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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the Degree of Doctor of Philosophy 

 
ELECTROMAGNETIC CHARACTERIZATION OF Sm-YIG AND            

Sm-YIG-PVDF COMPOSITES PREPARED USING MODIFIED 
CONVENTIONAL MIXING OXIDE TECHNIQUE 

 
By 

 
RAMADAN MASOUD AL-HABASHI 

 
September 2009 

 
Chairman:   Zulkifly Bin Abbas, PhD 
Institute:     Advanced Technology 
 
 

Samarium substituted-yttrium iron garnet (Sm-YIG) nanoparticles were fabricated 

via a modified conventional mixing oxides (MCMO) method according to the        

Y3-xSmxFe5O12 system (0 ≤ x ≤ 3). In this research, utilization of an organic 

compound (ethanol) and metal oxides in conjunction with mixing the reactants 

directly without adding water are the key techniques of this method. Using ethanol 

solution instead of water could produce nanoparticles with better homogeneity and 

smoother surface structure. Single-phase garnet structure of Sm-YIG nanoparticles 

was produced at 1350 0C sintering temperature with an average particle size ranged 

from 25 to 39 nm. XRD results of Sm-YIG samples at x = 2 and 2.5, presented some 

unknown peaks which speculated to, the time or/and sintering temperature is/are not 

enough to form the garnet structure phase of the samples. The true density values of 

5.245 and 6.221 g.cm-3 were calculated for pure yttrium iron garnet (YIG, x=0) and 

samarium iron garnet (SmIG, x=3) samples, respectively which reached around 99% 

of the theoretical density of the samples. 
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Real permittivities of the Sm-YIG samples presented almost flat values ranged from 

7 to 10 with loss factors around 0.1 to 0.3, for YIG (x=0) and SmIG (x=3) 

respectively, within 10 MHz to 1 GHz frequency range. The real permeability value 

19.5 is presented by pure YIG at 13.4 MHz and declined rapidly to be around 2 at 1 

GHz, and decreased with increasing x. The higher permeability resulted in lower 

permittivity and vice versa for all the Sm-YIG samples. 

  

This work was also carried out to prepare the 10 wt% Sm-YIG in Poly-vinylidene-

fluride (PVDF) composite samples and study their electromagnetic properties.      

Sm-YIG samples prepared via MCMO method, PVDF powder and Ethyl-methyl-

ketone (MEK) were used to prepare such composites. High permittivities of 

composite samples observed at lower frequency range indicated to the heterogeneous 

conduction in the multiphase structure of the composites. The real permeabilities 

presented almost flat values through all the range of the frequency from 10 MHz to 1 

GHz, with value of 1.06 at x=0 and 1.13 at x=3, for 10 wt% Sm-YIG loading in the 

composites. MCMO technique appears to be another alternative to the conventional 

(manufactured) technique, due to the decreasing of the particle size with better 

homogeneity, high purity, reduction of the cost, and high yield in a nano-scale 

product compared to other preparations techniques. 

 

The numerical optimization method performed using MATLAB program is to 

estimate the effective complex permittivity and/or permeability of each component 

of the 10 wt% Sm-YIG-PVDF composite samples. It is found that, the optimum 

impedance values are very close to the measured ones for each composite. The 

optimized values of the complex permittivities and permeabilities for both 
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components [Sm-YIG and PVDF] are within the estimated ranges. The optimization 

process eliminated the difference between the measured impedance and the 

calculated one from Maxwell-Garnett (MG) formula via a specific objective 

function. 

 
Results of a developed formula based on MG formula with a comparison of various 

theoretical models including the MG, Looyenga, Bruggeman and Sen-Scala-Cohen, 

have been carried out and discussed with comparisons to the measurements for the 

10 wt% Sm-YIG-PVDF composite samples. This was to calculate the complex 

permittivity and permeability of such composite materials. The lowest mean error 

percentage values were detected from the developed MG formula for each 

composite, which was different from composite to composite depend on the mole 

fraction x. The developed MG model appears to add a new contribution to the 

theoretical models to calculate the effective permittivity and permeability of mixture 

ferrite-polymer materials, due to its accuracy as compared with others. 
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Zarah nano Samarium-YIG telah difabrikasikan melalui kaedah pengubahsuaian 

konvensional pencampuran oksida (MCMO) berdasarkan kepada sistem                 

Y3-xSmxFe5O12  (0 ≤ x ≤ 3). Dalam kajian ini, penggunaan sebatian organik (etanol) 

dan oksida logam bersama dengan campuran reaktan secara terus tanpa penambahan 

air adalah kunci teknik untuk kaedah ini. Menggunakan larutan etanol menggantikan 

air boleh menghasilkan zarah nano dengan keseragaman yang lebih baik dan struktur 

permukaan yang lebih halus. Zarah nano Sm-YIG berstruktur garnet fasa tunggal 

telah dihasilkan pada suhu pemanasan 1350 0C dengan purata saiz zarah berjulat 

antara 25 ke 39 nm. Keputusan XRD bagi sampel Sm-YIG pada x=2 dan 2.5 

menunjukkan beberapa puncak yang tak diketahui yang menggambarkan masa 

atau/dan suhu pemanasan adalah tidak mencukupi untuk membentuk struktur fasa 

garnet pada sampel. Nilai ketumpatan sebenar adalah 5.245 dan 6.221 g.cm-3 telah 

dikira untuk yttrium iron garnet (YIG, x=0) tulen dan samarium iron garnet (SmIG, 

x=3) masing-masing dimana mencapai 99% ketumpatan sampel secara teori. 
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Ketelusan sebenar bagi sampel Sm-YIG menunjukkan adalah kebanyakan nilai rata 

berjulat daripada 7 ke 10 dengan faktor kehilangan sekitar 0.1 ke 0.3 untuk YIG 

(x=0) dan SmIG (x=3) masing-masing dalam julat frekuensi 10 MHz ke 1 GHz. Nilai 

sebenar ketelapan 19.5 didapati dari YIG tulen pada 13.4 MHz dan berkurang 

dengan cepat sekitar 2 pada 1GHz dan berkurang dengan peningkatan jumlah x. 

Semakin tinggi nilai ketelapan menyebabkan semakin rendah nilai ketelusan dan 

sebaliknya untuk semua sampel Sm-YIG. 

 

Kerja ini juga telah dilaksanakan untuk menyediakan 10 wt% Sm-YIG dalam sampel 

komposit Poly-vinylidene-fluride (PVDF) dan mengkaji sifat-sifat 

elektromagnetiknya. Sm-YIG sampel disediakan melalui kaedah MCMO, Serbuk 

PVDF dan Ethyl-methyl-ketone (MEK) telah digunakan untuk menyediakan 

komposit seperti ini. Ketelusan tinggi bagi sampel komposit telah diperhatikan pada 

julat frekuensi rendah menunjukkan kepada konduksi heterogen di dalam struktur 

multifasa komposit. Ketelapan sebenar menunjukkan kebanyakan nilai rata 

sepanjang kesemua julat untuk frequency dari 10 MHz hingga 1 GHz, dengan nilai 

1.06 pada x=0 dan 1.13 pada x=3, bagi 10% Sm-YIG di dalam komposit. Ini 

menunjukkan percampuran baik campuran homogen komposit ferrite-polimer. 

Teknik MCMO juga adalah sebagai alternative lain bagi teknik konvensional 

(penghasilan), kerana dapatmenghasilkan pengurangan saiz zarah dengan homogen 

yang baik, ketulenan yang tinggi, pengurangan kos, dan hasil yang tinggi dalam 

produk skala-nano berbanding dengan teknik penghasilan yang lain. 

 

Teknik pengoptimuman berangka telah dilakukan menggunakan program MATLAB. 

Ini adalah untuk menganggarkan ketelusan dan/atau ketelapan kompleks berkesan 
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bagi setiap komponen sampel komposit 10 wt% Sm-YIG di dalam PVDF. Didapati 

bahawa, nilai impedan optimum adalah sangat hampir dengan nilai yang diukur bagi 

setiap komposit. Nilai optimum bagi ketelusan dan ketelapan kompleks pada kedua-

dua komponen [Sm-YIG dan PVDF] adalah didalam julat anggaran. Proses 

pengoptimuman telah menghapuskan perbezaan di antara impedan yang telah diukur 

dan yang dikira daripada formula Maxwell-Garnett (MG) dengan membezakan 

antara pelbagai model teori termasuk MG, Looyenga, Bruggeman dan Sen-Scala- 

Cohen, telah dijalankan dan dibincangkan dengan membezakan nilai pengukuran 

pada 10% Sm-YIG di dalam komposit sampel PVDF. Ini adalah untuk mengira 

ketelusan dan ketelapan kompleks bagi bahan komposit itu. Bagi setiap komposit, 

nilai purata ralat yang terendah telah didapati daripada formula MG yang telah 

dibangunkan, yang mana ini adalah berbeza daripada kebergantungan komposit 

kepada komposit pada pecahan mol x. Formula model MG yang telah dibangunakan 

dapat memberikan sumbangan baru kepada model teori untuk mengira ketelusan dan 

ketelapan efektif bagi bahan campuran polimer ferrite, berdasarkan kepada 

ketepatannya berbanding dengan yang lain.  
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