MECHANISMS INVOLVED IN THE BIOLOGICAL CONTROL OF TOMATO BACTERIAL WILT CAUSED BY *RALSTONIA SOLANACEARUM* USING ARBUSCULAR MYCORRHIZAL FUNGI

MONTHER MOHUMAD TAHAT

FP 2009 14
MECHANISMS INVOLVED IN THE BIOLOGICAL CONTROL OF TOMATO
BACTERIAL WILT CAUSED BY RALSTONIA SOLANACEARUM USING
ARBUSCULAR MYCORRHIZAL FUNGI

By

MONTHER MOHUMAD TAHAT

Thesis Submitted to the School of Graduate Studies, Universiti
Putra Malaysia, in Fulfillment of the Requirement for the Degree of
Doctor of Philosophy

2009
DEDICATION

Special dedication to:

My dearest Father; Mohumad Tahat (Abu Faruq), my Mother; (Um Faruq), Sisters, Brothers and to my wife, endless and boundless love, understanding, supporting waiting and encouragement throughout my study.
Glasshouse experiment was done to study the ability of two local mycorrhizal fungi species (*Glomus mosseae*, *Scutellospora* sp.,) and introduced species (*Gigaspora margarita*) to colonize and enhance some tomato growth parameters. *G. mosseae* showed the best performance among species used. *G. mosseae* was able to increase significantly plant height (60%), shoot dry weight (135%) and flowers number (58%) compared to the control plant at the 7th weeks of plant growth. *G. mosseae* alter root structures such as root dry weight (42%), root tips (120%), root length(83%), root surface area (106%), and root volume (59%), which can increase nutrient absorption and enhance plant growth. *G. mosseae* was adapted to the local environmental conditions which resulted in more root colonization (300%) and more spores number (300%), different from the introduced species *G. margarita*. The overall data presented in
this study showed that local species can be used for enhancing yield growth more than the introduced species. Three mechanisms were described to explain by how arbuscular mycorrhizal fungi (AMF) inhibit or control the bacterial wilt disease. Nutrient uptake, biochemical changes and root morphological changes were the mechanisms studied. The concentrations of N (41%), P (133%), K (49%), Fe (44%), and Zn (33%) in tomato shoots were increased after the colonization of *G. mosseae*, indicating that AMF was able to increase the shoot nutrient uptake due to the hyphal net were produced by AMF which allow the roots to absorb more nutrient. The root morphological characteristics (root dry weight, root tips, root volumes, root length and root surface area) were changed significantly in *G. mosseae* treatment compared to all other treatments. The SEM and TEM images provided evidence that AMF can modify the root cortex cells and root structure which finally helps the plant to prevent the disease infection totally. The *G. mosseae* hyphal structures were seen inside the cortex cell. Disease symptoms were not seen in the *G. mosseae* + *R. solanacearum* treated plants. The extensive colonization by AMF was the reason behind the high concentration of chlorophyll (a) and chlorophyll (b) which could contribute to the increase of photosynthetic rate in tomato leaves and enhance plant growth. Ch.(a) and ch.(b) in *G. mosseae* treated plants was significantly higher compared to the rest of the treatments. *G. mosseae* can be used as a bio-protection agent because it can provide root with hyphal net which can minimize the bacterial wilt infection. The production of healthy, huge number and clean *G. mosseae* spores were the targets of another glasshouse experiment. The results obtained from this experiment showed that the harvest date and the type of the
crops were played a critical role in AMF spore production. Corn was the most suitable host for *G. mosseae* sporulation (167 spore/10gm soil). Lentil, green bean, and barley showed low AMF sporulation and colonization related to the inability of these crops to grow under glasshouse conditions. Several important factors must be considered in AMF mass production, included plant host species, environmental conditions, soil types, nutrient regime, pot size, inoculum amount and the source of primary inoculum. *In vitro* experiments were done to study the effects of different root exudates with and without pre-inoculation with *G. mosseae* on the control of *R. solanacearum* and to study the indirect interaction between *G. mosseae* and *R. solanacearum*. In general, the influence of root exudates produced from tomato and corn plants on *G. mosseae* spore germination showed different response. The spores germination number was decreased using different volumes of mycorrhizal tomato root exudates (MTRE) and mycorrhizal corn root exudates (MCRE). It was increased when non-mycorrhizal tomato root exudates (NMTRE) and non-mycorrhizal corn root exudates (NMCRE) were applied in different volumes. *G. mosseae* spores germinated in all types of media used. The spore germination number was increased by increasing the original number of spores cultured and this indicated that the volatiles compounds produced from bacterial pathogen did not inhibit the spore's germination. The overall results concluded from these studies confirm that the local species of AMF were more able to support and enhance plant growth compared to the introduced species. *G. mosseae* was able to control totally the bacterial wilt causal agent *R. solanacearum* under glasshouse conditions. Nutrient uptake, biochemical changes and root morphological
changes were the three mechanism tested. The production of huge number of AMF spores is a critical area for mycorrhizal research using suitable host plant as a trap.
Kajian rumah kaca telah dijalankan untuk mengkaji keupayaan kolonisasi dan meningkatkan beberapa parameter pertumbuhan pokok tomato oleh dua spesies kulat mikoriza tempatan iaitu *Glomus mosseae*, *Scutellospora* sp., dan spesies luar, *Gigaspora margarita*. *G. mosseae* menunjukkan prestasi yang terbaik di antara spesies yang digunakan. *G. mosseae* berkemampuan meningkatkan tinggi pokok (60%), berat kering pokok (135%) dan bilangan bunga (58%) berbanding pokok kawalan pada minggu ke-7 pertumbuhan. *G. mosseae* mengubah struktur akar seperti berat kering akar (42%), hujung akar (120%), panjang akar (83%), luas permukaan akar (106%) dan jumlah akar (59%), yang mana boleh meningkatkan penyerapan nutrien dan meningkatkan pertumbuhan pokok. *G. mosseae* dapat beradaptasi dengan persekitaran yang mana menyebabkan peningkatan kolonisasi akar (300%) dan jumlah spora (300%) berbeza dengan spesies luar, *G. margarita*. Secara keseluruhannya
data yang dipereembahkan dalam kajian ini menunjukkan bahawa spesies tempatan dapat digunakan untuk meningkatkan hasil lebih berbanding dengan spesis luar. Tiga mekanisma telah diperjelaskan untuk menerangkan bagaimana kulat mikoriza abuskular (AMF) merencat atau mengawal penyakit layu bakteria. Pengambilan nutrient, perubahan biokimia dan perubahan morfologi akar adalah mekanisma yang dikaji. Kepekatan N (41%), P (133%), K (49%), Fe (44%) and Zn (33%) dalam pucuk daun tomato meningkat selepas dikolonisasi oleh G. mosseae, ini menunjukkan bahawa AMF berupaya meningkat pengambilan nutrien disebabkan jaringan hifa yang dihasilkan oleh AMF membanarkan akar menyerap lebih nutrient. Ciri-ciri morfologi akar (berat kering akar, hujung akar, jumlah akar, panjang akar, luas permukaan akar) telah berubah secara berkesan pada rawatan G. mosseae berbanding dengan rawatan yang lain. Gambar SEM dan TEM memberi bukti bahawa AMF dapat mengubah sel kortek akar dan struktur akar yang akhirnya membantu pokok daripada dijangkiti penyakit secara total. Struktur hifa G. mosseae dapat dilihat di dalam sel kortek. Simptom jangkitan tidak dilihat pada pokok yang dirawat dengan G. mosseae + R. Solanacearum. Kolonisasi secara ekstensif oleh AMF adalah sebab peningkatan kepekatan ch(a) dan ch(b) yang mana menyumbang peningkatan kadar fotosistesis pada daun tomato dan meningkatkan pertumbuhan pokok. Ch(a+b) pada pokok yang dirawat dengan G. mosseae adalah lebih tinggi berbanding dengan rawatan yang lain. G. mosseae boleh digunakan sebagai egen kawalan biologi dan dengan penghasilan jaringan hifa dapat meminimumkan jangkitan layu bakteria. Penghasilan spora G. mosseae yang sihat, banyak dan bersih merupakan sasaran eksperimen rumah kaca yang
ACKNOWLEDGMENT

In the name of ALLAH the beneficent and the compassionate. Praise be to the almighty ALLAH SWT for his blessing and who has given me permission to complete this thesis and enable me to achieve this degree.

I wish to express my sincere gratitude to Assoc. Prof. Dr. Kamaruzaman Bin Sijam, chairman of the supervisory committee for his guidance, patience, invaluable advice and constant encouragement during the difficult moments of this study. My sincere appreciation and grateful thanks also to my committee especially to Assoc. Prof. Dr. Radziah Othman for her efforts, support, invaluable advice, intellectual guidance and her patience in the conduct of my research and in the preparation of this thesis. Grateful thanks to Assoc.Prof.Dr.Jugah Kadir and Dr.Nik Masdik Hassan (MARDI) for their constctive, advice and help during the preparation of this thesis. I am exceedingly grateful to Dr. Wong Mui Yun for her peer review for my thesis. And my exceedingly grateful the staffs of Microbiology Laboratory, Department of Plant Protection especially to Mrs. Junaina, Mr. Khirudeen, Mr. Razali, Mr. Nazri, Mr. Johari, Mr. Zawawi, and Mr. Yusof. My thanks are also extended to the staffs of Soil Microbiology Laboratory, Department of Land Management especially to Mr. Dzulkifli Duaji, Mr. Ramlee Sulaiman, Mrs. Zarinah and Mr. Elias Taha. I am deeply thankful to my mother, father, sisters, brothers and my wife for their encouragement, support and prayers.
Last but not least, to my close friends Dr.Khairulmazmi Ahmad, Dr.Faouzi Naleem, Mohumad Alhitar, Reza Khakvar, Dr.Antario Dikin, Umme Aminun Naher Dr.Ayman Omar, Abdulrakeeb Aleryani, Yaseen, Dr.Eshetu, Dr Yahya Alwahdaf, Dr.Siddig Ibraheem, Yosuf Salamah, and Nur Aizat. I thank them for their love, support and the wonderful time we spent together throughout my study in Universiti Putra Malaysia.
I certify that an Examination Committee has met on date of viva voce to conduct the final examination of Monther Mohumad Yuesef Tahat on his Doctor of Philosophy thesis entitled “Biological Control of Tomato Bacterial Wilt Caused by Ralstonia solanacearum Using Endomycorrhizal Fungi” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Name of Chairperson, PhD
Title
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Kamaruzaman Sijam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Radziah Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Jugah Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Nik Masdik Hassan, PhD
Associate Professor
Malaysian Agricultural Research and Development Institute (MARDI)
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 8 June 2009
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

Monther Mohumad Yuesef Tahat
Date:
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK vi
ACKNOWLEDGEMENTS x
APPROVAL xii
DECLARATION xiv
LIST OF TABLES xx
LISR OF FIGURES xx
LIST OF ABBREVIATION xxiv

CHAPTER

1 INTRODUCTION 01

2 LITERATURE REVIEW 06

 Tomato Plant, Botany and Importance 06
 Tomato Diseases 07
 Bacterial Wilt Disease 07
 Causal Agents 07
 Occurrence and Host Range 09
 Disease Distributions 10
 Disease Symptoms 11
 Bacterial Wilt Disease in Malaysia 13
 Control Methods 14
 Arbuscular Mycorrhizal Fungi (AMF) 18
 Identification, Distribution and Classification of AMF 18
 The Functions of Arbuscular Mycorrhizal Fungi 20
 Mycorrhizal Fungi as a Bio-control Agent 20
 Nutrient Uptake 27
 The Effect of Environmental Conditions 29
 Soil Temperature 29
 Soil pH 29
 Soil Moisture 30
 Fertilizer 30
 in Vitro Biology of AMF 31
RESPONSE OF Lycoperiscon Esculentum Mill to Different Arbuscular Mycorrhizal Fungi Species

Introduction

Materials and Methods

Mycorrhizal Spores Production
Soil Preparation
Spore Inoculation
Tomato Plant
Shoot Growth
Root Growth
Root Dry Weight
Root Colonization (%)
Mycorrhizal Spore Determination
Statistical Analysis

Results and Discussion

A-Shoot Growth
Plant Height
Shoot Dry Weight
Flower Numbers

B-Root Growth
Root Colonization (%)
Mycorrhizal Spore Determination

Conclusion

THE POTENTIAL OF ENDOMYCORRHIZAL FUNGI TO CONTROL TOMATO BACTERIAL WILT CAUSED BY Ralstonia Solanacearum Under Glasshouse Conditions

Introduction

Materials and Methods

R. solanacearum Primary Inoculum
Pathogenicity Test
Bacterial Identification
Streaming Test
Solubility Test
Bacterial Isolation
Data Collection
Materials and Methods

Soil Preparation 94
Root Exudates Collections 94
G. mosseae and *Ralstonia solanacearum* Preparation 94
Plant Growth Conditions 95
Shoot and Root Biomass 96
Disease Severity 96
Soil pH 96
Root Colonization (%) 96
Statistical Analysis 96

Results and Discussion
Morphology Biomass 97
Mycorrhizal Spore Determination 98
Soil pH Measurement 98
Ralstonia solanacearum Population 100
Disease Severity 101

Conclusion 106

BIOLOGICAL STUDY OF *GLOMUS MOSSEAE* UNDER LABORATORY CONDITIONS 108

Introduction 108

Materials and Methods 109

Experiment (1) 109
Root Exudates Production 109
Root Exudates Quantification 111
Gloous mosseae, Isolation and Collection 111
Culture Media 112
Surface Sterilization of Spore 112
Spore Germination 113
Experiment (2) 113
Water Agar Medium Preparation 113
Nutrient Agar Medium Preparation 114
Soil Medium Preparation 114
in vitro Cultural System 114
Bacterial Preparation 116
Gloous mosseae, Isolation and Collection 116
Culture Medium 116
Surface Sterilization of Spore 116
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>The most important races, host range, geographical distribution and biovars of Solanacearum</td>
</tr>
<tr>
<td>1.3</td>
<td>Effects of different mycorrhizal fungi treatments Glomus mosseae, Scutellospora sp., Gigaspora margarita and control on tomato plant height</td>
</tr>
<tr>
<td>2.3</td>
<td>Effects of different mycorrhizal species on tomato dry shoot weight and flowers number</td>
</tr>
<tr>
<td>3.3</td>
<td>Effects of different mycorrhizal fungi species on tomato root dry weight, root tips, root length, root surface area and root volume.</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of different mycorrhizal fungi treatments (Glomus mosseae, scutellospora sp., Gigaspora margarita and control) on tomato root colonization percentage and spore number in the soil.</td>
</tr>
<tr>
<td>1.4</td>
<td>Effect of AMF and Ralstonia solanacearum inoculation on tomato plant height within seven weeks of plant growth.</td>
</tr>
<tr>
<td>2.4</td>
<td>Effect of three AMF species and Ralstonia solanacearum on tomato root morphology included (root tips, root length, root surface area, and root volume.</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of three AMF species and Ralstonia solanacearum on chlorophyll a and chlorophyll b contents in tomato leaves.</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of three AMF and Ralstonia solanacearum on the macro and micro nutrient leaves contents.</td>
</tr>
<tr>
<td>1.5</td>
<td>Effect of different plant host on Glomus mosseae spores production at different harvest period.</td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of Glomus mosseae on root colonization assessment of different plant host at different interval period.</td>
</tr>
<tr>
<td>1.6</td>
<td>Effect of Glomus mosseae, Ralstonia solancearum, Ralstonia solanacearum with Glomus mosseae, and control on tomato shoot dry weight, root dry weight, and colonization percentage.</td>
</tr>
</tbody>
</table>
2.6 Effect of different treatments (G. mosseae, R. solanacearum, G. mosseae with Ralstonia solanacearum and Control) on soil pH within three different times (7 days before plant growth, 30 and 60 days after plant growth).

1.7 Amino acid contents in different types of root exudates
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Classification of the order Glomales</td>
<td>19</td>
</tr>
<tr>
<td>1.3</td>
<td>Root analyzer machine</td>
<td>37</td>
</tr>
<tr>
<td>1.4</td>
<td>Disease severity of tomato bacterial wilt Ralstonia solancearum</td>
<td>60</td>
</tr>
<tr>
<td>2.4</td>
<td>Effects of Ralstonia solanacearum on the spore production of Glomus mosseae Scutellospora sp., and Gigaspora margarita at 10,20,30 days after inoculation.</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Effects of Ralstonia solanacearum on the tomato root colonization percentage inoculated by Glomus mosseae, Scutellospora sp., Gigaspora margarita after 10 weeks of inoculation.</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>Ultrastructural features of Glomus mosseae in tomato root (SEM) (Glomus mosseae + Ralstonia solanacearum treatment).</td>
<td>70</td>
</tr>
<tr>
<td>5.4</td>
<td>Ultrastructural features of Glomus mosseae in tomato root (TEM). Glomus mosseae + Ralstonia solanacearum treatment</td>
<td>72</td>
</tr>
<tr>
<td>1.6</td>
<td>Effect of Ralstonia solanacearum, on Glomus mosseae, spore production at 7 days before planting, 30, and 60 days after planting tomato.</td>
<td>98</td>
</tr>
<tr>
<td>2.6</td>
<td>Effect of Glomus mosseae on Ralstonia solanacearum concentration (CFU) at 7 days before planting, 30, and 60 days after planting.</td>
<td>100</td>
</tr>
<tr>
<td>3.6</td>
<td>Disease severity of bacterial wilt of tomato inoculated with Ralstonia solanacearum and Glomus mosseae at 10 days interval time.</td>
<td>101</td>
</tr>
<tr>
<td>1.7</td>
<td>Modified bio-compartmental system of Glomus mosseae spore germination using three types of medium (water agar (A), nutrient agar (B), and soil (C)).</td>
<td>115</td>
</tr>
<tr>
<td>2.7</td>
<td>Relationship between different volumes of mycorrhizal tomato root exudates (MTRE) and spores germination after 5 days of in vitro culture of mycorrhizal fungi</td>
<td>119</td>
</tr>
<tr>
<td>3.7</td>
<td>Relationship between different volumes of non mycorrhizal tomato root exudates (NMTRE) and spores germination after 5 days of in vitro culture of mycorrhizal fungi</td>
<td>120</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Relationship between different volumes of mycorrhizal corn root exudates (MCRE) and spores germination after 5 days of \textit{in vitro} culture of mycorrhizal fungi.</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Relationship between non-mycorrhizal corn root exudates (NMCRE) and pH and spores germination after 5 days of \textit{in vitro} culture of mycorrhizal fungi.</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>Relationship between different number of \textit{Glomus mosseae} spore culture and water agar pH after 5 days of \textit{in vitro} culture of mycorrhizal fungi.</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Relationship between different number of \textit{Glomus mosseae} spore culture and nutrient agar pH after 5 days of \textit{in vitro} culture of mycorrhizal fungi.</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Relationship between different number of \textit{Glomus mosseae} spore culture and the germination of the spore after 5 days of \textit{in vitro} culture of mycorrhizal fungi.</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>Relationship between different number of \textit{Glomus mosseae} spore culture and spore germination number after 5 days of \textit{in vitro} culture.</td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td>Relationship between number of \textit{Glomus mosseae} spore culture and soil pH after 5 days of in sandwich system culture.</td>
<td></td>
</tr>
<tr>
<td>11.7</td>
<td>Relationship between different volume of mycorrhizal tomato root exudates and CFU after 48 hours of incubation.</td>
<td></td>
</tr>
<tr>
<td>12.7</td>
<td>Relationship between different volumes of NMTRE and \textit{Ralstonia solanacearum} (CFU) after 48 hours of incubation.</td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>Relationship between different volumes of mycorrhizal corn root exudates and \textit{Ralstonia solanacearum} (CFU) after 48 hours of incubation.</td>
<td></td>
</tr>
<tr>
<td>14.7</td>
<td>Relationship between different volume of non-mycorrhizal corn root exudates and \textit{Ralstonia solanacearum} concentration (CFU) after 48 hours of incubation.</td>
<td></td>
</tr>
<tr>
<td>15.7</td>
<td>Relationship between different volume of mycorrhizal tomato root exudates (MTRE) and \textit{Ralstonia solanacearum} concentration (CFU) after 48 hours of incubation.</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>Relationship between different volume of non-mycorrhizal tomato root exudates and the pH of the mixture (\textit{Ralstonia solanacaerum} and exudation) after 48 hours of incubation.</td>
<td></td>
</tr>
</tbody>
</table>