<td>ANOVA for Response Surface Linear Model – Holocellulose</td>
</tr>
<tr>
<td>4.7</td>
<td>ANOVA for Response Surface Linear Model – Cellulose</td>
</tr>
<tr>
<td>4.8</td>
<td>ANOVA for Response Surface Linear Model – Hemicellulose</td>
</tr>
<tr>
<td>4.9</td>
<td>ANOVA for Response Surface Linear Model – Lignin</td>
</tr>
<tr>
<td>4.10</td>
<td>Mechanical Properties of Oil Heat Treated Rubberwood</td>
</tr>
<tr>
<td>4.11</td>
<td>ANOVA for Response Surface 2FI Model – Modulus of Rupture</td>
</tr>
<tr>
<td>4.12</td>
<td>ANOVA for Response Surface Mean Model – Modulus of Elasticity</td>
</tr>
</tbody>
</table>
4.13 ANOVA for Response Surface Mean Model – Compression 80
4.14 ANOVA for Response Surface Mean Model – Shear 80
4.15 Decay Resistance of Oil Heat Treated Rubberwood 83
4.16 ANOVA for Response Surface Quadratic Model – Decay Resistance 84
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Water location in a cell</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Wood primary axes with respect to growth ring and grain direction.</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Wood shrinkage due to drying</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Modulus of Rupture (MOR) testing</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Modulus of Elasticity (MOE) testing</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Compression Parallel to Grain</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Shear Parallel to Grain</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Objectives of heat treatment</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Applications of heat treated wood</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Plato Technology</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Thermowood process</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>Process vessel used in OHT</td>
<td>24</td>
</tr>
<tr>
<td>2.13</td>
<td>Oil Heat Treatment Technology</td>
<td>26</td>
</tr>
<tr>
<td>2.14</td>
<td>Structure of the oil palm fruit</td>
<td>29</td>
</tr>
<tr>
<td>2.15</td>
<td>A three-dimensional response surface</td>
<td>34</td>
</tr>
<tr>
<td>2.16</td>
<td>Quadratic models</td>
<td>35</td>
</tr>
<tr>
<td>2.17</td>
<td>Illustration of a surface with a maximum in contour plotting</td>
<td>36</td>
</tr>
<tr>
<td>2.18</td>
<td>Illustration of a surface with a minimum in contour plotting</td>
<td>36</td>
</tr>
<tr>
<td>2.19</td>
<td>Illustration of a saddle point (or minimax) in contour plotting</td>
<td>37</td>
</tr>
<tr>
<td>2.20</td>
<td>CCD - three design variables at two levels</td>
<td>38</td>
</tr>
<tr>
<td>2.21</td>
<td>Box-Behnken Design (with 3 Factors)</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Heat treatment of rubberwood in gas burner</td>
<td>44</td>
</tr>
</tbody>
</table>
3.2 Left hand side – Untreated Rubberwood and Right hand side - Treated Rubberwood samples 44
3.3 Wood samples placed in desiccator with hygrometer 46
3.4 Air drying of saw dust 47
3.5 Soxhlet apparatus-preparation of extractive free saw dust 48
3.6 MOE and MOR Test 51
3.7 Shear Test 52
3.8 Compression Test 53
3.9 Wood sample covered by white rot mycelium 55
4.1 2-D Contour map of Density as a function of time and temperature 62
4.2 3-D Surface plot of Density as a function of time and Temperature 62
4.3 2-D Contour map of EMC as a function of time and Temperature 63
4.4 3-D Surface plot of EMC as a function of time and Temperature 63
4.5 2-D Contour map of MEE as a function of time and Temperature 64
4.6 3-D Surface plot of MEE as a function of time and Temperature 64
4.7 2-D Contour map of Holocellulose as a function of time and Temperature 70
4.8 3-D Surface plot of Holocellulose as a function of time and Temperature 70
4.9 2-D Contour map of Cellulose as a function of time and Temperature 71
4.10 3-D Surface plot of Cellulose as a function of time and Temperature 71
4.11 2-D Contour map of Hemicellulose as a function of time and Temperature 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12</td>
<td>3-D Surface plot of Hemicellulose as a function of time and Temperature</td>
<td>72</td>
</tr>
<tr>
<td>4.13</td>
<td>2-D Contour map of Lignin as a function of time and Temperature</td>
<td>73</td>
</tr>
<tr>
<td>4.14</td>
<td>3-D Surface plot of Lignin as a function of time and Temperature</td>
<td>73</td>
</tr>
<tr>
<td>4.15</td>
<td>2-D Contour map of MOR as a function of time and Temperature</td>
<td>81</td>
</tr>
<tr>
<td>4.16</td>
<td>3-D Surface plot of MOR as a function of time and Temperature</td>
<td>82</td>
</tr>
<tr>
<td>4.17</td>
<td>2-D Contour map of Weight Loss as a function of time and temperature</td>
<td>85</td>
</tr>
<tr>
<td>4.18</td>
<td>3-D Surface plot of Weight Loss as a function of time and temperature</td>
<td>86</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ASE</td>
<td>Anti Swell/Shrink Efficiency</td>
</tr>
<tr>
<td>ASEAN</td>
<td>Association of SouthEast Asian Nations</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
</tr>
<tr>
<td>DES</td>
<td>Design Expert Software</td>
</tr>
<tr>
<td>EMC</td>
<td>Equilibrium Moisture Content</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest Research Institute Malaysia</td>
</tr>
<tr>
<td>FSP</td>
<td>Fiber Saturation Point</td>
</tr>
<tr>
<td>IRRDB</td>
<td>International Rubber Research and Development Board</td>
</tr>
<tr>
<td>ITTO</td>
<td>International Timber Trade Organization</td>
</tr>
<tr>
<td>ITC</td>
<td>International Trade Centre</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture Content</td>
</tr>
<tr>
<td>MDF</td>
<td>Medium Density Fibreboard</td>
</tr>
<tr>
<td>MEE</td>
<td>Moisture Excluding Efficiency</td>
</tr>
<tr>
<td>MOE</td>
<td>Modulus of Elasticity</td>
</tr>
<tr>
<td>MOR</td>
<td>Modulus of Rupture</td>
</tr>
<tr>
<td>NMA</td>
<td>Nmethylolacrylamide</td>
</tr>
<tr>
<td>OHT</td>
<td>Oil Heat Treatment</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>SEA</td>
<td>South East Asia</td>
</tr>
<tr>
<td>SG</td>
<td>Specific Gravity</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TAPPI</td>
<td>Technical Association of Pulp and Paper</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>WL</td>
<td>Weight Loss</td>
</tr>
<tr>
<td>WWF-GFTN</td>
<td>World Wildlife Fund - Global Forest and Trade Network</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1. General Background

Forests provide an extensive variety of services that are needed for living things. According to FAO (2006), plantation forests have increased comprehensively in the most recent years. Wood is produced mostly from forest plantations (FAO 2000, 2004; Bevege 2005). Wood is the main financial outcome from forests. Various kind of wooden products are exported by many countries and earn a good market. By 2030, half of the global timber demand will be supplied by plantation forests (WWF-GFTN 2001) and 75% by 2050 (FAO 2001a). There is a great demand for sawn wood and logs in India and China (ITTO 2013).

Globally there is a demand for good quality woods. The government of many developing countries had restricted for logging to preserve the world existing forests. In 1989, Thailand government has restricted commercial logging. Wood is a renewable resource. Hardwood and softwood are the two types of wood. Strength and dimensional stability are lacking in softwood (Rashmi et al. 2002). Balsa wood is a hardwood but it is softer than other commercial softwoods (Wikipedia 2015).

Rubberwood is a hardwood. Rubber trees are native to the Amazon valley of South America, and then later on, they were smuggled and introduced to other countries which were the parent stock planted in Southeast Asian counties (FAO 2015a). In the 19th century, Brazil was playing a major role in supplying hevea latex. Now many countries in Southeast Asia planted rubber tree as a plantation crop. The key producers of rubber are in Southeast Asia now.

Rubber tree is a tropical tree grows to a maximum of 600 meters above sea level, but normally in plantations it may grow up to 20 - 30 meters at the temperature between 20°C to 28°C with annual rainfall about 1800mm to 2000mm (IRRDB 2005). When the rubber trees attain the age of 5 or 7, the tree is tapped. The tapping process is carried on till 25 to 30 years of its age. The trees are removed when they attain the age of 30 because after that the latex production gets declined then they are supplanted with new seeds (FAO 2014).

According to Lim et al. (2003), the trunk is usually up to the height of 3 to 10 m with free of branches. When the trunks of the hevea trees are cutted, it oozes liquid which is called as latex that was collected to make rubber. Rubberwood and latex are the raw materials produced by the rubber tree plantation. In 1839, Charles Goodyear unintentionally dropped rubber and sulfur on a hot stovetop, this caused it to char like leather, but it remained plastic and elastic, this process is called vulcanization (Wade Davis 1996). Then the latex was used for various industrial applications and manufacturing products.
Hong (1995a) and Arshad (1996) stated that traditionally rubberwood was considered as waste material due to the complexity in preserving wood after milling. Traditionally, the removed trees were used as fuel for locomotive motor, burning bricks and for curing the latex (FAO 2015a). In recent years, the utilization of rubber wood has rapidly grown with various industrial applications (Yamamoto 1997, Kiam 2002, Hong 1995b, Varmola and Carle 2002) due to the development in technology of various wood treatment techniques (ITTO 2005a,b, Killmann 2001), but still the rubber plantations look latex as the main product and wood as secondary by-product. Rubberwood is widely used in furniture industry because of its static strength, dimensional stability and machinability. Ratnasingam and Scholz (2009) stated that rubberwood is used in steel industry as charcoal.

The rubberwood timber is produced by three steps. They are sawing of rubberwood logs, chemical impregnation and kiln drying. Where kiln drying is the most crucial process, time and energy consuming, and it is may degrade the lumber (Srivaro et al. 2008). High effective drying is helpful to enhance rubberwood quality. Rubberwood is not rubbery. It is hard, stiff and its characteristics are same as that of ash or maple. It has slight tendency to crack. It is also known as parawood, heveawood, Malaysian ash or Malaysian oak, but its appearance and properties are not same as ash or oak (Zachariah 2008). Fungus and insects can easily attack the hevea wood in both green and dry conditions (ITTO 2000).

1.2. Justification

Rubberwood is non-durable. According to Chew (1993) and Lew (1992), the rubberwood is used as a raw material in manufacturing many wooden products and it is very versatile wood. Rubberwood needs wood modification treatment to prolong the service life of wood. Heat treatment (thermal treatment) is one of the wood modification technique, which applies heat to wood to improve various wood properties in environment-friendly way (Hill 2006) and therefore the wood quality also increased. The dimensional stability and biological durability can be improved and hygroscopicity of wood can be reduced, these are the advantages of using thermal treatment. There are other wood treatments using preservatives and chemicals also exist, but the thermal modification of wood is preferable due to the environmental benefits of being pesticide-free.

The properties of various wood species can be strengthened by heat treatment process so that their applications can be extensively improved. There are various heat treatment processes available. They are Plato process, Retification process, Le-Bois Perdure, Thermowood process and Oil heat treatment (OHT) Process. These processes involves in improving the biological durability, dimensional stability, weather resistance, mechanical properties etc. and increases the wood’s application globally by providing a high quality valuable timber. Existing literature discussed on various heat treatment methods and its effects on various properties of wood. Almost no literature reported on oil heat treatment of rubberwood and its effects on properties specifically. The aim of this study is to investigate various properties of rubberwood after oil heat treatment...
using palm oil. The oil heat treatment is a green process and is free of toxic chemicals. It is one of the most environment friendly methods of heat treatment of wood. Various vegetable oils are used in the oil heat treatment (OHT) process, which involves in chemical transformation. The chemical constituent of vegetable oil varies and it changes the wood’s properties. The OHT treatment provides fast, homogeneous heat transfers with greater intensity. The advantage of using OHT is the cooling time needed for the treatment is lesser than the other treatments. The disadvantage in using other treatments is at the end there will be loss of heat and the heating medium, a special method is incorporated in recovering them. But in OHT process, there can be recycling of heat and heating medium in continuous processing.

1.3. Objectives

The specific objectives of the study are:

1. To optimize the heating variables to enhance the properties of rubberwood treated with oil using Response Surface Methodology (RSM).

2. To determine the effects of oil heat treatment on physical, chemical and mechanical properties of rubberwood.

3. To investigate the resistance of oil heat treated rubberwood against white rot fungal decay.
REFERENCES

FAO (2001a) Non-forest tree plantations. Food and Agriculture Organization of the United Nations, Rome

FAO (2001b) The global forest resource assessment: Summary report. Food and Agriculture Organization of the United Nations, Rome

FAO (2004) What does it take? The role of forest incentives in forest plantations development in Asia and the pacific. Food and Agriculture Organization of the United Nations, regional office for Asia and the Pacific, Bangkok

FAO (2009a) Thailand forestry outlook study. Food and Agriculture Organization of the United Nations, regional office for Asia and the Pacific, Bangkok

FAO (2009b) Malaysia forestry outlook study. Food and Agriculture Organization of the United Nations, regional office for Asia and the Pacific, Bangkok

FAO (2009c) State of world’s forest 2009. Food and Agriculture Organization of the United Nations, Rome

Federal Aviation Administration (1998) Acceptable Methods, Techniques, And Practices - Aircraft Inspection And Repair, Ac 43.13-1b, Page 1-64.

IRRDB (2005). The International Rubber Research and Development Board. Proceedings of Symposium on physiological and molecular aspects of the breeding of Hevea

