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Cognitive scores are the most common measures in diagnosing Alzheimer’s disease

which are measured clinically. These scores are mostly useful in late and severe stages

of disease which symptoms of the disease are appeared. Nowadays, it is obvious that

onset of the disease can be even decades before manifestation of the symptoms and it 

can be revealed by investigating the brain structures. Early prognosing of Alzheimer’s

disease by analyzing brain MR images and inspecting effect of it on brain structures is

a hard task. Moreover, predicting severity of disease based on the cognitive scores is a

more challenging process especially for future prediction by using the anatomical

parameters in the past. One of major problems is high dimensionality of anatomical

feature space which must be reduced to a small feature set of discriminative ones and

another issue is to relate them to the cognitive scores in the future. This thesis addresses

these problems and investigates in the relationships between AD progression and brain

degenerations. Brain MR Images of Alzheimer’s Disease NeuroImaging (ADNI)

dataset are used in the thesis. A total of 108 subjects who pass the imaging process at 

four successive time scans of screening, 12
th

month, 24
th

month and 36
th

month are 

selected. 30 subjects from Normal Controls (NC), 30 from Alzheimer’s disease (AD)

holders, 30 subject with Mild Cognitive Impairments (MCI) and 18 converters, all

convert at 36
th

month, from MCI to AD are included in the dataset. Brain MR Images

are analysed by the established Freesurfer algorithms to extract the volumetric and

thickness features of brain structures in all four time scans. These features are used as

raw data in the rest of the thesis. The thesis has four major objectives. First, 

discriminative features which vary significantly during the disease monitoring period

are identified according to the cognitive scores. Next, regarding to the ordered nature of

cognitive scores it aims to find those features that impose smaller error to the cognitive

scores as predicted output values. These two objectives are going to solve high

dimensionality issue. To tackle on relationship between cognitive scores in future and

anatomical features, third objective is proposed to find a relationship between the

selected anatomical features throughout the monitoring period and MMSE scores at the

end of period or 36
th

month. It is obvious that using anatomical feature values at 36
th
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month to predict the MMSE scores at the same time is clinically unworthy. Fourth

objective is to overcome this shortcoming and relate the anatomical feature values at

the 36
th

month to those of the screening, 12
th

month and 24
th

month. To achieve the

first objective, an evolutionary hypothesis test is proposed to reduce the feature size

and chose those ones that their variation during the 36 months of screening is

significant and was not stable in the duration. Additionally, they must differ

significantly according to the cognitive scores. A minimal set of feature who passed the

above criteria and can differentiate all of cognitive score pairs is selected by using a

genetic search algorithm. Chernoff bound as upper bound of Bayes error for class

separability is computed for evaluating the feature selection method. A reduction from

69.1 to 50.2 is achieved for the proposed evolutionary hypothesis test. In the proposed

feature selection algorithm, the ordered nature of cognitive scores or ranks and the

amount of error value that can be imposed by any feature over any rank are never

considered. So, a rank based feature selection algorithm is proposed to address these

issues. It assigns three measures to any pair of feature and rank. These three measures

are sorted in each rank and truncated based on a threshold of their derivatives. Those 

features that are kept in all three truncated feature sets are chosen as final selected

features which are 10 features. Chernoff bound decreases again from 50.2 to 46.3 by

using the rank based feature selection algorithm. As noted in the third objective, these

selected features are used to predict the MMSE scores at the 36
th

month of screening.

Four various core regressors are used including multilayer perceptron regressor,

general regression neural network, support vector regressor and relevant vector

regressor. Each of the core regressors participate in a boosting algorithm and then, a 

bulk of 40 regressors participate in designing final ensemble regressor. To this end, the 

feature space must be clustered into some small perfect hyperspaces. Each hyperspace 

is assumed as perfect hyperspace if at least three of the regressors can predict perfectly

all data pattern in it. Averaging method is adopted for predicting MMSE scores in any

cluster. Mean square error value of 0.0112 and correlation coefficient of 0.9556 reveal 

competence of the proposed method. Predicting MMSE scores of 36
th

month by using

the anatomical features of the same time is not clinically beneficial. To address it and

accomplish the fourth objective, some ensemble regressors are proposed to predict

anatomical features of 36
th

month or long term features by using their short term

counterparts from start of screening up to the 24
th

month. The same proposed ensemble

regression method is used in designing these regressors. Mean square errors range

between 0.0064 and 0.0111 and correlation coefficients range between 0.8393 and

0.09355 indicate suitability of proposed algorithm even in predicting other type of

features. The really measured long term features in the designed ensemble regressor are 

replaced by the predicted counterparts to achieve a feasible MMSE ensemble regressor.

A mean square error of 0.0213 and correlation coefficient of 0.9350 indicates that the

feasible ensemble regressor is a good representative of the one which is designed by the

real long term features.
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Skor kognitif merupakan ukuran yang biasa dalam mendiagnosis penyakit Alzheimer

yang mana ianya diukur secara klinikal. Skor ini selalunya berguna bagi mengukur

tahap penyakit yang kritikal dimana simptom penyakit tersebut dapat dilihat. Pada 

masa kini, ianya jelas bahawa permulaan penyakit boleh timbul berdekat sebelum

manifestasi symptom dan ianya dapat dilihat dengan mengkaji struktur otak. Prognosis

awal penyakit Alzheimer dengan menganalisis imej MR otak dan memeriksa kesan

tersebut kepada struktur otak merupakan tugas yang sukar. Tambahan lagi, meramal

keterukan penyakit berdasarkan skor kognitif merupakan proses yang lebih mencabar

terutama sekali bagi ramalan akan datang dengan menggunakan parameter anatomi

pada masa lalu. Salah satu masalah utama ialah dimensi tinggi ruang ciri anatomi

dimana perlu dikurangkan kepada set ciri diskriminasi yang lebih kecil dan isu lain

berkaitan terhadap skor kognitif pada masa hadapan. Tesis ini mengutarakan masalah-

masalah tersebut dan mengkaji hubungan antara perkembangan AD dan kemerosotan

otak. Imej MR otak bagi data set Pengimejan Neuro Penyakit Alzheimer (ADNI)

digunakan di dalam tesis ini. Sejumlah 108 subjek yang lulus proses pengeimejan pada

empat kali penyaringan imbasan berturutan, iaitu bulan ke-12, bulan ke-24 dan bulan

ke-36 telah dipilih. 30 subjek daripada Kawalan Normal (NC), 30 pengidap penyakit

Alzheimer (AD), 30 subjek mengidap Kecacatan Kognitif Ringan (MCI) dan 18

pengubah, iaitu semua berubah pada bulan ke-36, daripada MCI ke AD dimasukkan ke

data set. Imej MR otak dianalisis menggunakan algoritma Freesurfer bertapak untuk

mengekstrak ciri volumetri dan ketebalan struktur otak bagi empat kali imbasan. Ciri

ini digunakan sebagai data mentah sepanjang tesis ini. Tesis ini mempunyai empat

objektif utama. Pertama, ciri diskriminatif yang berbeza secara signifikan sepanjang

tempoh pemantauan penyakit dikenal pasti mengikut skor kognitif. Seterusnya,

berhubung sifat berturut skor kognitif ia bertujuan untuk mencari ciri yang mengenakan

ralat yang lebih kecil bagi skor kognitif seperti ramalan nilai output. Kedua-dua

objektif ini akan menyelesaikan isu kedimensian tinggi. Untuk menangani perhubungan

antara skor kognitif dalam ciri masa hadapan dan anatomi, objektif ketiga dicadangkan

untuk mencari perhubungan antara ciri anatomi terpilih sepanjang tempoh pemantauan

dan skor MMSE pada akhir bulan ke-36. Adalah jelas dengan menggunakan nilai ciri
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anatomi pada bulan ke-36 bagi meramal skor MMSE pada masa yang sama adalah

tidak boleh dipercayai dari sudut klinikal. Objektif keempat ialah untuk menangani

kelemahan ini dan mengaitkan nilai ciri anatomi pada bulan ke-36 pada mereka yang

disaring pada bulan ke-12 dan bulan ke-24. Bagi mencapai objektif pertama, satu ujian

hipotesis evolusi dicadangkan untuk mengurangkan saiz ciri dan memilih yang mana

variasi mereka sepanjang penyaringan bulan ke-36 adalah signifikan dan tidak stabil

pada jangka masa tersebut. Tambahan lagi, ia mestilah berbeza secara signifikan

mengikut skor kognitif. satu set minimum bagi ciri yang lulus bagi kriteria diatas dan

boleh membezakan semua pasangan skor kognitif dipilih dengan menggunakan

algoritma carian genetik. Batas Chernoff sebagai batas atas bagi ralat Bayes bagi

kebolehpisahan kelas dikira bagi menilah kaedah pemilihan ciri. Penurunan daripada 

69.1 to 50.2 dicapai bagi cadangan ujian hipotesis evolusi. Di dalam cadangan

pemilihan ciri algoritma, sifat berturut skor atau peringkat kognitif dan jumlah nilai

ralat yang boleh dikenakan oleh mana-mana ciri lebih dari peringkat tidak pernah

dipertimbangkan. Oleh itu, pemilihan ciri algoritma bersifat peringkat dicadangkan

bagi mengutarakan isu tersebut. Ia menetapkan tiga ukuran pada mana-mana pasangan

ciri atau peringkat. Ketiga-tiga ukuran ini disusun pada setiap peringkat dan dipangkas

berdasarkan ambang penurunannya. Ciri tersebut yang disimpan pada ketiga-tiga set

ciri pangkasan dipilih sebagai ciri pilihan akhir iaitu 10 ciri. Batas Chernoff menurun

lagi dari 50.2 kepada 46.3 dengan mengunakan pemilihan ciri algoritma bersifat

peringkat. Seperti yang nyatakan dalam objektif ketiga, ciri-ciri terpilih ini digunakan

untuk meramal skor MMSE pada penyaringan bulan ke-36. Kami menggunakan 4

peregresi teras termasuk peregresi perseptron berbilang lapis, peregresi rangkaian

neural umum, peregresi vektor sokongan dan peregresi vektor relevan. Setiap satu

peregresi teras menyertai dalam meningkatkan algoritma dan sebahagian besar daripada 

40 peregresi menyertai dalam mereka bentuk peregresi ensembel akhir. untuk tujuan

ini, ruang ciri tersebut mestilah berkelompok kepada hiper ruang sempurna yang kecil. 

Setiap hiper ruang dianggap sebagai hiper ruang sempurna jika sekurang-kurangnya 

tiga peregresi dapat meramal dengan sempurna semua pola data di dalamnya. Kaedah

pemurataan digunakan dalam meramal skor MMSE dalam mana-mana kluster. Nilai

ralat min kuasa dua bernilai 0.0112 dan pekali korelasi sebanyak 0.9556 menunjukkan

kecekapan kaedah yang dicadangkan. Meramal skor MMSE pada bulan ke-36

menggunakan ciri anatomi pada masa yang sama adalah tidak berfaedah dari segi

klinikal. Bagi mengutarakan dan mencapai objektif keempat, beberapa peregresi 

ensembel dicadangkan untuk meramal ciri anatomi bulan ke-36 atau ciri jangka

panjang dengan menggunakan kaunterpart jangka pendek daripada mulanya

penyaringan sehingga bulan ke-24. Cadangan kaedah peregresi ensembel yang sama

digunakan dalam mereka bentuk peregresi tersebut. Ralat min kuasa dua dalam

lingkungan 0.0064 dan 0.0111 serta pekali korelasi dalam lingkungan 0.8393 dan

0.09355 menunjukkan kesesuaian algoritma yang dicadangkan walaupun dalam

meramal jenis ciri yang lain. Peregresi yang benar-benar mengukur ciri jangka panjang

di dalam reka bentuk peregresi ensembel diganti dengan kaunterpart yang diramal bagi

mencapai peregresi ensembel MMSE yang tersaur. Ralat min kuasa dua bernilai 0.0213

dan pekali korelasi dengan nilai 0.9350 menunjukkan bahawa peregresi ensembel

tersaur merupakan wakil yang baik bagi satu yang direka dengan ciri jangka panjang

yang sebenar.
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Alzheimer’s disease (AD) is the late-life ailment that starts cunningly and gradually 

redounds to cognitive impairment. AD is known as the major cause of more than half 

of the dementias.  It is estimated that more than 10 million people living worldwide 

with AD and until 2025 this population will be nearly double [1-2]. AD and related 

dementias cost about $600 billion annually [3]. Nowadays, there is no effective clinical 

treatment for AD but some neuro-protective agents designed to stabilize the disease and 

decelerate its progress. 

Pathogenesis of AD starts with establishing an abnormal τ protein in some 

impressionable neurons which disrupts microtubules amenable for transporting 

substances between cellular compartments, preventing axonal transport and altering the 

cytoskeleton. This process eventually lead to the formation of neuropil threads and 

neurofibrillary tangles (NFTs). Independent of the abovementioned intraneural 

alterations, deposition of beta-amyloid (Aβ) is another degradation which occurs as an 

onset of AD. This is an extracellular phenomenon and may lead to the development of 

senile plaques [4].  

Definite diagnosis of AD is based on the post mortem examination and approved if a 

certain density and distribution of these two parameters (NFTs and senile plaques) 

revealed [5]. But, they appear in majority of elderly people regardless of that they 

eventually fall in AD or not [6]. Some argue that occurrence of these two parameters 

are normal effects of aging in healthy elderly [7], whereas some others assert that it 

cannot be a normal consequence of aging [8]. 

As the age proceeds, agglomeration of NFT comply consistent spatial and temporal 

patterns but it is not the case with the amyloid plaques [4]. Meanwhile, that cognitive 

and behavioural decline in AD course has correlated with the accumulation of NFT in 

the brain. It appears first at the Entorhinal cortex and by the progression of disease, 

densifies and spreads into the hippocampus and other limbic and paralimbic cortices, 

eventually intruding upon the neocortical areas and the striatum [5]. After these 

degenerations of brain structures, memory lapses appear followed by functional and 

lingual decline. Memory impairments specially in learning abilities and retention of 

new information are the first clinically manifested symptoms in subjects influenced by 

AD. Other problems such as lingual and spatial disorders in finding words to express 

sentences and finding the ways in familiar places are the next signs of AD [9-10]. 

These changes always appear in the same order, but they may overlap each other in 

various disease stages [11]. These orders and overlaps are revealed in Figure1-1. 
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Figure 1-1 Various biomarkers of AD and the stage of disease they are affective 

[11] 

The first three biomarkers can be used to prognosis of AD prior to dementia diagnosis 

(Adapted from http://adni.loni.ucla.edu/about/biomarkers (Accessed 5/2/2012)). 

As shown in the Fig. 1, disease evolution has been divided into three phases based on 

the severity of disease. The first phase is normal controls (NC) including peoples 

without any clinical disease symptoms. The second phase is Mild Cognitive 

Impairments (MCI). Subjects in this category complain against some memory lapses 

but not in a stage that influence their normal daily activities. That is, MCI is an 

intermediate state between normal control and AD. Subjects, who fall in MCI may or 

may not convert to AD in the next future years. Last phase, the AD phase, includes 

those people whose disease has clinically approved.  According to the National 

Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer’s disease and Related Disorders Association (NINCDS-ADRDA) criteria, a 

clinical test for diagnosing the AD must clarify the existence of dementia, deficits in 

two or more cognitive abilities, progressive impairment of memory in spite of no other 

systemic brain disorder capable of producing dementia. Mini Mental Score Exam 

(MMSE), Clinical Dementia Rating (CDR), Functional Assessment Staging Scale 

(FAST), Global Deterioration Scale (GDS) and Alzheimer’s disease Assessment Scale 

(ADAS) are some popular clinical tests which are used to diagnose people with AD 

clinically. Moreover, definite diagnosis of AD requires histopathological confirmation 

based on biopsy or autopsy [12]. 

1.2 Problem Statement 

It is obvious that clinical measures are useful only in the third stage of disease and 

cannot be used in the first and second stages due to no manifest behavioural or memory 

impairment [13-14]. Furthermore, diagnosing based on singly clinical scores are not 

accurate enough and biopsy or autopsy based identification of density and location of 

amyloid plaques as well as the existence of neurobiology tangles are required. Autopsy 

derived information in post mortem studies are useful in investigating the location and 

http://adni.loni.ucla.edu/about/biomarkers
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nature of pathology but cannot be used in tracking the progression of disease in living 

individuals. Furthermore, biopsy is an invasive process and cannot be considered as a 

common diagnostic for AD. These limitations motivate researchers to look for some 

complementary biomarkers for exact diagnosis of AD [15].  

Referring Figure 1-1, analyzing brain structures and their characteristics can be a good 

complementary biomarker in diagnosing AD even in early stages of it. Various 

modalities of brain imaging such as Positron Emission Topography (PET), Computer 

Tomography (CT), Functional Magnetic Resonance Imaging (fMRI) and Magnetic 

Resonance Imaging (MRI) are used in designing complementary biomarkers of AD. 

Among them, brain MR Images because of their high resolution and non-invasive 

nature seem to be plausible candidates for realizing microscopic degenerations in brain 

structures. MRI based neuroimaging methods, offer promise in being able to analyze 

AD in vivo. Characteristics of the degenerations may be explored to get strong 

relationships between them and disease progression [16-22]. Different anatomical 

structures of the brain such as Entorhinal Cortex, Hippocampus and Cerebral Cortex 

have been influenced of AD, and their morphometric characteristics such as volume 

and thickness can be used as biomarkers of neurodegenerative diseases such as AD [16, 

23-26]. 

Major reason in designing new powerful markers of AD is the need for monitoring in 

vivo disease progression in designing new therapeutic trials and also early prognosis to 

stabilize cognition or at least to decelerate its decline [27-28]. Most of the 

neuroimaging methods focus on analyzing morphological features and statistically 

evaluate their discrimination power in classifying subjects into their well known 

appropriate groups such as NC, Non-Converter MCI, Converter-MCI and AD [11, 29-

32]. These methods never explored on ways that one can use to categorize individuals 

into the groups based on these features. Some others go further and propose 

classification methods as well as feature extraction methods to assign each subject into 

its appropriate class of disease [29, 33-34]. It is known that classification is a 

dichotomous process and classifies each subject into the one of two or more groups 

whereas, some pathology such as AD follow a continuous trajectory of structural and 

functional changes. It starts even decades before its final clinical stage and progress 

gradually. So estimating the clinical disease scores seems imperative for evaluating 

severity of disease and analyzing its progress. This can help in managing patients and 

also is very helpful to monitor brain effect of drugs in developing new 

pharmacotherapeutic trials. Nowadays, just a few neuroimaging methods focus on the 

AD analysis based on the continuous disease related grades [35-37]. Nevertheless, they 

suffer from some shortcomings and improvements can be made on them. 

1.3 Motivations 

The onset of the AD starts even decades before appearing its clinical symptoms. Brain 

structures have been influenced in early stages of disease and degeneration of these 

structures and their characteristics can be used as biomarkers of AD. Due to the non-

invasive nature of medical imaging and higher resolution of MR images, they seem as a 

convenient modality for analyzing brain structures and their characteristics in response 

to the disease effects. 
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Regarding the nature of AD, its pathogenesis is a gradual phenomenon and for definite 

analysis of AD the severity of disease must be evaluate by a continuous quantitative 

mark. These continuous marks help scientists to track the disease as it progresses even 

in the early stages of the disease. This ability helps in analyzing effects of newly 

developed drugs whether they are controlling disease to stabilize or even amend it. 

Furthermore, realizing the onset of disease in its early stages before manifestation of 

clinical symptoms can lead to a better and more efficient therapy. 

1.4 Objectives 

In this thesis, main aim is to investigate the relationships between AD progression and 

brain degenerations which reveal and parameterize by analyzing MR images. There are 

four major objectives must be achieved.  

1- To analyze brain MR extracted features statistically and selecting most 

discriminative ones in a meta-heuristic manner. 

2- To design a rank based feature selection method in order to evaluate each 

feature’s contribution in misclassifying the data patterns, and also their 

pertinence in imposing the error to the output values. 

3- To implement an ensemble regressor for estimating long term morphological 

features based on short term morphological features. 

4- To implement an ensemble regressor for estimating clinical scores based on 

real short term and estimated long term morphological features. 

To achieve the first objective, it is needed to find those features which vary 

significantly during the monitoring period and also their variations significantly 

correlated with the changes in MMSE scores. Selecting minimum set of features by 

which all MMSE score pairs can be discriminated is desired. 

Second objective is to involve the ordinal nature of MMSE scores in selecting those 

features, which impose minimum error in predicting the MMSE scores. Two newly 

proposed measures along with the area under curve of receiver operating characteristic 

curve are used in a pseudo-voting manner to select such valuable features. 

According to the third objective, an ensemble regressor is proposed by which the 

morphological features at the 36
th

 month (long term) can be predicted by the MMSE 

scores and morphological features of previous scans, screening and 12
th

 and 24
th

 month, 

(short term) which are extracted from corresponding MR images. 

Designing and developing a new ensemble regressor for predicting MMSE scores of 

36
th

 month by using the extracted short term atrophic features and MMSE scores along 

with the predicted atrophic features of 36
th

 month is the fourth objective of the thesis. 
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1.5 Aim and Scope 

The Alzheimer's Disease Neuroimaging Initiative (ADNI) [38-39] is a large study of 

MRI and FDG-PET (Fluorodeoxyglucose Positron Emission Tomography) over 800 

individuals in a period of 5 years. 50 different imaging centers and hospitals from the 

United States and Canada have participated in this study. Participants are between 55 

and 90 years old and 200 of them were normal controls, 400 subjects had MCI and the 

remained 200 are identified as AD. The ADNI was launched in 2003 by the National 

Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year 

public–private partnership [40].  

The major goals of the ADNI are to develop improved methods which will lead to 

uniform standards for acquiring longitudinal, multi-site MRI and PET data on patients 

with AD, MCI and elderly NCs. Furthermore, developing methods with maximum 

power in determining treatment effects and collecting a generally accessible data 

repository which describes longitudinal changes in brain structure and metabolism are 

other main objectives of ADNI. 

Among 800 subjects of ADNI, a total of 131 subjects with complete longitudinal scans 

are selected for this study. It includes 30 normal controls, 30 MCIs, 30 patients with 

AD and 41 of them are Converters from which 23 are Converter-MCIs, 16 are 

Converter-NCs and 2 of them are normal controls who converted directly to AD 

without any match to intermediate MCI state. Converter-MCIs are subjects currently 

diagnosed as MCI but convert after a while to the AD. On the other hand, Converter-

NCs are subjects currently detected as normal controls but convert to the MCI in a 

period of time. T1-weighted modality of MR images are used for analysis.  The major 

reason for choosing MR images is their higher resolution which makes them suitable 

for investigating fine details of brain degeneration. Images in the database have been 

analyzed and their qualities have been approved by some radiology experts. 

This thesis focuse on those subjects with complete T1 weighted MRI scans in 4 desired 

timelines of screening, 12
th

 month, 24
th

 month and 36
th

 months. A total of 131 subjects 

including 30 normal controls, 30 subjects with mild cognitive impairments, 30 

Alzheimer’s disease holders and 41 Converters from which 23 are Converter-MCIs 

(convert from MCI to AD), 16 are Converter-NCs (convert from NC to MCI) and 2 of 

them are normal controls who converted directly to AD without any match to 

intermediate MCI state. 

Major aim of the thesis is to feasibly predict the MMSE scores at 36
th

 months. That is, 

to predict the MMSE scores of 36
th

 month without using any of the features at that 

time, but just by using the information from previous timelines. To this aim, extracted 

information from short term scans, including atrophic features and MMSE scores along 

with the predicted atrophic features of 36
th

 month (based on the short term features) are 

used to predict the 36
th

 month MMSE scores. 
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1.6 Limitations 

Subjects who have been incorporated in this study are limited to those in the ADNI 

dataset who passed all monitoring requirements and have MRI scans in time slices of 

screening, 12
th

 month, 24
th

 month and 36
th

 month of scanning.  

Proposed algorithms aim to predict the MMSE as a major clinical score in the 36
th

 

month by using the anatomical structures in the past three time slices. 

1.7 Thesis Outline 

The rest of this thesis is organized as follows:  

 Chapter 2 will give a brief overview of the Alzheimer’s disease severity 

prediction methods. There are a huge number of researches on diagnosing the 

Alzheimer’s disease, but only a few of them focus on predicting the disease related 

cognitive scores. This chapter will cover all the major works have been done in 

predicting or even calculating the cognitive scores. 

 Chapter 3 will present the proposed methodology of the thesis. Detail of the 

algorithms, experimental design, performance metrics and evaluation methods of this 

work will be explained clearly. 

 Chapter 4 is dedicated to experimental results of the proposed systems. 

Results of feature selection algorithms as well as the regression methods will be 

presented in this chapter. 

 Chapter 5 provides a summary of the work presented in this study and outlines 

the conclusions that can be drawn. It will also include the suggestion for future works.  
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